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Abstract

In this dissertation we aim to perform a detailed study ohitegues for the analysis of
the exacts-dimensional Hausdorff measure of fractal sets and try twide a reason-
ably comprehensive review of the required background. Aplesis is placed on results
pertaining to local density of sets and we show how theseigeo® link to the more
global concept of Hausdorff measure. A new result is praviddich states that iIK

is a self-similar set satisfying the open set conditionnthigé(K \ U) j Uj* for all
Borel U, also implying thaDo(K;x) 1 for all x, whereHS(E) andD.(E; x) refer to
the s-dimensional Hausdorff measure of some Eeand the local convex density &

at a pointx respectively. Based on the work of Zuoling Zhou and Min Wu, wevze
new calculations for the exact Hausdorff measure of botregpBiski carpet irR? and a
Sierpinski sponge ifR3. In the nal chapter we take a look at how the Hausdorff mea-
sure behaves when measuring the invariant sets associdkeslpgcial types of iterated
function systems known as iterated function systems witideasation and also provide

a brief discussion on the calculation of the packing meastiaeself-similar set.
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Introduction

0.1 Notational Conventions

Some points regarding notational conventions used in thaeeie

We will refer to a ball with its centre at a poirtand a radius as eitheB, (x) orB(x;r)

interchangeably.

Also, lim andlim will refer to upper and lower limits respectively.

0.2 Summary

Calculating the Hausdorff measure of fractal sets is an eritr dif cult problem
owing to the very de nition of Hausdorff measure: the sum loé diameters of all the
sets of various sizes and shapes that make up the most dfcoer of a given set to
be measured. The fact that covering sets are allowed to garyugh means that there is
an extremely wide class of covers to consider when ndingrtiest ef cient one. This
stands in contrast to the class of covers used when calogilatix-counting dimension,

where only covering sets of a xed size and shape are coresider

The rst two chapters of this dissertation provide a histafidiscussion of the neces-



0.2 Summary 2

sary concepts from measure theory and fractal geometrya eedew of iterated function
systems and self-similar sets respectively. The rst ceapegins with a brief discussion
of the rst basic efforts to de ne a measure that assignsiagtle’ value to arbitrary sets in
R, and attempts to track the progression to the more robustmot Hausdorff measure.
This path of development traverses a number of importardtijoms, including sigma-
algebras, metric outer measures and Methods | and Il forghstruction of metric outer
measures. Toward the end of the chapter, we arrive at a dennatf Hausdorff measure
HS(E) for a given seE 2 RY and discuss how its namesake, Felix Hausdorff, discovered
that for any value of other than a certain critical value that pertains to theEséeing
measuredH 3(E) will always be eitheD or+ 1 . This critical value fors is the Hausdorff
dimension of the sdE. It is capable of taking on non-integral values and is frexye
used to gauge the "complexity' of the set. We discuss howutatiog the Hausdorff di-
mension directly can be tricky, but is made easier throughue of the more accessible

box-counting dimension and its calculation.

In the second chapter we talk about iterated function systaniFSs and self-similar
sets. Iterated function systems are quite important as fid@ltate the de nition of a
broad class of fractal sets; indeed, most of the fractaltbatsmay be found in today's
books and papers on fractals are generated using iteratetidn systems. For example,
the classic middle-third Cantor set may be generated usetF-®

fi(x) = 2x;fa(x) = x+ 3
IFSs are constructed using contraction mappings with &fgoccontraction ratios or
Lipschitz constants. In the above example, datlandf , are contraction mappings with
contraction ratio%. An IFS always has a unique invariant set associated witbftin
referred to as the attractor or xed point of the IFS, whiclgenerated by iterating the
collection of mappings contained in the IFS over any givenirsaitely many times.

Given an IFS S;; S;; Sg; S40, the invariant set associated with that IFS is given by
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4
F = S,(E)

where Ei?é a given set in the space that we are working in. Weppgicular attention to
a certain type of IFS in Chapter 2, namely iterated functicsteays with condensation.
These are regular IFSs, but some xed set called a ‘condenss¢t' is merged with
the output of the IFS at each iteration when constructinginiiariant set. There is a
classical result associated with IFSs which shows thaF&8§lhave a unique invariant set
associated with them. In Chapter 2, we prove this result f8sl#with condensation; the
proof is not much different to the proof for the regular cdsé,is not seen as often in the

literature so we decided to prove this version here.

As was mentioned in the abstract, a number of results can inemgal for the local
density of a set at a given point which can form the basis ferctidculation of the exact
Hausdorff measure of the set at the critical dimension. Bé&attempts at calculating the
Hausdorff measure in such a way have been made by variousradidin various different
fractal sets. We provide a brief review of some of these giterat the end of Chapter 3,
after analysing many of the key results for local densityoTypes of local density that
are of particular interest to us are local spherical deresity local convex density. The
upper spherical density with respect to the Hausdorff nteastia sete, with positive

nite Hausdorff dimensiors, at a pointx is

55e- oy = 1 HO(EN Br(X)
D (E;x) = !I!ITE) @

The upper convex density f& atx is

—s, .\ HS(E\ U)

D.(E;x) = !l!m0 supT ;

where the supremum is over all convex sétsvith x 2 U and0 < jUj <r. As we
point out in the chapter, local spherical density is not €ais useful as local convex

density with respect to the Hausdorff measure. In particidae of the main results
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obtainable for spherical density states tBat ES(E; X) 1 for H3-almost allx,
but the equivalent result for convex density statesﬁng; x) = 1 for H®-almost allx
which is a much more useful result in practice. After takirigak at the proofs of these
two results, we provide a new result for local convex densityection 3.3.3, namely that

given a self-similar s satisfying the open set condition
HS(K\ U) j Uj®

for all Borel U, thusﬁz(K;x) 1 for all x. This proves quite useful for attaining
upper bounds in the proofs of some further results laterenctiapter. These culminate
in Theorem 3.3.13, which states that given a self-similarksesatisfying the open set

condition and a suitable self-similar measursupported oK , then

1

O G 60

whereai( ; X ) refers to the upper convex density at a pointith respect to .

In Chapter 4, based on the work of Zhou and Wu in [ZW99], we presealculation
for the exacs-dimensional Hausdorff measure of a Sierpinski carpBZinThe particular
Sierpinski carpet analysed is the invariant set associaitthdan iterated function system
consisting of four similarity mappings, each of which rdesaets by a factor d4=f. When
acting on the unit square iR?, each of the mappings maps to one of the corners of the
unit square. We make a number of modi cations to the methed loy Zhouet alwhich
simplify the calculation considerably. Referring to therfiaski carpet in question &3,
we prove thatimy C = 1 and thatH?(C) = P 2. The upper bound for the Hausdorff

measure calculation is found by using a theorem due to Hugohni [Hut81] which states

X
¢ =1, thenwe havéd5(C) diam(K)®. We use the mass distribution principle to

i=1
ascertain the lower bound. Using an appropriate masshiisish supported on the set
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C, if we can show that (V) | V| for all measurable set$, thenH*(C) (C) and
we are done. Central to the proof is the idea of projecting &€ onto one of its main
diagonals and de ning a mass distributionsupported on the projection which is based
on the original mass distribution supported Gn Zhou et al use a number of lemmas
to show thatm([0; x]) %x for all x 2 [O; P 2]. We condense this into a single lemma
and improve upon the result slightly, showing tna{0; x]) ~ 3x for all x 2 [0; P 2].
Developing the proof for this result was aided by the graph af m([0; x]) andy = %‘x

shown in Figure 4.5.1.

We extend the Hausdorff measure calculation from Chapteradtiwee-dimensional
case in Chapter 5, analysing a Sierpinski SpongB3mwhich may be generated by an
IFS consisting of 8 contraction mappings of Lipschitz r%tiwhich map the unit cube to
%-scaled copies of itself in each of its 8 corners. Letithglenote the Sierpinski carpet
in R this time, we prove thalimy C = 1 and thatH*(C) = P 3. The method used is
largely the same as that of Chapter 4 and the calculationscareomplicated too much

further by the addition of a third dimension to the space vevesrking in.

In the nal chapter we take a look at how the Hausdorff measigaves when mea-
suring the invariant sets associated with iterated fundisstems with condensation. We
make an interesting observation which shows that the Hafisdeasure changes from
being a positive nite value to beingg1 when measuring the invariant sets associated
with two different IFSs with condensation which differ ontgry slightly. We also take
a look at the packing measure, a notion of measure which bas ih status next to
the Hausdorff measure in recent years and is now regardediag équally important.
Packing measure is de ned in a similar way to the Hausdorfasoee, but uses ef cient
packings of sets as opposed to ef cient covers in its deamitiIn the nal section of the
chapter, we discuss the work done byélialin [JZZL03] on the calculation of the pack-

ing measure of the Cartesian product of the middle third Casgbwith itself inR? and
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show how they make use of some results that link local sphlediensity to the packing

measure in order to achieve their result.



Chapter 1

Measure and Dimension

1.1 Introduction

The journey to a notion of sets of in nite complexity, with méntegral dimensions
and self-similar properties began in a setting that, to anmathematician, might seem
slightly strange. Toward the end of the 19th century, theldvof pure mathematics had
encountered a problem. Riemann integration, although guiteessful in dealing with
many functions such as continuous functions and functiondased bounded intervals,
failed to deal with more irregular functions such as lingtjorocesses. The French math-
ematician Henri Lebesgue saw that there was work to be dotiesmrea and in 1901,
he formulated a theory of measure which extended Riemane&ryhof integration to
allow for the possibility of more irregular functions. Ledgpie's nuance was centred on
the concept of length. How does one de ne the ‘length' of driteary set inR? The
following de nition illustrates what we might think of as antuitive description of an
idealised length function:

De nition 1.1.1. Afunction” : fAJA Rg! [0;1 ]is called dength functionf
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2.A B) ‘(A) (B)

3. IfA1; Az ii: Raresetssuchthé \ A; = ; fori 6 j (pairwise disjoint), then

Sy P, . .
(k21 A= 21 (Ay) (countable additive).

4. IfA B andx 2 R, then (A) = (A + x) (translation invariance).

5. °([0;1]) = 1

Unfortunately, as was shown by Vitali, such a length funttloes not exist. A possi-
ble solution arises by replacing the 3rd countable adtjtieondition with a nite addi-
tivity condition: ‘(S k=1 A) = ¢, (Ax). However, a counter-example known as the
Banach-Tarski paradox was found in the 1920's which disg®eh a modi ed length
function for dimensions 2. Lebesgue, instead, introduced a concept knowmeasure
which involved countable subadditivy instead of countadadditivity. This allowed him
to formulate a general concept of ‘length' for 1-dimensias®ts which facilitated the
introduction of Lebesgue integration. Subsequently Conist&Carati@odory, a German
mathematician of Greek descent, became interested indRtemeasure theory to n-
dimensional cases. His efforts were successful and fortreetdsis for the discovery of
another German mathematician, Felix Hausdorff, of thetemtee of non-integral dimen-

sions. In order to track how Caratbdory did this we will need a number of de nitions.

Lebesgue's original concept of measure involved notionsudér measurend in-
ner measure A set was said to beebesgue-measurabikits outer measure and inner
measure coincided. Car&bdory's measure theory dispensed with inner measure and
provided an alternative, non-intuitive de nition of meaahility which proved to be the

key underpinning of Hausdorff's subsequent work.



1.1 Introduction 9

1.1.1 Outer Measure

De nition 1.1.2. Afunction :fAjA RY! [0;1 ]is called arouter measuréf

2.A B) (A) (B)

S P
3. IFAL A0 R then (7, Ad) . (Ay) (countable subadditive).

Caratteodory devised the following-approximative outer measure to deal with n-

dimensional setE  RY:

( 2 L )
C(E) = inf diam(E;) E E;; diam(E)) < (1.1.1)

i=1 i=1

As decreases, the number of ways in which we can cover E withldaiE; sets is
reduced. As that class of potential covers gets smallerjntineum (smallest sum of
covering sets) either remains the same or gets bigger aptlne for ef cient covers
run out. So, as approaches zero, the in mum approaches a limit, leadingouthé

following de nition:

QE) = lim C(E)

( a )
im inf ~ diam(E) E  E;; diam(E) <
' i=1 i=1

sup C(E)
>0

Using his novel de nition of measurability, Cara@bdory went on to show that his outer
measure actually ful lls the criteria for a "length funatiovhen applied to a certain class

of sets known aBorel sets De ning this class of sets requires the following de nitie

and results:
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1.1.2 -Algebras

De nition 1.1.3. A family A of subsets ofase¢ RYis called aralgebraif:

i X 2A,
(i) A2A) A°2A,
(i) A;B2A) A[ BZ2A,
whereACis the complement oA.
Lemma 1.1.4.1f A is an algebra of subsets of some Xet R9Y, then
1:2A,
Sn
2) Ayt AR 2A) o1 Ai 2A,
(3) A;B2A) A\ B2A,
T n
(4) A AR 2A) o1 Ai 2A,
(5) A;B2A) AnB2A.
Proof. (1) follows from (i) and (ii) of De nition 1.1.3. (2) followsoy repeated application

of (iii). SinceA\ B = (A’ B9? (3) follows from (ii) and (iii). (4) comes from repeated
application of (3). For (5), note th&nB = A\ B°2 A by (ii) and (3). [

De nition 1.1.5. An algebraA of subsets of a set RY is called a -algebraif, in
addition to the conditions for an algebra in De nition 1.1tBe following condition is

also satisi ed:

[
A AL 2A) Ap2A:
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The -algebra of an algebr& may be denoted(A).
De nition 1.1.6. We will call a -algebraA in RY “good” if A contains all open rectan-

gles(a;;b) ::: (an.;by). E.g.A = fAJA RYgis good.
Note: "Good” is not a standard term for this de nition, but will serour purposes here.

Using the above de nitions, we my now de ne the Borel sets doves:
T
De nition 1.1.7. The intersectioB =  '_, A of all good setsA is called theBorel

-algebra

The Borel -algebra describes an extremely wide class of sets. Anyhaetan be
constructed using a sequence of countable unions or icterss starting with the open
sets or closed sets will be Borel. This is more than adequateuopurposes, as the

fractal sets we will be working with may be described in suetes.

Now that we know what the Borel sets look like, we can proceeatl slrow thatC,
acting on those sets, behaves like a “length' function. Eeftming that, we shall re ne
our notion of what a “length' function should be. The de oiti of ameasurepresented
in the next subsection is quite similar to the de nition ofength’ function, but uses a-
algebra as its domain. We would like to show t@eagatis es the criteria for this modi ed

notion of measure when acting on the Borel sets.

1.1.3 Metric Outer Measure

The de nition of measure that follows helps us reclaim thieialle countable-additive
property which was sacri ced for countable-subadditivityour de nition of outer mea-
sure. This new type of measure usually operates on a slighifler class of sets, namely
the Borel sets, as opposed to the entire family of subse®S &br outer measure.

De nition 1.1.8. LetA be a -algebra. A function : A! [0;1 ]is ameasuraf:
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2.A;B2A,A B) (A (B)

S
3. A A 2A AL\ AL = forn 8 m (pairwise disjoint), then ( Ll Ay =

P
' (Ay) (countable additive).

