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Abstract—When a cognitive system encounters particular integrated over a distributed architecture, shown in Fig. 1
objects, it needs to know what effect each of its possible aohs  The main idea is to allow the system to perform a variety of
will have on the state of each of those objects in order to be &b simple push actions on objects that are placed on the work

to make effective decisions and achieve its goals. Moreoyet f d video foot fth it h t thia d
should be able to generalize effectively so that when it enoa- surface, record video footage ot the result, harves a da

ters novel objects, it is able to estimate what effect its ains ~ for appropriate features and attempt to learn the sinigarit
will have on them based on its experiences with previously inherent in the behaviour of those objects that are physical
encountered similar objects. This idea is encapsulated byhe  similar when affected by such actions.

term “affordance”, e.g. “a ball affords being rolled to the
right when pushed from the left.” In this paper, we discuss

the development of a cognitive vision platform that uses a Machine 1 Machine 2
robotic arm to interact with household objects in an attempt ‘tg’ —
to learn some of their basic affordance properties. We outtie °ij G— Arm Control
the various sensor and effector module competencies that wee
needed to achieve this and describe an experiment that uses a
self-organizing map to integrate these modalities in a worlg Katana Arm Corba Server Natab-
affordance learning system. Control &
Corba/HTTP Lsea"‘"‘g
Server ystem
I. INTRODUCTION “
Recent years have seen a surge of activity in the area C—
./

of developmental robotics [1], a trend that can be seen FleaCamera
to underscore the desire to move away from task-specific S
systems and towards more robust, adaptable platforms and
architectures. Desirable traits of such systems incluge th

ability to learn coqtinuously duri_ng the course of a lifespa o number of researchers have sought to develop systems
or deployment period, the capacity to construct new corscepy, learning affordances in different settings [3], [4]],[f5].
from previously learned or known ones, the ability to adgive In [3], the author devised a similar experiment for afforcan
learn via interaction with a tutor or another knowledgeablpeammg to the one listed here, where a robot was given a set
entity, etc. Naturally, these are difficult problems thaé ar ot 4 4ctions to perform on 4 toy objects. However, the system
unlikely to be amenable to wholesale solutions, but manyy jeared one affordance feature, a measurement of how
mterestlng_, more trgctable sub-problems can be |den,t|f|eﬁke|y it would be for an object to roll along its principal &x
one of which is the issue of a_lffordance learning. ) in our case, 11 features are presented to a more generalized
The termaffordance was coined by the psychologist J.J.jearning system. The author of [4] allowed a robotic arm to
G|b§on [2] to descrlb.e the interactive p053|b|I|t|§s of e a set of tools to manipulate a hockey puck on a work
particular object or environment, e.g., “a ball afforddingl”  qrface and considered two types of affordandsading
or “a lightswitch affords the |IIu_m|nat|on of a light bulb”. ~¢ordances for potential arm tool attachments, adtput
For our purposes here, we will be framing the problemgtorgances for the effect that that tool would have on the
of affordance learming by considering *what will happen if, ¢l An object manipulation tool is also used by the robotic
action 4; is performed on objec®;”. system presented here, as detailed in Section 1V, but rather
In this paper we will present a cognitive vision system thafhan learning the tool affordances, we focus on learning
learns basic object affordance properties by interactiitg W gpiect affordances that become apparent when the tool is
household objects on a table surface using a robotic arm, afjdaq to manipulate different types of objects. An architet
observing the result using a camera system. The experimen& action (mimicking) and program (gesture) level visual
environment is shown in Fig. 2 and Fig. 3. These devices a§itation in a robotic platform is presented in [5], where

. object affordance contexts are used to focus the attention
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Fig. 1. System architecture.