We follow this with a key theorem for measurability rst imiluced as a concept in
Caratleodory's seminal 1914 paper [Car14] entitddber das lineare MaR von Punktmengen-
eine Verallgemeinerung desihgenbegriffs’or “On the Linear Measure of Point Sets- a
Generalization of the Concept of LengthThis theorem asserts the existence of a cer-
tain -algebra associated with any outer measusnd says that is a measure on that

-algebra. As was noted by Hewitt and Stromberg in [HS65]ctydow Caratiodory
came up with this is quite mysterious as it is not at all imteit The important thing is
that it works.

Theorem 1.1.9. (Caratleodory Extension Theorem)Let be an outer measure. Put

A()=A=fAJj8E: (E)= (A\ E)+ (EnA)g Then,

1. Aisa -algebra.

2. :A! [0;1 ]isameasure.
A is called the -algebra of -measurable sets

Proof. A proof for this can be found in [Bar66] pages 101-103. O

Lemma 1.1.10.Given an outer measure and some seA  R",if (A) = 0, then

A2A().
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Proof. Consider asdtE  R". By the second property of outer measure (monotonicity),

(A\ E)+ (EnA) (A)+ (E)= (E):

The third property of outer measure (subadditivity) yielas opposite inequality

(A\ E)+ (EnA) (E);

SO

(A\ E)+ (EnA)= (E)

andA 2 A ( ) by the CaratBodory extension theorem.

Caratteodory's Extension Theorem was the rst step in showing that a measure
on the Borel sets. The second step requires the notionmadtac outer measureAs the
de nition below and the theorem that follows it show, if anteumeasure is a metric
outer measure, then the Borel sets form a subset of its agsdcialgebra.

De nition 1.1.11. WhenA;B  RY and distA;B) = inf »ap2e ja b, iscalled a

metric outer measuri:

(A[ B)= (A)+ (B) 8A;B suchthatdigiA;B) > 0

Theorem 1.1.12.1f is a metric outer measure, thé&h A ( ):

Proof. Omitted. A proof for this may be found in [Fal86] on Page 6. n

We require the following small lemma later on in Chapter 3.
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[" X
A = (Ai):
Proof. This proof is omitted as it is a well known result and is refelly straightforward

using basic set theory and the properties of measure. ]

Using the de nitions and theorems that preceded, we caneptioat Caratbodory's
outer measur€is a a metric outer measure and thus a measure on the Boredrsetsie
succinctly, aBorel Measure

Theorem 1.1.14.Cis a metric outer measure.

Proof. ChooseA; B such that digiA;B) = > 0. We want to show thaE (A [ B) =
C(A)+ C(B).

“ 7 We haveC C (A)+ C(B) from Property 3 of outer measures in De nition

1.1.2.

“ 7 Let > Osuchthat < dist(A;B).
LetD = Silzl D; be any countable cover & [ B such that diaffD;) <
diam(D;) < dist(A; B) for all i, thus eaclD; set intersects at most one of eitl#er
or B, so we can spliD into two disjoint collectionspP; andD, coveringA andB

respectively. Thus,

X X X
diam(D;) = diam(D;) + diam(D;) C (A)+ C(B):

D;2D D;2D 1 Di2D >
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Taking in mum over all covers, we have
( )
inf diamD;) A[ B D = C(A[ B) C (A)+ C(B)
Di2D

and taking the limitas ! Owe getC(A[ B) C (A)+ CB).

Later in this dissertation we will require the following tivem for uniqueness of a
measure on a-algebra.
Theorem 1.1.15. (Caratleodory Unigueness Theorem or Hahn Extension Theorem)
LetX RYand letA be an algebra of subsets ¥f. Let and be nite measures on

(A) and let
(A)= (A) forall A2A:
Then

(B)= (B) forall B2 (A):

Proof. A proof for this may be found in [Bar66] pages 103-104. ]
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1.2 Construction of Outer Measures and Metric Outer

Measures

There is a way of generalising the construction of outer miessknown as Method
I. Method | can be extended to generalise the constructiomedfic outer measures. This
extension is known as Method Il. Both of these methods willdefui to us when de ning

measures such as the Hausdorff measure which shall be skstumsthe sequel.

1.2.1 Method | Outer Measures

S
De nition 1.2.1. LetM be a family of subsets suchti@t = ~,,,, M. LetT : M!
[0; 1 ] be any function. De ne
(% L
(A): inf T(M,) A Mi; M; 2 M

i=1 i=1

is called theMethod | Outer Measurassociated witliM ; T).

Proposition 1.2.2. is an outer measure.

Proof.

1. (;)=0.
This is obvious since the empty set is covered by the empigrgkthe empty sum

is zero.

2.A B) (A (B).
, S, S, L
FixA B.LetB oy Mi; M;2M . ThenA B i—; M; implies that:

X
(A) T (M;) which is true for all such covers &, hence

i=1
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( o )
(A)  inf  T(M) B M M, 2 M
i=1 i=1
= (B)
3. IfAg; Az r RY, then (Sizl) i L (A,

Case 1: (Ax) = 1 for one or more of thé\.
If one of theAy has measure in nity, then the sum of the measures of all the

A will have measure in nity, which is always bigger than thé&deand side.

Case 2: (Ax) < 1 forallk.

LetA;; Ay :i: RY. Let > Oand x n 2 N. It suf ces to show that
!
[* hs
An (Ap) +
n=1 n=1

Since > Oand (A,) < 1; (An) < (An)+ 5. There exists a cover

2

' My overA,, whereM,; M such that

3
T(Mn;i) < (An) + 2_n
i=1
Since we can nd such covers for all of tidg,, we have

[ [
M

n=1 n=1i=1

n;i -

The measure on the union of thg uses the most ef cient cover, thus
|

(IR
An T(Mpi)
n=1 n=1 i=1
b3
(An) + on

n=1
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b3 (An) X 1
= An + o

n=1 n=1 2
= (Ap) +

n=1

]

Unfortunately, as we shall now see, we can nd a counter-g@tarwhich shows that
Method | outer measures are not always metric. The proofiregjthe Lebesgue outer
measure, which we shall now de ne using Method | and a smait, useful theorem
which shows that the Lebesgue outer measure on an interegua to the length of the
interval.

De nition 1.2.3. Letd=1. LetM = fla;jja<bg. LetT([a;) = b a: Thenthe
Lebesgue outer measute, is the Method | outer measure associated \{ith; T).

Theorem 1.2.4.1f A is an interval, therL (A) is equal to the length of A.

Proof. A proof for this may be found in [Yeh00], pages 36-37. n
Proposition 1.2.5. Method | outer measures are not always metric.
Proof. Letd = 1. LetM = f[a;b j a < bg. LetT ([a;Q) = P b a:lLet be the

Method | outer measure associated wilth ; T). LetA =[ 1; Z)andletB =[%;1).

p_
First we will show that (A) = -

L) T =

“ v Let[ 1 ) Silzl[ai;b).Then

X p 2 )
(b &)

q_—
"B @ a)

"B &) @ a)+
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It can be shown that(B) = 75 in a similar way. Note that di6A;B) = % thus

satisfying the preliminary requirement for the metric outeeasure test. Summing the
measures oA andB, we get (A)+ (B)=

have

X p__ 94—
(b a) (b &)

i=1;i6j

"o &) & a)

i=1

—'(haa)

P, p_— 4
Therefore, we have

- (b &)

3. However, sinceA [ B

(Al B) = (A)+ (B)

( 11)
T [ 11)

= I01 (1)=p§

Hence (A[ B) 6 (A)+ (B), sothe outer measure is not metric.

1.2.2 Method Il Outer Measures

We will now extend the notion of Method | outer measures tohddtll outer mea-

sets.

sures, which can be shown to be metric and in particular, forasures on the Borel

[ 1,1), we
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S
De nition 1.2.6. LetM be a family of subsets &&? such that ,,,,, M = R and let
M =fM 2Mj diamM g:

LetT : M ! [0;1] be any function and leT = T|y . Let be the Method |
outer measure associated With ; T ). Then theMethod Il outer measurs de ned as

follows:

(A)=Ilim (A)=sup (A):
1o >0

Theorem 1.2.7.Method Il outer measures are metric outer measures.

Proof. Thisis almostidentical to the proof of Theorem 1.1.14 tosstitat Caratbodory's
measure is a metric outer measure, so will be omitted, buayt be found in [Edg90] on

page 141 (Theorem 5.4.2). ]

1.3 Hausdorff Measure and Dimension

1.3.1 Hausdorff Measure

Recall CaratBodory's -approximative outer measu@ from (1.1.1). Caratbodory
had noticed that his measure could be adjusted to givea-g@imensional measure iR
foranym 2 Z* withm < n as follows:

( % o
C"(E) = Iimoinf diam,(E;) E E;; diam(E;) <

i=1 i=1



1.3 Hausdorff Measure and Dimension 21

Here diam, (E;) denotes the supremum of thedimensional volumes of all orthogonal

projections of the convex hull d&&; onto allm-dimensional subspaces Rf'.

Based on this, in 1918, almost thirty years after his gradadtiom Leipzig Univer-
sity which included a seven year hiatus from mathematicaech proper, Felix Haus-
dorff produced a paper [Haul8] entitléDimension undaul3eres Mal3'or “Dimension
and Outer Measure”, which contained a brilliant insightubldorff himself played down
the importance of this insight by referring to it as a “klair@eitrag” or “small contribu-
tion” on top of CaratBodory's measure theory, but as it turned out, his discobecame

the axle around which subsequent work in fractal geometsyréeolved.

Hausdorff extended Caratbdory's m-dimensional measure so that it is based on
summing the diameters of thg sets to then-th power, i.e. using the following sum in

theC™ de nition:

X .
dlan‘(Ei)m:
i=1
He then noticed that this not only worked well whemis an integer, but also whemn
Is any arbitrary real number. This small observation pavedway for the concept of

non-integral dimension.

As Hausdorff observed, using this more liberal notion of @nsion, for every sef
there exists a unique critical value for where them-dimensional measure & leaps
between zero and in nity. This critical value is the Haudfldrmension ofE . Moreover,

the measure of thE using this critical dimension value may be zero, nite ormite.

Itis worth noting here that Hausdorff dimension is sometsmederred to as Hausdorff-
Besicovitch dimension, owing to the early work that Abrahaam8ovitch Besicovitch

contributed to the calculation of dimensions of fractalsseFor example, in [Bes35],
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[Bes34] and [BT54], Besicovitckt al compute the Hausdorff dimension of certain sub-
sets of the line.
De nition 1.3.1. Letsbe a non-negative real number. Thapproximatives-dimensional
Hausdorff measureis of asete  RYis de ned as follows:
( % L
HS(E) = inf diam(E;)® E E;; diamE;) <
i=1 i=1

In a similar way to the Caraélodory measure, asdecreases, the class of permissible
covers ofE gets smaller and theapproximative measure approaches a limit value which
we de ne as follows:

De nition 1.3.2. Thes-dimensional Hausdorff measure

H*(E)

lim H3(E)

10 (
X [

Ii!mOinf diamE;)®* E Ei; diamE;) <

i=1 i=1

Theorem 1.3.3.H? is a measure on the Borelalgebra.

Proof. TakingM to be the family of Borel sets iR with diameter less than and
de ning T (M;) as diami(M;) whereM; 2 M , then using De nitions 1.2.1 and 1.2.6,
H* is clearly the Method | outer measure associated Wh ; T ) andH? is its subse-
guent Method Il outer measure. Theorem 1.2.7 states thitethiod Il outer measures
are metric and hence, by Theorem 1.1.12, are measures on ithle Balgebra, sdH° is

such a measure. ]

A key property of Hausdorff measure, and indeed a propestimie shall be making
use of later on, is the scaling property.

Proposition 1.3.4. (Scaling Property of Hausdorff Measure)
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IfF RYand > Othen
HS(F )= SH(F)
whereF =1 x :x 2 Fg,i.e.the set F scaled by a factor

Proof. This proof can be found in [Fal90]. O

De nition 1.3.5. We call a Borel set with nites-dimensional Hausdorff measure an

s-set.

1.3.2 Hausdorff Dimension

Given a sef and some < 1, and looking at the de nition oH* where we take the
smallest sum of the diameters of covering sets testhiepower, it is clear thati *(F) is
non-increasing as increases. A more precise claim can be made when we analyse th

n

L . . S
situation a little more closely. Letting>s and ;_; U; be a -cover ofF, we have
jUijt n | - n t s s t s jUijS:

Therefore by taking in ma on both sidebl'(F) ' SHS(F). Ifwelet ! 0, HY(F)
must be zero wheH$(F) < 1 . We can see that as the valuesafcreasesH $(F ) tends
closer to a critical value where it jumps froin to 0. This critical value is the Hausdorff
dimension ofF . A formal de nition follows.

De nition 1.3.6. The Hausdorff dimensiodimy of a non-empty seF is de ned as

follows:

dimy F = inf fsjH®(F)=0g = supfsjH?®(F) = 1g



1.4 Box-Counting Dimension 24

so that
8

21
H3(F) = S
0 if s>dimyF:

if s<dimyF

Some properties of Hausdorff dimension follow. Justi cattifor these properties may

be found in [Fal90].

(i) If F  RYis open and non-empty, theiimy F = d.

(ii) If F is a continuously differentiable-dimensional submanifold dt¢, for instance

a curve inR? or a surface irR3, thendimy F = m.
(i) If E  F,thendimy E  dimy F.

(iv) If Fy;F5;:::is a countable sequence of sets, then

n

dimy Fi = sup fdimy Fig:

i1 1i<1
(v) If F is countable, thedimy F =0.

One serious disadvantage of the Hausdorff measure is tte ibe dif cult to calcu-

late. We discuss techniques for accomplishing this in 8ecib.

1.4 Box-Counting Dimension

Although we will not be making too much use of the Box-Countingnehsion in
the sequel, it is certainly helpful when computing the Haudlimension and given its
more practical usage relative to the Hausdorff dimensioregaly, it is certainly worth
discussing here. While the Hausdorff dimension focisaaminghe diameters of cov-

ering sets with diameter less thanthe box-counting dimension involvesuntingthe
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smallest number of sets of diameter less th#mat form a cover of the set being analysed.
Computationally, the box-counting dimension is convengante, as we shall see, it can
be determined by coverings of sets of equal size and in masgscd can be estimated as

the gradient of a log-log graph plotted over a suitable rayfge

On the other hand, it is not nearly as mathematically robsith@ Hausdorff dimen-
sion, namely because it equates the dimension of a giveR $etthe dimension of its
closureF, the smallest closed subsetR? which containd . This means that it is pos-
sible for countable sets to have non-zero box counting demean For example, if we let

F =fp2 Q\ [0;1]g, thenF =[0; 1] and thereforedimg F = dimgF =1.

1.4.1 Description

De nition 1.4.1. Let F be any non-empty bounded subsetR$fand letN (F) be the
smallest number of sets of diameter at mosthich can covef. Thelower andupper

box-counting dimensioref F are

dimy F zlimIogN (F)
I 0 log
and
dims F = Tim 129N (F)
ro log

respectively. When these are equal, we refer to

logN (F)

dimg F =1lim
ro log
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as thebox-counting dimensioaf F. As noted in [Fal90], in practice we may substitute
the above de nition ofN (F) for alternative de nitions depending on the application

environment, including but not limited to, any of the follmg:

(i) the smallest number of closed balls of radiuhat coverF ;
(if) the smallest number of cubes of sid¢hat coverfF;
(i) the number of -mesh cubes that intersdet
(iv) the smallest number of sets of diameter at matat coverr;

(v) the largest number of disjoint balls of radiusvith centres irF.

The box counting dimension has been calculated for manyeofrdctal sets we see
in the literature today. The calculation usually involvesig de nitions (i), (ii) or (iv) of
N (F) to determinadimg F, then using de nition (v) to nddimg F, and checking to see

whether these upper and lower boundsliofig F coincide.

1.4.2 Sample Calculation

We will demonstrate the box-counting dimension calculatior a classical simple
fractal called the middle-third Cantor set. The middledh@antor seC is constructed
by taking the unitinterval,  R2, removing the middle-third interv@%; %) and labeling
the remainde€;, then removing the middle-third interve(§; £) and(Z; £) from the two
remaining intervals irC; and labelling the subsequent remaining Ggt and so on ad

I . T
in nitum until we haveC = |, Ck.

Proposition 1.4.2.Let C be the middle-third Cantor set constructed as described @bov
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Then
dimg C =dim;C = dimgC = :2%;:
Proof.
We start with the upper boundimg C:
“ " GivenCy and0 < 1 such that3 ¥ 3 K1 we may coveiCy with

intervals of lengtl8 ¥ sothatN (C) 2.

Since 3 ¥, more3 k-covers are required to cov€rthan -covers, so
logN (C) logNj3 «(C):

Also,since 3 1 Jog log3 k', sowe get

logN (C) logN; «(C)
log log 3 k+1
_ log &
" log 3 1t
log
log ¥ + log

3k 1
3k

Taking limits we get

—logN (C) = log

“!n’z) log kil log &
_ log2
" log3

“ 7 Any interval of length < 3 K intersects at most one of the basic intervals at the

kth level of the construction df. There are* such intervals at thkth level, so at
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least2* intervals of length are needed to cové. Therefore

N (C) 2¢if < 3K

SO
. . logN (C) . logZ log2
dim C = I% log klgll—m log¥  log3
follows in a similar way to the upper bound. n

1.4.3 Comparison with Hausdorff Dimension

Box-counting dimension is very useful when studying the Hiau$ dimension be-
cause it provides quite a useful upper bounddion,, F. We shall discuss this usefulness
further in the next section, but for now we give the followirggult.

Proposition 1.4.3.LetF be a subset dR?. If HS(F) 1ands=dimy F, then

dimy F  dimgF dimgF:

Proof. We can coveF with N (F) sets of diameter. Thus,

H3F) N (F) =

As ! O/N (F) ® 1if issmallenough. Taking logarithms of both sides we have

logN (F) + slog 0:
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Adjusting the inequality we get

logN (F)
log

and taking the lower limitas! O,

lim 109N (F).
! log

Therefore,

dimy F  dimgF dimgF:

With a little more work, it is possible to prove a strongersren of the above theorem
which says thatlimy F dimgF  dimgF forallF  RYregardless of the Hausdorff

measure of .

1.5 Techniques for Calculating Hausdorff Dimension

The main agenda of this dissertation is to discuss the dloual of the Hausdorff
measure for certain popular fractal sets. To accomplis) the will need to know the
Hausdorff dimension of these sets and in this section, wstithte how this can be calcu-
lated. As it happens, there is a convenient method for caticgl the Hausdorff dimension
of the particular types of fractals we will be looking at, relynself-similar sets, and we
shall be examining this in the next chapter. For now we dseusore general approach

for calculating the upper and lower boundsdahy F for someF  RY.
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1.5.1 Upper Bounds

As was previously illustrated, the box counting dimensidéra get usually forms a
good upper bound for its Hausdorff dimension. In the case afiyrfractal sets, it co-
incides conveniently with the lower bound when a good loweurd is found. Un-
fortunately, it is usually quite dif cult to directly caldate a good lower bound for the

Hausdorff dimension of most fractals, even in the simplases.

1.5.2 Lower Bounds and the Mass Distribution Principle

Finding a lower bound for the Hausdorff dimension withow #id of some helpful
mathematical machinery is a troublesome task and one tteat tfquires much rigorous
work. Thankfully, such mathematical machinery is ava#ain the guise of thenass
distribution principlewhich we shall discuss momentarily.

De nition 1.5.1. Given a measure on RY, we refer to the smallest closed $étsuch
that (RYnX) =0 as thesupportof . We may also say that is a measursupported
onthe setA if A contains the support of.

De nition 1.5.2. We refer to a measureon a bounded subsetBf' as anass distribution

when0< (RY < 1. (A) may be thought of as thmassof a setA.

A mass distribution is usually constructed by spreadingite mass in some obvious
way over a seX . The way in which the mass is spread across the set usualgndsp
on the construction oX itself. As an example of how a mass distribution might be used
consider the middle-third Cantor sétdescribed in Section 1.4.2. If we assign a mass of
sayIO 2to Cy, we then divide that mass evenly between the sef; iso that each set gets
massp7§. Each set irC; is given3 the mass of its parent set, |;‘2 and so on for each

level of the construction of. The total mass being distributed is the same at each level
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of the construction.

The mass distribution principle helps us by allowing us t&tniet the various com-
ponent set$ U;g of a covering set ofF so that noU; covers too much oF relative to
its own size, measured @d;j°. This allows us to get an accurate estimate of the most
ef cient covering set for.
Theorem 1.5.3. (mass distribution principle)LetF  RY. Let us assume that we have

a measure and two numbers; > Oand > 0, such that

1. (F)>0.

2. (U) dUjsforallu RIwithjuj <

Then

H3(F) (::) > 0

In particular,
s dimy F dimgF dimgF:

Proof. This proof can be found in [Fal90], but it is quite straightfard so we repeat it

here for completeness.fit)gis any -cover ofF then

[ x X
0< (F) Ui (U) c JjuUj

Takinginma, HS(F) -HandsoHs(F) Hlas 1 o O

c



Chapter 2

Iterated Function Systems and

Self-Similar Sets

2.1 Introduction

Many of the fractal sets discussed in the literature, andeddhe sets that we analyse
in the research component of this dissertation,s&lésimilar setsthat is sets that are
composed of smaller sets which are similar to the whole Isetated Function Systems
or IFSsare families of mappings which may be used to generate sactafrsets based
on their self-similar properties. Iterated Function Sgsteare extremely useful to us, not
only because they provide a simple way to describe manyafraets, but also because

they are often instrumental in the calculation of both tihegasure and dimension.

In this chapter we provide a formal de nition for IFSs andtstane of the key results
for them which will be used later when we calculate the Had$doeasure of some
Sierpinski fractals. We then prove the analogue of thisltésiua special breed of iterated

function systems known as iterated function systems witideasation. We begin by

32
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discussing metric spaces.

2.2 Background De nitions and Theorems

2.2.1 Metric Spaces

De nition 2.2.1. A metric spacas a pair(M;d) whereM is a set andl is a mapd :

M M ! R,suchthat

() dixy) 0

(i) dix;y)=0, x=yforallxy2M

(i) d(x;y) = d(y;x) forallx;y 2 M

(iv) d(x;z) d(x;y)+ d(y;z) forall x;y;z 2 M (triangle inequality)

De nition 2.2.2. A sequencdx,), in M is called aCauchy sequendéfor all > 0,
there exists some numbir such that for aln;m N, d(Xn; Xm)
Theorem 2.2.3.(Cauchy criterion for convergence). A necessary and sufitcc®ndition

for convergence of a sequenice, g is that it be a Cauchy sequence.
Proof. A proof may be found in [Sut75] on pages 9-10. O

As is clear from the above theorem, we may prove that a segquariR" converges
simply by proving that it is a Cauchy sequence, however, ibisimgeneral true that all
Cauchy sequences in a metric space converge. For instaagegifric space is composed
of all rational numbers with the metrid(a;) = ja b, then a Cauchy sequence in

that metric space may converge to an irrational number. Souahyasequence in this
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metric space of irrational numbers may not converge to & imihat space. Since the
convergence of Cauchy sequences is important to us, we meggady de ning a notion

of completenesas follows.

De nition 2.2.4. A metric space isompletdf all Cauchy sequences in the metric space

converge.

2.2.2 Dynamical Systems and Banach's Contraction Principle

The basic notion of a contraction mapping in a metric spackeased next, forms the
basis for Banach's contraction mapping theorem, an impbtteorem which is required
in the next section on iterated function systems.

De nition 2.2.5. Let D be a metric space iR". A mappingS : D ! D is called a

contraction mappingf there is a real numbeéd ¢ < 1such that

d(S(x);S(y)) cdxy)

forallx;y inD.

A contraction mapping is a speci c type of a more general niggpnown as a.ip-
schitz mappingvhere the contraction ratiomay be greater thah In the general case,
c Oisreferred to as theipschitz constandf a given Lipschitz mappin§ or Lip(S). In
the above de nition0) ¢ < 1 may be referred to as tle®ntraction ratioof contraction
mappings.

De nition 2.2.6. We call the mapping : D ! D in the above de nition asimilarity

mappingif we have

d(S(x); S(y)) = cdx;y)



2.2 Background De nitions and Theorems 35

forall x;y inD.
The constant may be referred to assaamilarity ratio in the above de nition.

The development of Banach's contraction theorem requirsgesmncepts from dy-
namical systems theory. A dynamical system is a sequencsenieoms are de ned by
repeatedly applying a mapping to some initial point. If teewence converges to some
pointw, thenw is called a xed point of the system. The formal de nitions finese two
concepts are as follows:

De nition 2.2.7. LetD be a subset dR" and letf : D ! D be a continuous mapping,
wheref ¥ denotes théth iterate off , i.e.f°(x) = x;f 1(x) = f(x);f?(x) = f (f (X))
and soon. X is called adiscrete dynamical system

De nition 2.2.8. Given a dynamical systemf X in D  R", if f K(x) converges to a

pointw 2 D wheref (w) = w, thenw is known as axed point of the dynamical system.

Now we may present Banach's contraction mapping theorens f€lis us that if we
have a contraction mapping in a complete metric space, tiege ts a unique xed point
associated with this mapping and a dynamical system catsttwsing this mapping will
converge to the xed point no matter what initial poxtve choose.

Theorem 2.2.9.(Banach'’s contraction mapping theorem) I(&1; d) be a complete met-

ric space. LeS: M ! M be a contraction mapping. Then

1. S has a unique xed poinp 2 M, such thatS(p) = p.

2. SK(x)! pask!1l forallx2 M.

Proof. Letx; 2 M andXy:1 = S(Xk), K 2 Z+. SoXks1 = S¥(x). We would like to

show thaff x,g is a Cauchy sequence. It is clear that

d(x2;x3) = d(S(x2); S(x3))  cd(X2; X3)
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for some constar < ¢ < 1 by de nition of a contraction. This implies that
d(Xs; Xa) = d(S(X2); S(X3))  cd(Xo;X3) d(X1; X2):

Thus,d(Xy; Xks1) & d(xq1;x2) fork 2 Z,..

Let m; n be any positive integers wittm > n . By property (iii) of a metric space,
d(Xn;Xm)  d(Xn;Xn+1) + d(Xns1;Xne2) ¥+ d(Xm 15 Xm):

By the previous inequality,

d(Xn; Xm) (@ T+ "+ + ™ Ad(Xe;X2)

= & A+ k+  + K™ " DHd(xq;x2)

We have a geometric series on the right hand side, so

1
d(Xn; Xm) <c" ? T o d0ax):

Fix > 0. Since0 < c < 1, the right hand side of the above equation convergé€sa®

n!1l | sothere must exist a numhdrlarge enough such that for al> N ,

!t 1—1(: d(X1;X2) < :

This implies that there also exists Binlarge enough where for all m N we have

1
d(Xn; Xm) <c" ! T e d(X1;X2)

thus showing thatx, g is a Cauchy sequence. We know tRaits continuous because for
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allx;y 2 M, d(S(x); S(y)) cd(x;y). So if we takep to be the limit off xxg; S(xk) !
S(p)ask!1 . Sincexg+r ! pandxg+r = S(Xk), S(Xk) ! p, soS(p) = p.

To prove the uniqueness of the xed point, l@tb 2 M both be xed points of
S. Thus,d(S(a); S(b) cda;b. Since0 < ¢ < 1landd(S(a);S(b) = d(a;b,
d(a;b =0, thusa= h

2.3 lterated Function Systems

2.3.1 Basic De nition

As was discussed at the beginning of this chapter, iteratectibn systems are very
important to us as they are indelibly linked to techniquesdufer calculating the Haus-
dorff measure of fractals which we will be discussing in sdugent chapters. They were
dissected in John E. Hutchinson's seminal 1981 paper [H@t8d further explored in the
book “Fractals Everywhere” by Michael F. Barnsley [Bar88] #88. Many of the results
contained in Hutchinson's paper were also derived in anezasork by P.A.P. Moran
entitledAdditive functions of intervals and Hausdorff meaqivier46]. Here we provide

the basic de nition of an iterated function systemliBE&:

such that
iIS(x)  Si(y)j rijx i

forall x; y in D where the; are contraction ratios such thtag r ; < 1. The collection
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There is a key result for iterated function systems that shibvat IFSs have a unique
attractor or invariant set associated with them. Moreothes, result also shows that if
an IFS is applied to any non-empty compact subset of the gpaté is acting on (usu-
ally D R" or R" itself), then applied to the resulting set and this procesgpeated
in nitely many times, the resultant set will be the invariaset associated with the IFS.
This remarkable result due to Hutchinson [Hut81], is a sdexdse of Banach's contrac-
tion mapping theorem, except that instead of having in lgiteany iterations of &ingle
contraction mapping acting on a point and converging to a geint, we have in nitely
many iterations of d&amily of contractions acting on a set and converging to an invarian
set. The result is formalised as follows:

Theorem 2.3.2.LetD be a closed non-empty subseRdfand let the family of contrac-

compact subsets &f.

(i) There exists a non-empty compact invariantiSet D, such that

[m
F= S|(F)
i=1
.. Sm . k
(i) fwedeneS:S!S tobeS(E)= .; S(E) for E 2 S and writeS* for the
kth iterate ofS so thatS°(E) = E andSK(E) = S(Sk }(E)) fork 1,then
\1

F= SKE)
k=0

for every seE 2 S suchthatSi(E) E foralli.

There are two different well-known techniques for provihgtresult, one of which is
a set theoretical method, the the other of which relies on 8as&ontraction mapping

theorem and is perhaps a bit more elegant. Discussions miayibe in [Fal90]. Neither
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method is explored here for regular IFSs, but there exispeaial type of IFS which we
will be discussing next and for which we will prove the analegf the above theorem

using the Banach contraction mapping theorem technique.

2.3.2 lterated Function Systems with Condensation

During the course of his studies, the author took a partigotarest in iterated func-
tion systems with condensation. These special types ofWh&h were introduced by
Barnsley in his book [Bar88], work by adding a non-empty, cocts&t called a “con-
densation set” to each level of the construction of a giveh IR practice, this allows for
the invariant sets of two different IFSs to be mixed togethesome way, thus expanding
the class of sets which may be produced using IFS technichiregxample of the con-
struction of an IFS with condensation may be seen in Figutel 6.Further discussion
on different constructions of IFSs with condensation andalgorithms used to gener-
ate gures of their respective invariant sets may be found ook by Mario Peruggia,
“Discrete Iterated Function Systems” [Per93]. We provideranal de nition next:

De nition 2.3.3. LetD be a closed non-empty subsetRf. Let S denote the family of

ISix)  Si(y)j  rnijx i

for all x;y in D where ther; are contraction ratios such that r; < 1. Choose a

xed, non-empty compact s€l 2 S and a mapping, : S!S , such thatSy(B) = C

system with condensatiam IFS with condensatiowhereC is the associated condensa-

tion set.