a Bayesian framework that relies on prior knowledge frona hugely important aspect of such an experimental architec-
object affordance contexts, which are provided. Thougture is that the actions performed by the effector and the
we do not perform recognition in this work, rather therfeatures garnered from the sensors be reasonably consisten
providing affordances as a prior, we present a framewoik nature; otherwise it would be impossible to learn such
in which object affordances may Hearned dynamically. target functions. We discuss how this is achieved later in
This knowledge could be subsequently used to aid in vario®ection Il.

recognition tasks or, indeed, knowledge obtained from an In principle, many different learning algorithms could be
object recognition process could be used as input to oused in the system described above to solve the problem
affordance learning system. of predicting the resulting feature vectors for particudar
tion/object combinations. We chose to useddéorganizing

map (SOM) or Kohenen map [7] for three main reasons.

Firstly, during training, SOMs form clusters that not only
group similar exemplars, but are also related to each other
topologically. A SOM is made up of nodes that are linked
to other nodes by a map topology and a neighbourhood
function. If the node at the center of a data cluster is
topologically close to another cluster node then concepts
captured by those respective clusters can be said to be
similar, whereas clusters that are topologically distaatrf
each other are more likely to represent concepts that are
dissimilar.

The second reason why SOMs were chosen is because
they can be randomly initialized and trained incrementally
without a batch training procedure; the maps self-organize
and form clusters as data arrives sample-by-sample. This is
Fig. 2. Side view of the workspace. The robotic arm holds albfgastic ~an essential requirement for any cognitive system thatsieed
tool that is used to push objects on the work surface. to learn in a continuous, life-long manner.

Thirdly, SOMs have been previously shown to work well
for learning affordances, albeit in a simulated robotideys
[6]. The authors of [6] used a SOM with a Hebbian mecha-
nism called a&Growing When Required (GWR) network to aid
a simulated Khepera robot in learning affordances of object
with survival values such as nutrition and stamina so that it
could prosper over time in its environment.

The paper is organized as follows. In the next section, we
outline the system architecture and implementation detail
This will aid the discussion in Section Il where we highltgh
how a SOM was used as the learning mechanism for our
system. In Section IV we describe an experiment devised to
evaluate the system, and finally in Section V we conclude
and state our goals for future work.

II. SYSTEM ARCHITECTURE& | MPLEMENTATION
A. Robotic Arm

Fig. 3. Workspace as seen by the tripod-mounted cameransyste In our system, we use a Neuronics Katana 6M robotic arm
which features 5 DC motors for main arm movement, as well

For the particular experiments presented here, we proviée a 6th motor to power a 2 fingered gripper that houses both
the system with information on what object is present innfrared and haptic sensors (note: these sensors are rit use
the scene, as well as with a fixed repertoire of possibi@ the experiment presented here). The base of the arm is
arm 'push’ actions. Recognition and/or classification @& thmounted on a flat table with a wooden laminate surface, and
particular objects involved was not the primary focus o§thithe arm is allowed to move freely in the area above the table
work, but could be dealt with in a seperate module andurface, avoiding collisions with the table through the ake
integrated into the system. Thus, the task in the experisnergpecialized control software.
is framed as a regression problem where the system received) Interface: The system is designed to be controlled from
a feature vector when a particular action is performed othe Matlab software environment. Matlab was chosen as it
a given object, and tries to both estimate and adjust allows for rapid prototyping of high-level control program
target function for that action/object combination. Natly; and provides extensive functionality for computer vision




manipulations as well as other procedures. In order for Ill. L EARNING WITH A SELF-ORGANIZING MAP
experiments involving the robot arm to be performed vig, goym Description
Matlab and to aid swift cross-platform integration of the

arm in future projects, a CORBA interface was developed r’?‘ SO.M [7] |s_ahsbet OE‘ ngdesl that are cor:nec(;(_ed to gachl
to sit between the low-level arm control software and high(-)t er via a neighbourhood relation on a low-dimensiona

level Java control client which can easily be called fr0n4usually 2D) grid. Eachth node contains a d-dimensional