In the following section we will prove the IFS with condensatanalogue of Theorem
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2.3.2, a result we will be making use of in Chapter 6. As it tuong there is only a

minimal difference between this proof and the proof of Tleeo2.3.2.

2.3.3 Existence and Uniqueness of Invariant Sets for IFSs with Con-

densation

Theorem 2.3.4.LetD be a closed non-empty subsetRSf and letS denote the family

(i) There exists a non-empty compact invariantiSet D, such that

|
m m

[ [
F= S(F)=C] Si(F)
i=0 i=1
.. Sm . k
(i) fwedeneS:S!S tobeS(E)= ., Si(E) forE 2 S and writeS* for the
kth iterate ofS so thatS°(E) = E andSK(E) = S(Sk }(E)) fork 1, then
\1

F= SYE)
k=0

for every sek 2 S suchthatSi(E) E foralli.

We require the following de nition and subsequent lemmafotee proceeding with
the proof of Theorem 2.3.4:

De nition 2.3.5. We de ne theHausdorff metricor Hausdorff distancéetween two sets
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A andB as follows:

d(A;B) = max suplnfja b; suplana b
a2 A b2 b2B &
= maxfinff :A Bg;inff :B Aqgg
= inff t:A B;B Ag
where
A =fx2D:jx &g for some sefA wherea 2 Ag
and

o8]
I

fx2D:jx @ for some seA wherea 2 Bg

l.e.A andB are -neighbourhoods oA andB respectively.
Lemma 2.3.6.Letf S;;:::; Sngbe an IFS on some metric spabeof R". LetA andB

be two non-empty compact subset®ofThen
!

m m

d  S(A); S(B)  maxd(S(A):S(B):

! ( )
d Ai; B = max sup inf ja Bb; sup inf ja Db
=1 =1 a2 M oA b2 LB b2 M, B; a2 L A

max sup sup |nf ja b; sup sup |nf ja b
0 i ma2A; b2B 0 i mb2B; @2A
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sup max supinfja b; supinfja b

0i m a2A; b2Bi b2 B; a2A
= sup d(Ai;Bj):
0im

]

Lemma 2.3.7.Let A andB be two non-empty compact subsets of a metric spage

R" and letf be a contraction mapping. Then

d(f (A);f(B)) Lip(f)d(A;B):

Proof.

d(f (A);f(B))

max gzuftlgng (a) f(b)J;Ezqu;giJf (@ f(b)]

max supinf Lip(f)ja b; supinf Lip(f))ja b
supinf Lip(f)ja  bj; supinf Lip(f)ja

Lip(f ) max EQ‘A"AE‘EJ"“ b EZ@JBp;gI\Ja b

Lip(f )d(A;B):

]

Lemma 2.3.8.LetS : R" ! R" be a continuous function. Thenllf R" is compact,

its image undef, is also compact.

Proof. SinceE is compact, given any sequenbyﬁgil=1 2 E, there exists a convergent

subsequencky; gjl=1 such that

j"!”})yi =y2E:
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Using the Heine de nition of continuity, Sinc® is continuous,

Jim S(y;) = S(y) 2 S(E):

Of coursef S(yi)gilz1 2 S(E) and contains the subsequefi&y; )gjl=l , S0 S(E) is com-
pact. [

We may now prove Theorem 2.3.4.

Proof. First we de ne a suitable metric spa¢8; d) for non-empty compact subsets of
D using the Hausdorff metrid between two such subsedsandB which is de ned as

follows:

It is easily seen thad satis es the three requirements of a metric and one can show
that(S; d) is a complete metric space, a proof of which may be found infH$pages

77-78). LetA;B 2 S. Then using Lemmas 2.3.6 and 2.3.7, we have

|
m m

d(S(A);s(B)) = d | Si(A);[ Si(B)
i=0 i=0

max d(Si(A); Si(B))

max ri d(A;B):
1im

sinced(Sp(A); Sp(B)) = d(C;C) =0 forall A;B 2 S. Thus,S is a contraction on the
complete metric spades; d). By Banach's contraction mapping theorem, there exists a

unique xed pointF 2 S for S, i.e.

|
m m

F=S(F)= [ Si(F)=CI [ Si(F)
i=0 i=1

This proves (i).
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SinceS is a contraction an&(E) E for all i, we have a decreasing sequence as
follows
\l

E S(E) S*E) SK(E) (2.3.1)
k=0

forall E 2 S. The second part of Banach's contraction mapping theorelsiuslthat
SK(E)! Fask!1 . SinceSK(K) is a decreasing sequence of sets and the sequence

converges, then it must converge at the intersection ofialsets in the sequence, so

\L
F=  SYE):
k=0

This proves (ii).

In the sequel, sometimes it will be necessary for us to refseguences of mappings
from an IFS acting over other mappings from the IFS, so wegedavith the following
small de nition to ease the notational burden.

De nition 2.3.9. LetfS;;:::;Sngbe an IFSIMR". ThenS =S, Si, where

i1:ip

2.4 Self-Similar Sets

2.4.1 De nition

We will now discuss a special type of invariant set calleskd-similarset. As was
mentioned, many common fractals in the literature are Sgiflar sets. The Cantor set,

the Von Koch curve and the Sierpinski triangle are all exaaspff self-similar sets. These
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sets are constructed using mappings which do not alter thmeieical shape of sets they
are acting on. The mappings simply re-scale sets by sommgdattorO< < 1. A
more general class of such sets cabetf-af ne sets are based on af ne transformations
which contract with differing ratios in different directis. The fractals we analyse later
in this dissertation are self-similar, so we will not be dissing the self-af ne class of

fractals here.

Hutchinson provides us with a formal de nition for self-dlar sets in [Hut81]:

(i) H3(K) > O;H3(S(K)\ S;(K))=0 fori 6 j, wheres =dimy K.

2.4.2 Dimensions of Self-Similar Sets

Calculating both the box-counting and the Hausdorff dimemsiof self-similar sets

Is made relatively easy thanks to a very useful theorem. Wtasrem tells us that if

and Hausdorff dimensions. As well as that the theorem gigesnueasy way to compute
this dimension value anfd will have positive and nite Hausdorff measure, ife will be
ans-set. We will not prove this theorem here, though we will bekimg use of it later on
so it is certainly worth noting. The proof requires a morearete version of the “do not

overlap too much' requirement, known as thgen set condition
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exists a non-empty bounded opengesuch that
m
S(V) V

i=1

whereS;(V)\ §(V)=; wheni 6 j.
Theorem 2.4.3.LetF be the self-similar set that results from the I68:::;S,, and let

the open set condition hold for ti&. Thendimg F = dimy F = s, wheres is given by

Moreover0< HS(F) < 1.

Proof. This proof may be found in [Fal90]. n



Chapter 3

Techniques for Calculating Hausdorff

Measure

3.1 Introduction

As outlined in [Fal86] and [ZF04], the Hausdorff measure @k at the critical di-
mension is notoriously dif cult to calculate. While the noti of Hausdorff measure is
convenient mathematically due to the fact that it is basecheasure theory, nding gen-
eral methods for its calculation for a wide class of sets naggn to be elusive. In [ZF04],
on the problem of calculating the Hausdorff measure, ZhaluFeng reason that the dif-
culty is not one of “computational trickiness nor computatal capacity, but a lack of
full understanding of the essence of the Hausdorff measuaifumber of authors have
attempted to calculate both the Hausdorff dimension andHénesdorff measure of var-
ious popular fractal sets. In the following two sectionstogtchapter, Sections 3.2 and
3.3, we discuss the important relationship between thd beasity of fractal sets and

Hausdorff measure, and in the last section, Section 3.4 veeggshort review of attempts

a7
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by various authors to calculate the Hausdorff dimensionraedsure of various sets.

3.2 Local Spherical Density and Hausdorff Measure

3.2.1 Discussion and De nitions

As is suggested in both [ZF04] and [AS99], the local densitya celf-similar set
which satis es the open set condition is closely relatedgdHausdorff measure and the
main focus of this chapter is to mount a detailed investigainto this relationship. We
require the following de nition for our discussion of detysi
De nition 3.2.1. A property is said to holé&ilmost everywherer for almost allx 2 E

with respect to a measureif it holds for allx 2 E except for a set of -measure zero.

The local density of a sdf at a pointx can be thought of as an estimate of the
level of concentration of points froa in the neighbourhood of. One such estimate is
Lebesgue’s density. In order to formulate it, we need to kabwut Lebesgue measure:
De nition 3.2.2. If A = f(Xy;:::;%,) 2 R" @ & Xi hgis a coordinate paral-

lelpiped’ and the n-dimensional volume Afis given by

vol"(A)=(by a))(b a) (b an);

we may de ne then-dimensional Lebesgue measureto be
( n )
L"(A) = inf vol"(A) : A A
i=1 i=1
where the in mum is taken over all coverings Afby coordinate parallelpipeds;. L"

may be shown to be a measureRh.
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Now that we know what a Lebesgue measure looks like, we mayfiate Lebesgue's
density as follows:

De nition 3.2.3. We refer to

L"(F\ Br(x))
L™ (B (x))

D(F;x) = lim
rt 0

as theLebesgue densityf a Borel sef in R" if the limit exists.

A classical result known as Lebesgue's Density Theoremsgisgesome insight into

when the limit does exist, as follows:
D(F;x) =1 for L"-almost allx 2 F:

Unfortunately, this theorem is not so useful for fractabsghcel."(F) = 0 if dim(F) <

n, so the obvious approach in this situation is to reformutigasity so that it uses a
measure which can cope with non-integral dimensions,heeHausdorff measure. For-
tunately, it is possible to reformulate density in such a \wag achieve positive results.
In the following de nition recall that ars-setis a Borel set of Hausdorff dimensiswith
positive nite s-dimensional Hausdorff measure:

De nition 3.2.4. The lower and upper densitie®f an s-setF at a pointx 2 R" are

de ned as

siEyy = 1 HO(F A B (X)) 55 vy = v Ho(F\ B (X))
D>(F;x) = I:!mo L and D (F;x) = Hmo R

respectively.

Note: Hereafter, we may refer to the lower densityi@ser spherical densityand upper

density asupper spherical densitynterchangeably.
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Work on the local density of sets was championed by Besidowit¢he 1920's and
30's, resulting in the three seminal papers [Bes28], [BesB8]Bes39]. He formulated a
density boundedness theorem which directly relates Hafisdeasure to upper density
for sets with nite s-dimensional Hausdorff measure, a result which we preserg as
Theorem 3.2.6 in Section 3.2.3. The theorem says that gimesisatF in RY, 2 S

D°(F;x) 1for HS-almostallx 2 F.

A key observation is that the uppgidimensional density is not as useful with respect
to the s-dimensional Hausdorff measure as it could be. This is dubddact that the
uppers-dimensional density, as we have de ned it above, basesiisate of the den-
sity of a set at a point on strictly spherical sets, whereas the Hausdorff meassgs u
a more liberal policy with its covering sets. For this regsee introduce the uppes-
dimensional convex density in Section 3.3 which uses opemecosets instead of balls
for its estimates of local density and allows us to garneresesry useful results with
respect to the Hausdorff measure. There is a variation ongbal Hausdorff measure
called thes-dimensional spherical Hausdorff measure which forms aensoitable ac-
companiment to the-dimensional density. Some of the results involving condersity
and the usual Hausdorff measure have analogues for theicgh@ensity and spheri-
cal Hausdorff measure de nitions. For example, when uppdmensional spherical
density is reformulated to use spherical Hausdorff measthaaresulﬁS(F;x) =1 for
Hg-almost allx in ans-setF  RY may be acquired, where

( % L )
HS(E) = Iimoinf diam(E;)® E Ei; diamE;) < ;E ; is aball

i=1 i=1

Discussions may be found in [Mat95] and [OIs05].



3.2 Local Spherical Density and Hausdorff Measure 51

3.2.2 A Background Result

We require the following result in Section 3.2.3 for our dission of Besicovitch's
density boundedness result, Theorem 3.2.6.
Proposition 3.2.5.Let be a mass distribution oR", letF  R" be a Borel set and let

O0<c< 1 be aconstant.

W<c forall x 2 F, then

@ If fim

o3

HS(F) @:

(i) If Tim

rt 0

3

W>c forall x 2 F, then

25 (R")

H*(F)

Proof.
() Let
F =fx2F: (B/(x))<cr®forallO<r g

S
forall > Oand observe th& = ,, F. LetfUgbe a -cover ofF. Then
S
F Ui, Also, for all U; where there exists an 2 U; such thaix 2 F , then

U  Bjyj(x): Bydenitionof F () (Bju;j(x)) < cjuUij° so

(F) ‘ fU U\ F 69 (3.2.1)
)4 i=1
f (U):U\ F 69 (3.2.2)

i=1
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X
< GuUijs: (3.2.3)

i=1
Sincef U;g is any -cover ofF, we have (F) cH3(F): As Falconer points out

in [Fal90] (page 11), when> 0and we have Borel sefs that are increasing as
S

decreases, thdm , , (A )= > oA ,so
0 1
[
(F)= @ FA= lim ~(F ) Iilrrz)cHs(F): cH3(F):
2Q: ’ '

(i) The proof of this is omitted but may be found in [Fal90].

3.2.3 Local Density Bounds

We now turn to the important theorem due to Besicovitch whitates the Hausdorff
measure o6-sets to their local spherical density at certain pointse Tésult states that
the spherical density of a givesiset lies within a certain rangd *>-almost everywhere.
In [Fal90], Falconer gives a shortened proof for the lowarrimband states that the upper
bound “follows in essentially the same way”. We expand th@opfor the lower bound
here and show that the upper bound does not in fact folloneqgot easily. It is not
immediately obvious exactly how this result might be apgplrecalculating the Hausdorff
measure of fractal sets; this is a problem we look at in Se@&i8.4.

Theorem 3.2.6.LetF be ans-set inR". Then2 * ES(F;X) 1 for HS-almost all
x2F.

Proof.

“2 3 BS(F;X) ?
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Letn 2 N. Putc, =1 1. Let (A)= HS(F\ A). If

) s __HS(F\ B(x)
Fo= X2 F DR = mo oo <

2 Sc,

then we would like to show thé'm_n) w <c, forallx 2 F,. Forallx 2 F, we
r!
have
S
im (Br(x)) - Tm HS(F \ B,(x))
rt 0 rs rt o rs
—— H3(F \ B;(x))
— S
N PTSE
< (2 °q)Z
= Gy

This is true for alix 2 F,, so by Proposition 3.2.5 (i) we have

H2(Fn) .
S

H3(Fy) (ann) -

SinceF is ans-set, and thereforg, is also ans-set, we know thaH*(F,) is positive
and nite, soc,H®(F,) H S5(F,) implies thatH *(F,) = 0: We would like to show that
2 s SS(F;X) for HS-almost allx 2 F, in other words, we would like to show that

HS x2F:25>D°(F;x) =0:Clearly

. s< P _[l . s ~Ne/rE- _[l
x2F:2°>D(F;x) = X2F:2°%,>D(F;x) = Fn

n=1 n=1

and obviously since these sets are equal, their Hausdod$unes coincide, so we have

HS x2F:2°%>D°(F;x) = H° FFn
n=1
X
H*(F)
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Thusﬁs(F;x) 2 s holds for all points i exceptforthesetx 2 F : 2 5> ES(F;X)

of Hausdorff measure zero, iB.(F;x) 2 S holds forHS-almost allx 2 F.
“D°(F;x) 1”

We will set about proving this inequality in a similar way teetabove using Proposi-
tion 3.2.5 (ii) as described in [Fal90], but as we shall ske proof breaks down.

Again, letn 2 Nand let (A) = HS(F [ A). Putc, = 25(1 + 1).

We would like to show thaD °(F; x) 1 for all points inF except for a set of
Hs-measure zero, thatBE= x 2 F : D (F;x) > 1 andHS(E) =0. Put
HAF A\ B (X)

— 1
— - S . — H _
Fn= X2F:D(F;x)= !l!m0 L 1+n

It suf ces to show thaf, has zero-mass. For al2 F,, we have

S
im (Br(x)) - Tm HS(F \ B,(x))
rl 0 rs ri o rs
— H3(F\ B((x))
_ S
=2 1'!”% (2r)s
> 25 1+ E
n
= C.
Hence by Proposition 3.2.5 (ii),
2 (R"
HeE) S
_ 2°H3(R"\ E)
o>+ )

H(E)
n+L
n
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n
n+1

HS(E):

The proof breaks down at this point. Had we Haé(F,) —HS(Fy), instead of
the above inequality, we could have shown tR&(F,) = 0, thus nishing the proof.
Unfortunately a more complicated method of provﬁgsg(F; x) 1 must be resorted to.

This method is explored in [Fal86] and we will not be examgnithere.

3.3 Local Convex Density and Hausdorff Measure

3.3.1 Discussion and De nitions

The type of density we present here is much more useful wigarceto the Hausdorff
measure than regular spherical density. In Section 3.3.Beleat a Theorem which is
analogous to Besicovitch's Theorem 3.2.6 for spherical ilen#t is however, a more
precise result which helps gives rise to some more powegkults which we analyse is

Section 3.3.4.

First, we present the relevant de nition:
De nition 3.3.1. Theupper convex densityf ans-setF at a pointx 2 RY is de ned as

HS(F \ U)

=S . T
DC(F,X)—H”}) sup iUfs

where the supremum is over all open convex gketgith x 2 U andO< jUj <r.

Later on in Section 3.3.3 we provide a new result, one of th@igations of which is
that given soms-setE in R, ﬁz(E; x)  1forall x. The key theorem in Section 3.3.2,
Theorem 3.3.11, says thﬁtﬁ(E;x) =1 for H®-almost allx 2 E. As is pointed out in

[ZF04] by Zhou and Feng, an obvious consequence of this ighbaset
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Eo= fx 2 E j D_(E;x) = 1gis measurable and theS(E,) = HS(E). One question
that emerges is, under what condition€is = E? In the same paper, Zhou and Feng,
provide an interesting discussion on upper convex densdypase some more interesting

guestions. Two of these questions are:

(i) Given ans-setE, under what conditions is there a $&with x 2 V such that
H3(E\ V)

—s
. = ?
D.(E;x) Vs .

(i) If such a setV exists, how does one determine its geometric shape or form?

Such questions have been tackled in the literature by vagathors, e.g. [Mar86, Mar87,
AS99], for a number of different fractal sets. We discuss #nd related matters further

in Sections 3.3.4 and 3.4.

We require the notion of a Vitali class and Vitali's coveritiggorem to prove a result
in Section 3.3.2:
De nition 3.3.2. A collection of setsV is called aVitali classfor F if for eachx 2 F
and > Othere existdJ 2 V with x 2 U and0 < jUj

Theorem 3.3.3. (Vitali's covering theorem)

(a) LetF be anHS-measurable subset 8 and letV be a Vitali class of closed sets for
F. Then we may select a ( nite or countable) disjoint sequdniciEom V such that

either
X [

jUjs = or H® En U =0:

(b) IfHS(F) < 1 , then, given > 0, we may also require that

HS(F X'U-'S+'
(F) JUPP +
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Proof. Vitali's covering theorem is a well known result and its prawvay be found in

[Falg6]. 0

3.3.2 Key Results for Local Convex Density

Theorem 3.3.5 below, the convex density analog to Theor@mé,3ecomes particu-
larly important in Section 3.3.4 where we use it to prove Tbe03.3.11.

Theorem 3.3.4.I1f F is ans-set inR", thenﬁi(F;x) =0 for H®-almost allx 2 F.

Proof. The proof of this is omitted, but may be found in [Fal86]. O
Theorem 3.3.5.If F is ans-setinRY, thenD(F;x) = 1 atHS-almost allx 2 F.

Proof.

“ " Fix < landp> 0. Let

CHS(F\ L)

E= x2F: iUjs < for all convexU with x 2 U andjUj p

P
Forany > Owe may nd ap-cover ofE by convex setd); such that | jU;j° <

HS(E) + : Hence, assuming eath contains some point dg,

X
HS(E) HS(E\ U)
XI
HE(F\ Uy)
'X
< juij®

< (HEB)+)

Since < 1 and this holds for all > 0, H3(E) = 0. We can choos& for any



3.3 Local Convex Density and Hausdorff Measure 58

p>0,so

HS(F\ U)

—s .
DC(F1X) JUJS

for HS-almost allx 2 F. This is true for all < 1, soﬁz(F;x) 1 for HS-almost

allx 2 F.

This inequality is a bit more dif cult and requires Vitalisovering theorem (The-

orem 3.3.3).
We want to prove thafi(F; x) lalmost everywhere.

LetE; = fx 2 F : Bi(F;x) > 1g: If we can show that this set has Hausdorff
measure zero, then we will have shown tﬁqs(F; x)  1holds forH*-almost all
x 2 F. To do this, rstwe let > 1 be given and de ne another set as follows:
E = fx2F :D.(F;x) > g ltis sufcient to show thatHS(E ) = 0 for all

> 1. To see why this is so we let

_ 1
E,.i= x2F:Dy(F;x)> 1+ -

S|

. Therefore we have

n+l'’

SinceDo(F;x) > 1+ %> 1+ -1 E, 1 sitsinsideE,, 1

an increasing sequence of sets as follo#s; . E, . E,: Clearly
n n+

the union of all these sets is equalHg, so we have

b3
HY(E)  HY(Eg1):

n=1
If HS(E,, 1) = O forall n, thenH®(E;) = 0. Thus if we can show th&d5(E ) =0
forall > 1, we will have shown thati*(E;) = 0 as required.
LetEg be asubsetdE asfollows:Eqg= x2 E ﬁi(F nE ;x)=0

According to Theorem 3.3.4H° x2 E :D.(RnE ;x)60 =0:



3.3 Local Convex Density and Hausdorff Measure 59

But sinceF nE RINE |

E nEc = x2E :DJFnNE ;x)60

x2E :DyRYNE ;x)60

This implies that

HS(E nEg) H S x2E :D.RYNE ;x)60

= 0: (3.3.1)

Let U be some convex set. Sine \ U)[ ((FnE )\ U) = F\ U, bythe

countable additivity property of the Hausdorff measure haree

HS(F\ U) _ H3E \ U) N H3((F nE )\ U)
juiE U juj
HS(E \ V) HS((F nE )\ W)
up—————— + su —
e Vs W jwjs

where the suprema are taken over all convex $¥et8/. This holds for all such

convex set$J E, so taking supremum over such sets, we get

4 HS(F\ U) U Hs(E \V)+Su HS((F nE )\ W)_
TV VNV W JWis '

Then if we restrict the diameter of the sets such that jUj;jVj;jWj <r. and

take upper limitsas ! 0, we get

Do(F;x) Dg(E ;x)+ D¢(F nE ;x)
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forallx 2 F. SinceEy F, if we restrict our attention to the 2 Eg, the above
equation also holds. But sin(ﬁz(F nE ;x) =0 and 5z(F;x) > for all

X 2 Eg, we haveD(E ;X) Dy(F;x)> :

We de ne a family of setd/ as

S(E
V= U :Uisclosed and convex a (_ L)) >

jujs

Lety 2 Epand > 0. Then

< D(E ;y)
S
= lim supw U is open convex witld < jUj <r andy2 U :
oy JUJS

which means that there must existraq  such that

HS(E . : .
w U is open convex witld < jUj<r andy2 U > :
Therefore, for aly 2 Ep and > 0, there exists some sgt such thaty 2 V and

0< jVj< ,whose closur® is a member o¥/, makingV a Vitali class forE.

SinceE, E F andF is ans-set, by part (b) of Theorem 3.3.3 (Vitali's
covering theorem) we may, giver» 0, nd a disjoint sequence of setd/ig; in V

X
with H3(Eo) Vij  +

Equation (3.3.1) tells us th&t°(E nEg) =0, soHS(E ) = H3(Ey). Thus, using

the de nition of V, we have

HY(E ) = H*(Eo)
X
iVij* +
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X
< 17 mwE v+
i I
1 [ '
= ZHS  (E\V) (3.3.2)
1 HS(E )+ : (3.3.3)

We get Equation (3.3.2) using the countable additive pitypef the Hausdorff
measure by noting that thé sets are disjoint. The union of the disjoit sets
intersected withE is clearly a subset oE , so Equation (3.3.3) holds by the
second property of measure. This holds for ary O, soHS(E )=0if > 1las

required.

3.3.3 A New Upper Convex Density Result for Self-Similar Sets

Here we give a proof for a new result which gives an upper bdendhe upper
convex density of a self-similar set over all poirtsZhou gave a proof for a version of
this theorem which worked under certain conditions in hi88Lpaper on the calculation
of the Hausdorff measure of the Koch curve [Zho98]. The teisuproved in a more
general setting here. A number of lemmas are required anprav@ed after the proof.
Once again, we use this result later on in the proof of The@&i1 in Section 3.3.4.

Theorem 3.3.6. (new result)f K is a self-similar set satisfying the open set condition

s=dimy(K), then

HS(K\ U) j Uj®



3.3 Local Convex Density and Hausdorff Measure 62

for all Borel U. This also implies thaﬁz(K; x) 1for all x.

Proof. We will prove by contradiction. Let us assume that theretexa€Borel sel such

that

HS(K \ U) > jUj:
Choose > 0such that

(1 )H3K\ U)> juj:

Fix > Oand choos& such thajS;(U)j < for all jjj = k. Let
0 1 0 1

[ [
A=@ SU)\ KA andB= @ n S(UA:
jii=k liji=k

ClearlyK A[ B.

Let

% H3(A). Choose a-cover(V;); of B so that

X
Vii* H *(B)+ :

i
Then(S);=k [ (Vi)i forms a -cover ofK . So, using the scaling property of Hausdorff

measure (Proposition 1.3.4) and the de nition of a similafDe nition 2.2.6) in a similar

way to Lemma 3.3.8, we derive the following:

S X . : .S X - _'S
H>(K) ISP+ Vi
ji-{:k i
rrjujs+ H3(B) +
jii=k
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< X r’(1 )H3K\ U)+ H3B)+
=k
=1 ) rPHS(K \ U)+ HS(B) +
=k

1 )  HXS(K\YU)+HB)+ :
jii=k

Below we combine Lemma 3.3.9 and 1.1.13 to get Equation (8.3 then employ

Proposition 3.3.7 for Inequality (3.3.5) and Lemma 3.3:8fequality (3.3.6), to achieve

our result.
X
HS(K) @a ) HS(Si(K \ U))+ H3(B)+
iii= 1
= (1 )HS@[ Si(K\ U)A + HS(B) + (3.3.4)
Ojjj=k 1
(1 )HS@[ Si(U)\ KA + HS(B) + (3.3.5)

jii=k
(1 )HA)+ H¥B)+

H(A)+ HB)  H(A)+ 5 HE(A)

= HS(A)+ H3(B) % HS(A)
R ORUECIEE (3.3.6)

Finally, letting ! 0gives

juj?
1

H3(K) H *(K)

NI =

which is a contradiction.
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The next proposition and the three lemmas that follow areired for the proof of
Theorem 3.3.6 above.
Proposition 3.3.7.1f K is a self-similar set satisfying the open set condition apd d

scribed by similarity mappingsS;;::: S,g, then given some skt we have

S(K\ U) K\ S(U):

Proof. Becaus«& is self-similar,5;(K\ U) K. ObviouslyK\ U U, so applying5,
to both sides, we have thg{(K \ U)  S;(U): ThereforeS;(K \ U) K\ §(U): O

Lemma 3.3.8.LetK be a self-similar set satisfying the open set condition withlarity

> Osuchthatl )HS(K\ U) > jujs:Let > 0and choosé such thafS;j <

for all jjj = k. Then
0 1

[
HS@ s(U\ K)A
jii=k

JUP®
T

Proof. We have
0 1
[ X
HS@ S(U\ K)A = H3(S(U\ K)):
jii=k jiji=k
LettingA RYand A = f x :x 2 Agfor > 0, by the scaling property for the
Hausdorff measure (Proposition 1.3.4) and the de nitioa eimilarity (De nition 2.2.6),

we haveH (S (A)) = HS(riA) = rsHS(A):

This works for any sef\, so it will work for S;, (A); Si,(A); Si,(A) and so on. So for

some string, applying this repeatedly and making use of the binomiabté, we have

X X
HS(S(U\ K)) = r HS(U\ K)

jii=k iii=k
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0 1
X . ‘g
JUJ
@ A
jiii=k
ko
A (V]
= r 1
i=1
JUjs
=

]

Lemma 3.3.9.LetK be a self-similar set satisfying the open set condition witfilarity

H®(Si(K\ U)\ S(K\ U))=0 fori & jandjij = jjj.

Proof. First of all we note the following: clearlik \ U K which implies that
S(K\ U) Si(K) for any stringi. By the second property of measure we know that
HS(Si(K \ U)) H 3(Si(K)), soitis suf cient to prove that

HS (Si(K)\ Si(K))=0 fori & j andijij = jjj,
sinceHs (Si(K \ U)\ Si(K\ U)) H (S(K)\ S(K)):

Leti = i;:::ip andj = j1:::)n be two strings of lengthij = jjj = n and let
I1::7ik 1= J1:::jk 1suchthatth&th term in each string is the rstterm wheiig6 jy.

Then

H®(Si(K)\ §(K))

=H*S, S,.,SS. S.(K)\S, S ,SS. S.K)

=H*S, S, SS. S.(K)\SS,., S.(K)

=rory, o HPS.S, S.(K)V S, S, S.(K) (3.3.7)
rere, o HA(SL (K)Y S5 (K)) (3.3.8)
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=0: (3.3.9)

We get Equation (3.3.7) using the scaling property of Hatfsdoeasure (Proposition
1.3.4). Equation (3.3.8) is clear singg , S, (K) S, (K)andS,, S, (K)

S;, (K). Finally, Equation (3.3.9) is due to a result by HutchinsofHut81] which says
that if the open set condition holdd*(S;(K)\ S;(K))=0 fori 6 j. O

3.3.4 Further Convex Density Theorems for Self-Similar Sets

In this section we prove three important results relatedhéocbnvex density of self-
similar sets. The most important of these, Theorem 3.3.43ng a link between the
Hausdorff measure and a density formulation which is based self-similar measure.
Self-similar measures are the measure analogue of selasisets and hence are quite
convenient to work with. Such a result brings us a step claseising density results
to help calculate the Hausdorff measure of certain setsstlfiwe de ne the density
formulation as follows:

De nition 3.3.10. Let be a measure on some set. We de neugper convexs-

dimensional density with respect taat a pointx as follows:

(V)
juje

d:(;x )= lim sup
r!

where the supremum is taken over all open convex@ethereO < jUj <r andx 2 U.