Matlab. This allows for swift arm/work-space calibrationeignt vectorm; = [miy, ..., mi4] whose dimensionl is
from within Matlab and provides simplenoveTo(z,y, =) equal to the dimension of the data vectors that are provided

style functionality for moving the end-effector to a lozald 25 input fo the SOM during training. The neighbourhood
position (z, y, =) in the workspace. relation may be configured in any number of ways. In the

2) Arm Control Software: At the heart of the arm control MapP used for the experiment detailed in Section IV, we
architecture lies Golef control and planning software de- used a hexagonal neighbourhood function where each node

veloped specifically for the Katana arm. The software workS c_onnected o _six neighbouring nodes, as_shqwn @n Fig. 5.
by transforming desired positions expressed in workspad@'ious topologies, e.g., sheet-shaped, cylindricabit,

(z,y,2) coordinate trajectories, to jointspace trajectoried@ also be used to connect map nodes to each other.

i.e. suitable control signals for each of the 6 arm motord€pending on the type of neighbourhood relation and the

Golem was originally developed for experiments that ineoly {0P0I0gy imposed, as the SOM s trained weight vectors
navigating the arm around workspace obstacles in order fgat are S|m|_lar with respect to a distance metrl_c, usually
reach objects for grasping. Since our intended use of gfeHclidean, will move closer to each other topologically.

arm involvedcollision with objects rather than avoidance, theg  |ncremental Traini ng Algorithm

software had to be modified in two important ways. Firstly, . .

planned movement trajectories had to be constrained to be asThﬁ welggt velct_or_f_ 'T_ ea(ljcr; Off thetno_de_s OLthe. Sogﬂm:re

linear as possible and secondly, the orientation of theafone usuatly ratn om %'T 'a |ze; Eore raining t e?lr:js.t th a

and end-effector had to be made as consistent as possig%mng Step, a data vector = 21, ..., 2] 1s ted 1o the
M and is measured against each node in the SOM using

over repeated movements. ) . .
P the Euclidean distance metric, as follows:
B. Camera System

d

A Point Gray Research Flea monocular camera (640x480 ||x — mi||2 = ij (zj — mij)Q, (1)

@ 60FPS or 1024x768 @ 30FPS) was used to gather images =1

and video for the experiment listed in Section IV. h . | t of K vector —
1) Interface: The camera system is operated using & crew; IS an €lement of mask vectar = [wi, .. ., w]

similar interface to that of the robotic arm. A Java cliené’\'h'tCh cag Iqe utseq _to 2'0(:'( S.Ut or d|scou_nt |nd[[\/|dlfl_ar11I
is called from Matlab to interface with a CORBA server co-Ur€S auring training depending on requirements. €

that implements the low-level camera functionality. Dgrin node that is closest to the input data vector based on this

experiments, after an action command is issued to the mbo{PemC is called thenest matching unit (BMU) and both it

arm, the camera system starts recording images and contﬂﬂd;i ?l:allghbourmg nodes are updated using the following

ues recording until movement in the scene has ceased. Th&8
images are then used to create a video, which is passed to a m;(t+1) = my(t) + a(t)he (t)[x(t) — my(t)], (2)
compression module, after which it may be gathered from a
web server. operating over alli € [1,n], where «(t) is the learning
2) Tracking @gem After video processing’ Objects are rate at timet and hm(t) is the neighbourhood kernel around
tracked using a probabilistic tracker [8]. This tracker ighe BMU c. The neighbourhood kernel is a non-increasing
in essence a color-based particle filter, which makes udgnction of time and of the grid-wise distance (distance
of background subtraction using a pre-learned backgroufgtween nodes on the grid, as opposed to Euclidean distance
image. Object shapes are approximated by elliptical regiorPetween their constituent weight-vectors) of nadeom the
while their colour is encoded using colour histograms. Th#inning nodec.
dyr_lamics of objects are deeIed using a dynamic m0(_1el [9&:. SOM Usage in Experiments
which allows for tracking with a smaller number of particles } . ] ) )
and consequently, near real-time tracking performance. For the experiment o_uthned in the following section, we
3) Feature Extraction: The following 11 features are made use of the publicly available SOM Toolbox 20
extracted from the video data: total distance traveled-in for Matlab. Feature vectors were collected, each of which
axis, total distance traveled ipaxis, total Euclidean distance had unique text labels associated with them detailing the
traveled, mean velocity in-axis, mean velocity iny-axis, action/object pairing that produced the feature vectoe Th
velocity variance inz-axis, velocity variance i-axis, final ~ text labels that were used in the experiment are shown in