Theorem 3.3.13 says that if we have a self-similafksethich satis es the open set

condition and a self-similar measureon K , then

1

HH(K) = sup, ai(;x):

In Section 3.4, we review a case in the literature, [AS99]ekelthe supremum in the
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above equation has been estimated for Cantor-like sets.

Expanding this notion further, in [ZF00] Zhaat al prove that given as-setE~ R¢,

there exists a sequent®, g, of Borel sets irRY such that

[ H(E\ Up).
H(E) o1 HSE) Ui

In order for this limit process to be useful, one needs toUydsuch that,H*(E\ U,) =
H®(E), wherec, is a constant. As Zhou et al remark, though this result pexs/a way
to calculate the upper bounds of the Hausdorff measure Béseilar sets satisfying the
open set condition, in general it is dif cult to constructcéusuitableJ,,. Though we will
not be discussing this particular result further, we wilngroceed and explore the other
results we have mentioned above in more detail.

Theorem 3.3.11.If K is a self-similar set satisfying the open set condition and

dimy K, then

sup, Do(K;x) =1:
Proof. We start with the upper bound:

“ " This follows directly from Theorem 3.3.6.

“ 7 We know from Theorem 3.3.5 tha_lz(K;x) = 1 for H®-almost allx. There-
fore lettingA = fx 2 K : D(K;x) 6 1g, H5(A) = 0. Owing to a result by

Hutchinson, we then have the following:
H3(K nA)= H5(K) > O:

Of course ifK nA has non-zerél >-measure, then it is non-empty. Therefore, there
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must exist somg 2 K n A such that
supDo(K;x) Dy(K;y)=1:
X

]

Theorem 3.3.12.1f K is a self-similar set satisfying the open set condition and

dimy (K), then

HS(K
sup & =1:
U open, convex ]U]S
U\KE§;

Proof.

" This follows directly from Theorem 3.3.6.

" We know from the proof of Theorem 3.3.11 that there must esagtey 2 f x 2

K :Dy(K;x) = 1gsuch that

8 9
_, _ e )
DA(iy) = fm  sup
rl O§ U open, convex JUJS §
y2U '

0<jUj<r

Therefore given > 0, there must also exist some> 0 so that

HS(K \ U)
sup —_—
U open, convex  JUJ®
U\KE§;
H3(K\ U
sup g 1
U open, convex JU]S
y2U

O<jUj<r
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This is true for all > 0, so we have

HS(K \ U)
sup TR T

U is open and convex JU]S
U\KE6;

Theorem 3.3.13.LetK be a self-similar set satisfying the open set condition(3et:::; S,)
be its associated similarity mappings andiebe the Lipschitz ratio o§;. Let be the

self-similar measure satisfying

xn
(A= 17 (S HA)

i=1

for any measurable s&. Then

1 .
sup, d;(;x)’

HS(K) =
Proof. Note that by Hutchinson [Hut81]

HS(K \ A)

(A) = W,

hence using Theorem 3.3.11 we have the following inequtditall x:

8 9
: x
supd( X) —sup I|m sup (L)
§ U open convexJU §
0 o ’
g iU 9
% S(K \ U)§
= sup I|m sup

x I 0§ U open, convexH (K )iujs §
) 0<]%JljJ<l’ '
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8 9
3 2
- Y eim sup KAV
Hs(K) xp” 0§Uopen,I<::)0nvex jujs 3
. x2U )
0<jUj<r
=1 supD(K;x)
"~ HS(K) PR
- 1 .
~ HS(K)'
Hence
HS(K): %:
sup, d.(;x)

3.4 Calculating Hausdorff Measure of Fractal Sets: A

History of the Problem

3.4.1 Hausdorff Measure of Cantor-like Sets

In [Bae94] and [Bae98], Soo Baek analysed the Hausdorff diroardicertain gen-
eralised Cantor sets. Sandra Meinershagen subsequenkigdvam nding the Hausdorff
measure of these same sets in [Mei02]. To describe the ty@ator set discussed in
[Bae94] we letl. = [0; 1], then obtain the left subinterval ; and the right subinter-
val | ., by deleting a middle openlsubinterval bf inductively for each 2 f 1;2q",
wheren =0;1;2; . Thesef = \ | is called gperturbed Cantor setvhen
the lengths of each interval at the:;OIef;ell;zg:‘ the construction may differ from level to
level, but thel ,; sets share the same length whef f 1;2g" andi = 1;2. In [Bae98],

this construction is generalised so that the length ofl thantervals, and consequently
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the contraction ratios used to generate those intervalg vany arbitrarily. This type of

construction is referred to asd@ranged Cantor set

Baek makes use of a notion of dimension particular to such €aste when achiev-
ing the results in [Bae94]. Using the perturbed Cantor settoactson described in the

previous paragrapl@,+; = j;f ?" is the contraction ratio used to get the, intervals at

the n-th level when 2 f 1;2g9" andh,+.; = j;l? jj is the contraction ratio for the. ,

intervals. Given a perturbed Cantor setwe let

<

he(F) = lim (a5 + i)

|
n'l 1

<7

¢(F)= Im (& + B):

n'l
k=1

We then de ne thdower and upper Cantor dimension$F to be

dimcF =supfs> 0jh%(F)= 1g and

dimgF =supfs> 0j¢°(F) = 19

respectively. Baek proves that difi = dimyF for all perturbed Cantor sets in
[Bae94]. In [Mei02], Meinershagen shows that the Hausdodtsure of is actually
equal to the covering measurgonF at the critical dimension. [Bae98] sees Baek inves-
tigate the Hausdorff measure of a certain weakly converderdgnged Cantor set which
satis es a condition that all the sequences of the solutamsome power equations re-
lated to the contraction ratios in its construction coneax@some number. Baek shows

that this number is in fact the Hausdorff measure of the set.

Elizabeth Ayer and Robert Strichartz discuss the exact Hatfsdeasure and inter-
vals of maximum density for certain types of Cantor sets iir tt@99 paper [AS99]. The

type of Cantor sets they work with are the attractors (inversets) of IFSs made up of
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vall suchthatS;(1) | and the image$;(l) are disjoint. Given an IF§S;;:::;Sy)

with invariant setK of the type described, given a self-similar measuren K which
xXn
satises = P S 1 and assuming the modi ed version of the open set condition,

i=1
Ayer and Strichartz work with the variation on the result ilebrem 3.3.13:

=sup % J [0;1] : (3.4.1)

H (K)

They say that an IFS satis es theiteness propertyif the above supremum is attained
for some intervalS;, S, ::: S, ([0; 1]) for somen. They then go on to show that the
niteness property holds in many cases under certain cardif in particular ifp; =

pm Or more generally, ifogp; andlogp,, are commensurable numbers, i.e.l'(;’ Ff’; is
rational. When the niteness property holds, they also ptevan estimate of the size of
nins;, S, ::: S, ([0; 1]). When the niteness property does not hold, they demonstrate
how to obtain a sequence of intervals with lengths approachero whose densities

approximate the supremum in Equation (3.4.1) from below.

A couple of the results provided in [AS99] had already beaven by Jacques Mar-
ion in [Mar86].

Further studies of the Hausdorff measure of Cantor sets, eridtiding Soon-Mo
Jung's 1999 paper, [Jun99]. Using a combinatorial methandg &stimates the Hausdorff

measures of various self-similar sets, including uniformtGasets.
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3.4.2 Hausdorff Measure of Non-Trivial Fractals

Numerous papers have been written on the calculation ofdtafisneasure for more
complicated sets. One of the rst of these papers, [Mar87Mayion, gave an estimate
of the upper bound of the Hausdorff measure @iarpinski gasket To construct this
Sierpinski gasket, we start with an equilateral triangldBC with sides of length 1 and
call it Sp. Joining the midpoints of the sides$f, we remove the open inverted equilateral
triangle that is formed and call the remaining Set We join the midpoints of each of the
three triangles irg; in a similar way, remove the three open inverted equilateicigles
that are formed as a result and call the remainingSQetRepeati\ng this process, we

obtainS, S S Sh . The non-empty sef = S, is called the
n 0

Sierpinski gasket. Marion estimated th&t(S) ((—13)3S 0:90508whens = dimy S
and speculated that this was the actual Hausdorff measuteajasket at the critical
dimension. In his 1997 paper [Zho97b], a Chinese scientistacbZuoling Zhou, some
of whose work we will be analysing in detail in the sequel,rfdwa better upper bound
for H3(S) that disproved Marion's conjecture. In a subsequent pdgbn97al, Zhou
improved this estimate further so tHdf(S)  (£)(2)* 0:8900and in [ZF00] Zhou
and Feng improved the estimate still further until theyvedi atHs(S)  0:83078799
Following that, in 2002, Zhowt al [JZZ02] derived a lower bound for the Hausdorff
measure of, H5(S) 0:5.

Work has also been done on calculating the Hausdorff meaduad<och curveat
the critical dimension. To construct a general Koch curve,take a line segment in
R?, divide it into 3 segments, then draw a triangle which usesntiddle segment as a
base. We then draw smaller triangles on each side of the namgaset in a similar way.
Repeating this process in nitely many times, we derive a Koatve K . Marion [Mar87]

conjectured that wheK is constructed in a particular wag, = dimyK, HS(K) =
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25 2 0:5995 Further progress on Koch curves was made in [Zho98] and1%Z0

Later on in Chapter 4 we analyse and improve upon the work ofiAmao Wu [ZW99]

on the calculation of the Hausdorff measure of a Sierpinakpet inR2.



Chapter 4

The Hausdorff Measure of a Sierpinski

Carpet in R?

4.1 Introduction

In this chapter, we develop a method for calculating the HarfEmeasure of a Sier-
pinski carpet based on a Zhou and Wu's calculation in [ZW98},Using an alternative
geometrical technique. As shall be seen in the succeediagteh the method can be
extended naturally to a three-dimensional setting wherdHdwsdorff measure of a Sier-
pinski sponge can be calculated. The Sierpinski carpetiwivie deal with here is the
same set as the one described in [ZW99], for which the auttadcsilated a Hausdorff
measure o1p 2. Using the alternative method of calculation we preseng hee arrive
at the same conclusion. We compute the Hausdorff measutaso$et by calculating
the Hausdorff measure of its one-dimensional projectido arine and relating this to a
mass distribution over the original set. While the skeletbthe proof remains the same

as that of Zhou and Wu, we have reduced the number of lemmathaacems required

75
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from six to three and have replaced much of the numerical machused to get one of

the key results with a more intuitive geometrical concept.

It should be noted that although the set described here miaghaoe the aesthetic
gualities of our intuitive notion of a "carpet' and there aertainly more worthy candi-
dates, the construction of the set is consistent with thesadal de nition of a Sierpinski
carpet, so we retain the title here for consistency. For #mesreasons, the Sierpin-
ski “sponge' we deal with in the subsequent chapter retésnsame, even though it is

probably best described as a rather sparse sandbox.

4.2 Notation and Set-up

We proceed by describing the Sierpinski carpet whose Hafisdeasure we wish
to calculate. The reader should refer to Figure 4.2.1 whadeling the following, as it
illustrates the structure and labelling of the rst two lévef the construction of the

carpet.

Take a unit square iR? that shares a vertex with the origin and that has two of its
sides lying on the positive-axis and positive/-axis respectively. Label this squate.
We may divide each side @. into four identical segments of sidelengho obtain4?
non-intersecting squares of equal size&Cin Removing those squares that do not share
a vertex withC. , we are left with four remaining squares which we laBg| C,,; C,,
andCj;. Speci cally, C; is the square that has the origin as one of its vertiCggs the
square that had; 1) as one of its vertices ar@,, andC,, are the two remaining squares,
named arbitrarily. This is the rstlevel of the construgtiof the Sierpinski carpet. It shall
become clear later on why we are using the strange subschptsthe second level of

the construction, we subdivide each of the squ&g<C,,; C,, andC; into 16 smaller
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Ca2 J L Coa C421J ' Cas

Con T ’7 Cay2, Cau

x f Caz,

Fis Fa

Ciz J p Cus Co2 J L Cop
Fiz

Ci1 A ’7 Cio, Caon T f Ca2,

Figure 4.2.1: In this illustration, we show the unit squate superimposed upon the
rst and second levels of the construction of the Sierpircgkipet C whose Hausdorff

measure we are computing. The projection of the second |étbEeaonstruction onto

one of the main diagonals of the carpet is also shown. Thiseptimjn is required for our

calculations.

squares of sidelengtﬁ or %1 the sidelength of their parent squares, then remove those
squares that do not share a vertex with the parent sdtjaire each case. To illustrate
the labelling of these remaining squares, we take the sdewabisquares contained in an
arbitrary square from the rst leveC; say, and label ther@,;; C,,; C12, andCy3 in the
obvious way withC,; closest to the originC,3 closest tq(1; 1) and of the remaining two
squaresC,, closest taC,, andC,,, closest taC,,. If we repeat this procedure in nitely
many times we derive a Sierpinski carpet which we ldbelt is clear that at thath level

of the construction we haw' squares of sidelengtﬁ and we refer to these squares as

the basic squaresf thenth level. To refer to a speci ¢ basic square at tité level, we
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use the notatio;, ;,. We use the following notation to refer to all of the basicags

at thenth level:

jij=n

Thus, clearly

We select the diagonal betwefd 0) and(1; 1) to act as a main diagonal and label it
F.. This diagonal will become the focal point for much of thegfrtater on, speci cally
in Lemmas 4.5.2 and 4.5.3, but it should be noted that theilzdlons would work just as
well for any of the other diagonals. We shall identify the mdiagonal with the interval
[O; P 2] in the obvious way for the purposes of our calculations. Wetalso de ne a
mapping :C. ! F. tobe the orthogonal projection froR? ontoF. . Let the mappings
S$1;$,;Ss:F. ! F. beas follows:

1
Si(x) = ZX
1 1 1 =
SZ(X)21X+ Z+é p2
1 3P

Se(x)= Sx+ = 2

N
N

Let Fy = Si(F.);F2 = Sp(F.) andF3; = Sg(F.). We extend this notation so that
Fi1 in — Si1 in(F;), e.g.Filiz = Siliz(F;) = Sil(Sig(F;))' Itis eaSily seen that at the

rst level of the construction ofZ, C; maps toF;, C,, maps toF,, C,, maps toF, and
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Cs maps toF3; under -projection. E.g.
P* h i
(Cl) = 0 = S]_ 0 2 = S]_(F) = Fl:

Extending this idea, it is clear by inspection that give@;a j,, Fi, i, is equivalent to
(Ci, j.), the projection ofC;, ;, ontothe maindiagonal, where=11ifj, =1,ix =2
ifjx =2, 0rjx =2, andix =3 if j, = 3. Given anF;, ;,, we use the following notation

to refer to the collection of basic squares at title level that intersect (F;, ;,), the

pre-image ofF

i1 in-

INMW/ ©

[

jii=n
Cj\ l(Fil in)6;

G = Ciin jk=212 ifiy=2,

-

8

: g jk=1 ific=1,
' jk =3 if ik =3.1

It can be shown that there exists a measuom C which acts as a mass distribution,

distributing the mast) 2 overC as follows:

1P~
(Cj1 jn) = 4_n 2:
We have clearly de ned for all of theC;, j, which are Borel subsets &?, however,
proving that is indeed a measure @il Borel sets irR? is a much more involved task,

one which we shall not be tackling here. Similarly, it can bewen that there exists a

measuren supported o+ such that

mFi, i,.)=pP, B, 2
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wherep;, = 7 wheni, = 1;3andp;, = 3 wheni, = 2. In particular,

1 .
m(Fi, i,.,)= Zm(Fil i.)wheniy., =1;3

1

m(Fi, i,.,)= Em(F ) whenin,, = 2:

i1 in

We illustrate how the measura may be constructed by dividing a masspo_ﬂ over
F1; F, andF; so that they get maspgfz; p; andeé respectively. Then the mass of each of
theF;, is divided in a similar way amongst tlig,;, such that, given af;,, Fi,; andF,3
get‘—l1 of its mass andF; , gets% of its mass. We repeat this procedure for eBgch;, and

its given mass, so that eaElh ;, ., receives eithea}i or% of that mass as appropriate.