2 position, finaly position, final orientation, orientation Table I. During training, when the BMU for the input data
difference between start orientation and final orientation Vector is found, the label or labels that are associated with

Lhttp://www.cs.bham.ac.uk/ msk/ 2http://www.cis. hut.fi/projects/somtoolbox/



TABLE |

SOM Labeling using All Features

ACTION/OBJECTPAIRINGS. NN TN TN
Push tOp / blue cubePush middle / blue cubePush bottom / blue cube Push bottom of pepsican(5) Push middle of ladypird(9) Push bottom of ladypird(5)
Push top / ladybird | Push middle / ladybird | Push bottom / ladybird

Push top / Pepsi carPush middle / Pepsi cgrPush bottom / Pepsi cd
Push top / phone | Push middle / phone | Push bottom / phone

=]

that data vector are attached to the weight vector of the
BMU. The labels do not affect the weighting of the nodes push
or the structure of the map, but are useful for classifying
the clusters that are formed in the map during training. For
our experiments, we use the labels to identify action/dbjec
pairings, e.g., "Push top of pepsican” or "Push bottom of
phone”. As the SOM is being trained, more and more labels
get attached to BMU’s in the map. In order to predict what
feature outcomes are afforded by a particular action/dbjec
pairing, the system may search for the node in the SOM that

iddle of pepsjcan(6)

Push top of pepsican

3

Push| top of bluecupe(7) Push bottom of bluecube(15)

has had the label for that action/object pairing attached to Pushjmiddle of phdne(7)
it most frequently. The weight vector at that node forms the
affordance prediction for that action/object pairing. Push top of ladybifd(7) Push bottom of phofe(10)

The true power of the SOM in affordance learning lies
with its capacity for topological self-organization. If dw
action/object pairings are sufficiently dissimilar wittspect
to the feature vectors they produce, the text labels that are Push iddle of buedubel6)
associated with them should cluster on nodes in the map that
are topologically distant. This allows for different afftamce
concepts t.O be ne"f‘tly captured in an unsuperwse_d .Wa.y' F[Qé 5. Example of SOM labeling after 180 training steps gsthe
example, if a ball is pushed on a table surface, it is likelyull dataset. As data vectors with associated text labadsimcrementally
to roll across the table and produce quite a different fmtugedd ttoh éhtee X?(l)a'\gélﬂifigé);:gftnoattﬂ;t”?mfé%deoi\?ertht?m?aggse "fsoglgﬁ?;wodﬁ
VeC_tOI_’ to a box-shaped object that is pUShed_ on the table éﬂecific points in the map and labels that represen{ ach@@ub pairings
a similar way. These feature vectors would likely cluster afith similar properties will be found close to each other.lyOthe most
topologically distant locations in the SOM, thus Capturingrequent occurences of each label are shown in this vistaliz
the concept of rolling versus non-rolling objects. In thextne
section we describe an experiment to demonstrate this idea
and we evaluate its performance. A set of 3 pushing actions was provided to the system,
each of which involved keeping the forearm part of the arm
orthogonal to the work surface and pushing from the right
side of the workspace to the left side, through a fixed object
start position. One of the actions pushed through the middle
of the fixed start position, a second pushed through a point
above the start position (“above” with respect to the start
(d) location in the image space, not in the arm space) and a third
action pushed through a point below the start position. We
selected 4 household objects to be used in the experiments
as shown in Fig. 4; a blue toy cube, a toy ladybird rattle
that is capable of rolling, a Pepsi can, and a mobile phone.
IV. EXPERIMENTAL RESULTS During trials, each of these objects was placed centred at
the start position with a consistent orientation, as in Big.
and the Katana arm pushed the object at a fixed speed using