Letv be a vertex ofC.. A triangle is formed when we interseCt with a line which
Is a distancex from v along the diagonal of that runs througlv and perpendicular to

that diagonal. We refer to this triangle 4.

4.3 Main Result

Theorem 4.3.1.HY(C) = P 2.

This result shall be proved in Section 4.6, but we require ralver of other results

rst.

4.4 The Hausdorff Dimension of the Carpet

Proposition 4.4.1.dimy C = 1.

Proof. C is clearly a self-similar set under the four similaritieR;; R,; R3; R4g with
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contraction ratio§4 which mapC. onto the four basic squares of the rst level of the

construction. Takin@. as the interior oC., the open set condition holds since

4
Ri(C.) C
i=1
Then by Theorem 2.4.3,

s=dimy C=dmgC=1;

; P 4r1\s —
the solution of ;(7)°=1. O

4.5 Supportive Theorem and Lemmas

Theorem 4.5.1.LetK be a self-similar set constructed using an IFS with simijanitap-

Then

HS(K) diam(K)®:
In particular, dimy (K) s.
Proof. LetK

i, in = Ri, i,(K)andletr;, ;, = ¢,G, G,. Note that

diam(K;, ;)= diamR;, ,(K)) ¢, ,diamK)=r;, ; diam(K):
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We know that

[n n

K= Ki= Ri{(K)

and applying this repeatedly we have

[
K = Kji:

jij=n

Clearly this union provides a cover &f. Fixing > 0, we may then choose large

enough such that

diam(K;, i) ri, i,diamK)

Craxdiam(K)

iij=n Ki forms a -cover ofK, hence
X
H3(K) diam(K;)®

jyn
ridiamK)?®

jij=n

X
() ( ¢)damK)®
D@  Odiam(K)®
diam(K )®:

HenceHS(K) diam(K)3. n

Lemma4.5.2.m(B)= ( %(B))forallB F.,B are Borel sets.
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Proof. We prove this using the Caradtbdory Unigqueness Theorem (Theorem 1.1.15).

Firstly, let

In=1fF, i, JN2N;ig;::5in=121;:::;30

and let

An=fli[ [ Imjm2N;1;21,g:

: (. )
Also letl = |, andA = i 121
n i=1
Firstly we show that

m(A)= ( *(A)) forallA2A, (4.5.1)
To prove this, it is suf cient to show that

m(l)= ( (1)) forl 21 ,: (4.5.2)
This is true since botm and 1 are measures with the countable additivity property.

P
For example, iA = I4[ 15[ 13, wherel; 21 ,,thenm(A) = fm(li)and ( YA)=
f ( (1)) by countable additivity. To prove the result, we use an itigdagrocess.
First, we can easily see that statement (4.5.2) is true wheg:

m(F;) P 2

( YFI\C)

( (F.)):::because&. has the only mass that lies in }(F.):

Next we assume that the statement is true for same 0 and prove it fom + 1. Thus
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we want to show than(F;, ;..,)= ( Fi, i..,)) foralln 2 Nwherei, = 1;2;3.

This naturally breaks down into two distinct cases whefleegit,.; = 1;30rin. = 2.

Case 1,41 =1:3

Wheni,+; =1 orips; =3 we have the following:

0 1
( *(Fi iwa)) = % ng (4.5.3)
JJJ n+1
'\ (F'l ins1) 6
= (G) (4.5.4)
jij=n+1
i\ MFip iy )6
1 X
= (C) (4.5.5)
JJJ n
C](\) YFiy, in)6; 1
1
JJJ n
Ci\ YFi; iy)6;

We get (4.5.3) by using the fact that tie, ; ., squares that intersect the pre-image of

Fi, i,., are the only objects with any-mass that lie the pre-image Bf The

1 ines -
countable additivity property of the measure allows us to sum the masses of the indi-
vidual squares in (4.5.4). There is only o@g ;,,, square in eaclj, ;, square and it
has‘—1 of the mass of its parent square so we get (4.5.5). We use theatme additivity
property of the -measure once again to derive (4.5.6). Next we look atrith@easure

of F;

i1 in+1 -

m(Fi, i,..) = %m(Fii in) (4.5.7)
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N

( YF i in)) (4.5.8)
1

0
% q§ (4.5.9)

Jii=n
Ci\ HFiy, in)6;

= ( YFi, i,a)) (4.5.10)

N

Whenin. = 1;4, (4.5.7) follows by de nition. (4.5.8) comes from our indie as-
sumption. Since th€;, ;, that intersect the pre-image Bf, ;, squares are the only
objects that carry any mass in the pre-imagéof ;,, we get (4.5.9). (4.5.10) follows

directly from (4.5.6).

Case 2iinsg =2

Wheni, ;1 =2, we have:

0 1
( “Fiy iu)) = % q§ (4.5.11)
JJJ n+1
i\ YFip iqe )6
= (G) (4.5.12)
I
G\ £J(JFiln ins1 )6
2 X
= = (C) (4.5.13)

jjj=n

C] l(Fll In)6

1

\
0
= % % q% (4.5.14)

JJJ n
Ci\ (FI1 in)6;

We get (4.5.11) because tlg, ;,,, squares are the only objects with anynass that lie

the pre-image oF;, .., . The countable additivity property of themeasure allows us
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to sum the masses of the individual squares in (4.5.12).€Té@r twaC; squaresin

1 jn+1

eachC; square, each with equal mass whicii ief the mass of their parent square,

1 n
so we get (4.5.13). Once again, countable additivity get&4us14). Looking at the

m-measure oF wheni,.; =2 we have:

i1 in+1

1

mF, ha) = 5 mE ) (4.5.19)
- 1 ( YFi, i) (4.5.16)
2.0

1 [
= 3 % ng (4.5.17)

jii=n

C\ iR, )6

= YFiy i) (4.5.18)

Whenin = 2, (4.5.15) comes from our de nition om. (4.5.16) follows from the
inductive assumption. Since ti@&, ;, squares are the only objects that carry any mass

in the pre-image oF we get (4.5.17). (4.5.18) follows directly from (4.5.14).

i1 in>

This proves (4.5.1). Thus, we also have

m(A)= ( *(A)) forallA2A

which, according to Caraélodory's Uniqueness Theorem (Theorem 1.1.15), shows that

m@B)= ( XB)) foralB 2 (A): (4.5.19)

P

Lemma 4.5.3.f (x) = m([0; x]) %‘x forallx 2 [0; 2]

Proof. A graph off (x) = m([0; x]) can be seen in Figure 4.5.1. We prove this result by
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dividing into four distinct cases. The last case is sligintigre dif cult to prove than the

rst three cases:
p_
2

f (x)

D

hlm\x
blm\)
+
°°|N\
+
“lm\)
©
NI

o
o

J>|m\
+
°°|N\
+
Bl
X

Figure 4.5.1: A graph of (x) = m([0;x]) and the liney = %‘x whenx 2 [0; P 2]. The
intervals used in each of the cases in the proof of Lemma 4r6.8lso shown.

ho_ o p_p_lI
Case 1:x 2 TZ+ ?2+ Tz;pz
We have:
I
p- P- P
2 2 2
(00 f oot (4.5.20)
RE it
- 6' 5
32

2]
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N D w
iSN
NI

We get (4.5.20) by noting th&tis a monotonic increasing function.

ho o b b b bl
Case2:x2 2+ 2+ 2,2+ 2+ 2
We have:
I
p. p- p_'
2 2 2
- T J.
Fx) f 4 8 16 (4.5.21)
P P
L2
- 71_2= e (4.5.22)
! |
4 P32 P35 P54 3 2" 2
> 75 g tgt o T3 = (4.5.23)
7 4 8 4 7 8 8
4X'
=X
As in the previous case, we get (4.5.21) becdusemonotonic increasing.
ho o o .l
Case3:ix2 2,72+ 2+ ;2
We have:
péi
et (4.5.24)
P3

o)
TR

\l_l_-b

H

S~
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©
J>||\>|
©
°°||\>|
+
H| o
NI

Nl N A

As in the previous two cases, we get (4.5.24) bec&usemonotonic increasing.

h i
Case4:ix 2 0,72
h i g  hp pli
Notethat 0; 2 = S} -2 2 .We would like to show that

1
f (x) 2 whenx 2 ST

p_
We do this fom = 1, then prove by induction. First we show thain the interval[0; Tz]
is anS; re-scaling off in the interval[0; P 2]. Recall thatSy(x) = x andS; *(x) = 4x

P P
and note thaf (-2) = —2. We want to show that (x) = S(f (4x)) or thatf (x) =

P _ P
f (4x) for all x 2 [0; -2]. Lettingx 2 [0; 2] we have:

f (x) m([O; x])

X4
= pm(S (0D

i=1
= pum(S; (0 x0) (4.5.25)
= S m(0; )

f— 1 .
= @0

Equation (4.5.25) comes as a direct resuliSpfbeing the only map that maps to the

P _ P
interval[0; —2]. Clearly the line2x in the interval[0; P 2] rescales tdx in [0; 2] under



4.5 Supportive Theorem and Lemmas 90

p_
S: because for ak 2 [0; 2],

X = S(5:4x)

= =X
47

4 P3.P5y - 1P2.P2
Sof (x) Zx holds for allx 2 Si([4; 2]) = [ +]. We can now show that the

p_
inequalityf (x)  2x is also valid in the interva]0; 2] by starting the induction. We

P. P
assume thait (x) ‘%x forall x 2 S{‘([TZ; P 2]) forsomen 1and prove it fom + 1.

So we assume that

ho p_i
f (x) ;x forallx 2 SJ TZ;IO 2
and aim to prove that
hp p_i
f (x) ;x forallx 2 St 2 P 2

P~ _
Letx 2 S/ ([ P 2]). We have

f (x) m([O; x])
X4
= B m(S *([0; X]))

i=1

= pm(s, (0:xD)
= 3m(0;S, ()

= %f (S, *(x)): (4.5.26)
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P~ —
SinceS, }(x) 2 S ([72; P 2]) and our inductive assumption states that) %‘x for all

P~ _
x 2 S ([ P 2]), using (4.5.26) we conclude:

f (S, ()

: 2 S; 1(x)

f(x)

SN NEN
3

NN PR RPRPAPE
< .

We have shown that

h i
f(x) 3xforallx2 0,2 [
h [
thus completing the proof. O

Proposition 4.5.4. (4x) 3x

Proof. We can easily prove this using Lemma 4.5.2 and Lemma 4.5\&n&4 X,
(4x)= ( *([0;x])

where[0;x] F. Using the two lemmas, we have

(o) = mqox) o
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4.6 Proof of Main Result; Calculation of the Hausdorff

Measure

Recall our main result, Theorem 4.3H1(C) = P 2. The proof is as follows:

Proof. We start the proof with the upper bouhktd(C) P 2:

“ 7 This follows from Theorem 4.5.1.
“ " According to the mass distribution principle, ifV) | Vj for all measurable sets
V, thenH(C)  (C).

Given a measurable s&t, we proceed to show that(VV) | Vj by dividing the

problem into three distinct cases:

Case 1.V intersects exactly £; basic squares at the rst level.

Case 1.1:The 2C; lie on one of the diagonals . .

Let C, andC,, be the two basic squares Gf lying on the diagonal. We have:

(V) (C+ (G (4.6.1)
¥

= (4.6.2)

= d(Ca; Cy) (4.6.3)

IV (4.6.4)

We get Equation (4.6.1) becau€g andC, are the only basic squares thatin-

tersects, thus the sum of their masses is the maximum ¥hass attain. To get
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Figure 4.6.1: A seV intersects 2C; squares on one of the diagonals©f at the rst

level of the construction of Sierpinski carg@t This is Case 1.1

of the proof of Theorem 4.3.1.
Equation (4.6.2), we divide the total mass©fby two, since we have summed
the masses of two of the fo@; basic squares at the rst level. This is of course
equivalent to the distance betwe€y and C,, using the Hausdorff metric, since
d(Ca; Cp) = P 2 2(pT§), and so we have Equation (4.6.3). Finally, this distance is
smaller than the diameter df, sinceC, andC, intersectV .
Case 1.2:The twoC; basic squares lie on one of the side<of

Let C, andC, be the two basic squares which lie on that sid€€of Without

loss of generality, we assume that this sid€ofis parallel to thex-axis. Let

=inf fx:(x;y)2V\ (Ci[ Cpg

=supfx:(x;y)2V\ (Ci[ Cpyg

LetR denote the rectangle formed by the lines |, x = %1, y =0 andy =

L LI N

LetR denote the rectangle formed by the lines %, x= ,y=0andy=
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Ca Cp

Figure 4.6.2: Case 1.2V intersects 2C; squares on one of the sides®©f at the rst
level of the construction &&. Also shown are rectanglé® andR .

WhenO L, we have
P2
R) (C= (4.6.5)
sinceR Ca.
When i %, we have
p_
(Ca) 2
R = _= 4.6.6
R) —5% = (4.6.6)
sinceR can intersect at most two basic square€gf
When2 3+ L, wehave
p_
(Cb) 2
R = — 4.6.7
R) —57 = (46.7)

sinceR can intersect at most two basic square€gf
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When?1 + & 1 we have
P
(R)  (Cy= = (4.6.8)

Clearly (V) (R )+ (R ). Therefore, by the above results, we can show that

(V) j Vjinthe following cases:

When0 i3 3 + X, using Equations (4.6.5) and (4.6.7) to get

Equation (4.6.9), we have

P~ P P~ P
R)+ (R) —+-L=2-2+ 2 (4.6.9)
P P 4 8 8 8
2 d2 31
- 8 16 4 16
j Vi
When0 1 L+2 1, using Equations (4.6.5) and (4.6.8) to get

Equation (4.6.10), we have

P53 Ps
V) (R)+ (R) 2t (4.6.10)
_2 1.3 1
16 16 4 16

j Vi

3 + %X, using Equations (4.6.6) and (4.6.7) to get

1 1
WhenE 7t 6

Blw

Equation (4.6.11) we have

NI
©
NI

V) R+ (R) (4.6.11)

|
|
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_ 2 38 1
4 4 4
] Vij:
When 3 &+ 3 1, using Equations (4.6.6) and (4.6.8) to get

Equation (4.6.12) we have

NI
©
NI

Vv)y R+ (R)
6p§ 1 3
= +

3 1
16 16 4 4

(4.6.12)

|
=

J VI

This proves that (V) | Vj for all possible cases whe¥éintersectsC, andC,.
Case 2.V intersects 3 or 4 of th€; basic squares at the rst level.