To test the efficacy of the system for learning basic objegne of the 3 actions. See Table | for the full range of twelve
affordance properties, the experimental environment was gaction/object pairings that were tested.
up as shown in Fig. 2 and Fig. 3, where the Flea camera wasAfter an action was performed on an object, the images
positioned roughly one metre above the work surface onwaere gathered from the Flea camera, converted to video,
tripod, giving it a top-down viewpoint of the scene. To helpcompressed, and passed to the tracking system, as well as the
avoid arm/object occlusions, which would have posed sonmher feature extractors. The 11 extracted features disdus
difficulties for the tracking system, an black plastic pushi in Section 11-B.3 along with the action/object label wererth
tool was placed in the Katana arm’s gripper as shown. used as input for the SOM during training.

Push top of phon

@ (b)

Fig. 4. Test Objects: (a) Blue cube (b) Ladybird rattle (cp$tecan (d)
Mobile phone.

A. Description of Experiment



U-matrix distx disty each test object. Results are shown in Fig. 7. It is clear from

0.368 -565.2 -5.08
y:.‘} , the Figure that the SOM quickly captures the difference
28 between rolling and non-rolling object affordances and is
t‘; v U ‘ e o4 able to generalize this knowledge for novel objects. Tragni
L %0e “ objects that generate the smallest map distances to the test
o, o 0045 — o objects in this evaluation are considered to be best-nragchi

object types for the respective test objects.
distEuc velMeanX velMeanY

775 0415 -0.132 A second test was used to measure the classification
' ability of the system based on the results of the previous
o ar ) test. The experiment was set up as before, but this time,
at each training step the BMU for each test sample was

d d d

found in the map and the closest labeled map node with the
228 corresponding action label was used to classify the object o
velvarx velvary engPosx the test sample. At each step and for each trial, the number of

" 25 %7 times this object matched the relevant best-matchingitrgin
object selected in the previous test was counted and awkrage
615 15 227 across all 20 trials for each test object. This meant that ove
‘ time, 9 possible classes emerged in the maps based on the
d d d

129 -6.13

action/object pairings of the training sets. Results amvsh
in Fig. 8.

6.27 1.5 97.2

endPosY endOri oriDiff

168 195 55 V. CONCLUSION AND FUTURE WORK
t In this paper we discussed the development of a cognitive
107 -0.365 a2 system equipped with a robotic arm and a camera system
that is capable of learning basic object affordance pragzert

We demonstrated how a self-organizing map may be used
as an unsupervised mechanism for classifying action/bbjec

pairings with similar affordance properties and we preseént
Fig. 6. Example of SOM self-organization after 180 trainstgps using ; ; . ;
the full dataset. Cross-sections of the map are shown ibetahe learned eXpe”mental results proving the efflcacy of this approach.

feature weight values and topological organization forheat the 11 In future, we hope to replace the text-labeling of objects
features. A unified distance matrix is shown in the top-lefd as useful with a system module that gathers visual features of the

for V|suaI|2|_ng _the overall Euclidean distance betweeraeeiit map nodes objects and uses them as input to the affordance |eaming
when considering all features together. . .

system. We would also like to explore the idea of dynam-
ically constructing more complex affordance concepts from
basic ones in a developmental learning framework.

45.6 0.745
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Fig. 7. Generalization results for the first test detailedSection IV-B. The best-matching object type in each of trs tases (a), (b), (c) and (d) was
used as the basis for the second test listed in Section IVeBFé 8, e.g., “phone” is the best-matching object for thiuébcube” test object in (a).
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