Case 2.1.V intersects exactly €; basic squares at the rst level.

We draw linesG;; G,; G3 andG, through the vertex of each basic squaré€of
that lies in the interior o€, , i.e. C. . Without loss of generality, we will assume that
G, is drawn through the inner vertex of of the basic square tisatfzas a vertex at
the origin.G2; G; andG,4 are drawn through the inner vertices of the basic squares
that have vertices di.; 0); (1;1) and(0; 1) respectively in a similar wayG; and
G5 should both be perpendicular to bdi andG,.

We also draw lined\;; A,; Az andA4 parallel respectively t@,; G,; Gz and Gy,
and obtain a rectangle that contais\ C. and of which, each side intersects
V'\ C.. This construction is illustrated in Figure 4.6.3.

Let

o = d(Gy;Aq); ar = d((0;0);Ay);
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Figure 4.6.3: Case 2.1V intersects 4C; squares at the rst level of the construc-
tion of C. It is possible for some o¥ to lie outside ofC. as is illustrated. The
proof for this case requires the lines;; Ay; As; As; Gy; Gy; Gs; G4 and the distances

ay, 8; az; aa, O1; Op; Os; Ga-

d(G2;Az); ax = d((1;0);Az);

07}
d(Gs; Az); az = d((1;1);Az);

O
O = d(Ga;As); &y = d((0;1);As):

We have

NI

ytgh=atE=at+tB=aut =

»|
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and
P
V] ?"'91"'93;
o 2 _
V] 7"’92"’94-
Hence
P3Py
2]V] ?+7+91+92+93+94
o 2 1
V] ?*‘5(91"‘92*‘93*‘94)
:72+% °3 (a1 + ap + ag + ay) (4.6.13)
:pﬁ %(a1+ a+ ag+ ay): (4.6.14)

We get Equation (4.6.13) by noting that

P

2 p_
(Lt e+ B+Ho)+(ar+a+ as+a4):4(7): 2.

By Proposition 4.5.4 and using Equation (4.6.14), we have

V) 2 ((ayt (Ga)t (da)t (4a)
pz ;(al+a2+3~3+a4)
] Vij:

Case 2.2.V intersects exactly 8; basic squares at the rst level.

Without loss of generality we can assume tiaintersects the thre€; basic
squares that have vertices(@10), (0; 1) and(1; 1) respectively. Similarly to Case
2.1, we draw line$s;; G, andGj; through the vertex of each of these basic squares

that lies in the interior o€. . Without loss of generality, we will assume t@4 is
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Figure 4.6.4: Case 2.2V intersects 3C; squares at the rst level of the construction
of C. The proof for this case requires the linds; A,; Az; G1; G,; G; and the distances
ai, &, az, O1; G2, Gs.
drawn through the inner vertex of the basic square that asaahvertex afl; 0),
and is perpendicular to both; andGs.
We draw linesAq; A, andAj; parallel respectively t&;; G, andGs, and obtain a
rectangle that containg \ C. and of which, each side intersedts\ C.. This is
illustrated in Figure 4.6.4.

Letting
0 = d(G1;A1); a = d((0;0);Aq);
& = d(GzA2); a = d((1;0);Az);

& = d(Gs;A3z); asz= d((1;1);As);
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we get

ath=at+tg=a+tg=

and

V]

©
J>‘|r\>|

7"‘91"‘93: 2 a ag

By Proposition 4.5.4, we have

(V)

SO

Vi

AwWwphlwWwhlw

V)

p_
2 ((da)+ (4a)+ (4ay))
pP- 4
2 ?(a1+a2+a3)
p- 1
2 é(a1+ a + a3);
p_ pP- 1
2 a ag g’2+—(a1+az+a3)
P 4 2
-—é }(a+a)+}a
T4 pz T 2™
-1 _i a a +}a
_2 2 1 3 22
1a
22
0:

Case 3.V intersects exactly C; basic square at the rst level.

This breaks down into 2 distinct subcases:

Case 3.1.V intersects 2, 3 or £;,;, basic squares at the second level.

Case 3.2.V intersects exactly C;,;, basic square at the second level.
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Figure 4.6.5: Case 3V intersects IC; square at the rst level of the construction Gf
To prove that (V) | Vj in this case requires that we look beyond the rst level of the

construction.

Proving Case 3.1 simply requires a repeat of the proofs in Casd Case 2 ovet;
instead ofC. . Proving Case 3.2 requires that we divide it into a furtherl&asges
whereV intersects either 2, 3 or@;,;,j, squares or exactly or@,;,j, square.

G
1Cj]j2 2,3,4,5,6;7 or 8Cjj,

1Cj]jzj3 2.3.4:56.7 or 8ijj2,-3

[e]

VAN

LGy 2,3,4,5,6,7 or 8Cj1,

Figure 4.6.6: A tree representation of the proof of Case 3.

It is clear from Figure 4.6.6 that there are countably marnyspa subcases where
eitherV intersects 2, 3 or £;,..;, orV intersects IC;,..; .. (V) ] V]jwhenV

intersects 2, 3 or £;, ;, squares can be proven for allby repeating the proofs
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for case 1 and case 2. When for@JlV intersects exactly ong; we have

1 jn
[

V le in = fXg
n

which is a singleton, and since the measure of a singletoeres z(V) =0 | Vj

and we are done.



Chapter 5

The Hausdorff Measure of a Sierpinski

Sponge inR3

This chapter forms the main body of the research componehismissertation. The
technique for calculating the Hausdorff measure of a twoedfisional Sierpinski carpet,
outlined in the previous chapter, is extended for a simigdcwation of the measure of a
Sierpinski sponge, the three-dimensional analog of theeta¥VWe compute the Hausdorff
measure of a sponge whose rst level is constructed by usipges of the unit cube that

have a sidelength cgth of the unit cube.

5.1 Notation and Set-Up

The Sierpinski sponge that we choose to compute the Hadisdedsure of here, is
constructed as follows. LeE. be the closed unit cube iR® that shares a vertex with
the origin and that has three of its edges lying on the pestiaxis, the positive/-axis

and the positivez-axis respectively. We divid€. into 8® cubes of equal size whose

103
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Cs,
g
,,,,,,,,,,, g
———————————— SSPipe c
w7 m— Cpyg o
C, el o 2
2 g T C il
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Figure 5.1.1: This gure shows unit culd® superimposed on the rst and second levels
of the construction of the Sierpinski sponge whose Hausamésure we are computing.
The projection of the second level of the construction omi® af the main diagonals of
the sponge is also shown.

interiors do not intersect, each with sidelength of C., and remove those cubes that
do not share a vertex witB., leaving8 cubes remaining. To obtain the second level
of the construction, we subdivide each of the 8 remainingestibto8® equally sized
smaller cubes which do not intersect, with sidelengﬂnthat of their parent cubes, and
remove those cubes that do not share a vertex with their penbes, leaving? cubes
remaining in total. Repeating this procedure at the secorel t& the construction and
at each subsequent level of the construction yields a S&kpsponge which we label
C. Clearly at thenth level of the construction there a8& cubes, each of sidelenggh”,
which we shall refer to as thieasic cube®f the nth level. We choose the diagonal of
C. that shares a vertex with the origin to act as a main diagamnaldr calculations and
call it F.. It should be noted that the results proved in Lemma 5.4.1lamima 5.4.2

hold using any of the diagonals &@.. For the purposes of our calculations, we shall
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identify the main diagonal with the interval = [O; P 3]in the obvious way. Also, let

:C. ! F. refer to the orthogonal projection froR? ontoF. .

De ne contraction mappingS;; S;; S3; S, : F. ! F. as follows:

Sl(x)zéx

Sz(x):%x+ %+% "3
S3(x):%x+ §+§ "3
S4(x)=éx+ §+g pé

LetF; = Si(F.);F2 = Sy(F.);Fs = S3(F.) andF, = S4(F.). Atthe rst level of the
construction, it is easy to see the basic cube that sharedex weith the origin maps to
F1 under -projection. We call this basic culi®,. It is also easy to see that the three
basic cubes neareG} all map toF, under -projection, so we call these cub€s, ; C,,
andC,, respectively. The next three closest basic cub&; teach map td3, so we label
theseCj,; C3, andCs,. The remaining basic cube at this rst level of the constiarct

maps toF, under -projection, so we call iC,.

Taking an arbitrary basic cube at the rst lev€l;,, we refer to the second level ba-
sic cubes contained therein &; C;2,; Cj2,; Cj2;; Cjs,: Cis,; Cjz, and Cj4 which are
positioned in a similar way relative to the main diagonalfas tst level basic cubes.
Extending this notation, we may refer to any arbitrary basigce at any level of the con-
struction asC;, j, wherejy = 1;2;;2; 23; 31; 32; 33; 4. We label the union of all basic

cubes at thath level as follows:
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and clearly

Given aC;, ., Fi, i, refersto (Cj, ;,), the projection ofC;, ;, onto the main

diagonal,where, = 1 if jy =1,ix =2 1if jx =21;25; 23,1k =3 if jx =31;3,;33,ik =4

if jx = 4. Given anF we can see that the union of all basic cubes antheevel

i1 in>
which intersect (F;, i,),the pre-image of;, i, is given by:

8 9
% jk=1 ifi,=1,

[ [ jk=21,22,23 ifiy=2,"

G = Civjn -
jij=n % Jk=31;33 ifik =3,
Ci\  YFi; i,)8;

jk:4 ifik:4.’

The construction and notation described above is illustrat Figure 5.1.1. It is easily

seen that there exists a measurgupported orC such that

1P
(G i)=& 3

Similarly, it is easily seen that there exists a measuigipported o such that

m(Fi, i,.)= P, P, 3

wherep;, = % wheniy = 1;4andp, = 2 wheni, = 2;3. In particular,

1

I’Tl(Fi1 in+1): ém(Fil in)whenin+1 = 1;4
3 )
m(Fi, i,.,)= ém(Fil i.)whenin.g =2;3:

. p_
We can construct then measure as follows. We divide a mass o8 over Fq; F5; F3
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Po Ps Pa P _
andF,, such that they get masg’; 2:2; 2.2 and -2 respectively. The mass of eakh

is divided amongst th&;,;, such that bottF;,; andF; 4 get% of its mass, andF;,, and
Fi.s getg of its mass. This process is repeated for egch;, in a similar way, such that
Fi. int;Fiy in2sFiy i,z @ndFi, 4 receive masses df 2; 3 and? of the mass of;, |,

respectively.

Choose a vertex of C. . If we intersectC. with a plane perpendicular to the diagonal
that passes through at a distancex from v, a pyramid is formed betweaenand the

points of intersection. This pyramid is denotedsby.

5.2 Main Result

Theorem 5.2.1.HY(C) = P 3.

This resultis proved in Section 5.5 after a number of supiemmas are presented.

5.3 The Hausdorff Dimension of the Sponge

Proposition 5.3.1.dimy C =1.

Proof. C is clearly a self-similar set under the eight similaritieghwontraction ratio%
which mapC, onto the eight basic cubes of the rst level of the constetiUsingC. ,

the interior ofC. , to ful Il the open set condition, by Theorem 2.4.3 we have
s=dimy C=dmgC=1;

; P 8/1\s —
the solution of ;(5)°=1. O
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5.4 Supportive Lemmas

Lemma5.4.1.m(B)= ( %(B))forallB F.,B are Borel sets.

Proof. Let 1,=fF, i, Jn2N;iy::in=1;:::;49

andlet A,=fl,;[ [ Imjm2N;I;2l,9:

Also let
( )
[ ["
| = l, and A= i 121
n i=1
Firstly we show that
m(A)= ( *(A)) forallA2A, (5.4.1)

To prove this, it is suf cient to show that

m(l)= ( (1)) forl 21,

since bothm and 1 are measures with the countable additivity property. To do

this, we use an inductive process. First, we can easily s¢éhl statement is true when

n=0:

m(F;) "3

( YFI\C)

( (F.)):::because&. has the only mass that lies in (F.):

Next we assume that the statement is true for some0 and prove it fom +1. Thus we

want to show tham(F;, ;..,)= ( Fy, i,.,)) foralln 2 N whereiy = 1;2;3;4.
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This naturally breaks down into two distinct cases whettgegit,.; = 1;40ri.; =2;3.

Case liin+1 =1:4

Wheni,.; =1 oripe; =4 we have the following:

0 1
( *Fi i) = % cj§ (5.42)
JJJ n+1
j\ (Fll 'n+l)6
= (G) (5.4.3)
jij=n+1
Ci\ LFiy ip. )6
1 X
= 8 (G) (5.4.4)
JJJ n
C'd YFi, in)6; 1
1
= s % CJ-E (5.4.5)

JJJ n
i\ (F,l in)6
We get (5.4.2) by using the fact that tk, ;,,, cubes are the only objects with any
-mass that lie the pre-image &f, .., . The countable additivity property of the
measure allows us to sum the masses of the individual cul{és4ir8). There is only one

C

j1 jna

cube in eaclC;, j, cube and it hag of the mass of its parent cube so we get
(5.4.4). We use the countable additivity property of theneasure once again to derive

(5.4.5). Next we look at then-measure oF;

i1 in+1 -

m(Fi, i) = g m(F i) (5.4.6)

e CF L) (5.4.7)
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1

0
% C,-% (5.4.8)

JJJ n
Ci\ MFi; in)6;

= (MR i) (5.4.9)

(e i

Whenin., = 1,4, (5.4.6) follows by de nition. (5.4.7) comes from our indive as-
sumption. Since th€;, ;, cubes are the only objects that carry any mass in the preeimag

of Fi, i,,we get(5.4.8). (5.4.9) follows directly from (5.4.5).

Case 2iip41 =2:3

Wheniys =2 oripes = 3, we have:

0 1
( “Fiy i) = % ng (5.4.10)
jii=n+1
i\ YFip ipe )6
= (G) (5.4.11)
S
G\ P(JFi; ins )6
3
= § (CJ) (5.4.12)
UL CRRTY
0 1
3
= 3 % ng (5.4.13)
Jii=n
l\ (F|1 In)6

We get (5.4.10) because tg, ; ,, cubes are the only objects with anymass that lie
the pre-image oF;, .., . The countable additivity property of themeasure allows us

to sum the masses of the individual cubes in (5.4.11). TheréhaeeC, cubes in

1 jn+1

eachC;, j, cube, each with equal mass whichiisf the mass of their parent cube, so we
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get (5.4.12). Once again, countable additivity gets us13)4 Looking at then-measure

of F wheniy, = 2; 3we have:

i1 in+1

MEL ) = oM ) (5.4.14)
= ) (5.4.15)

ool w

0
S
G (5.4.16)

jjji=n
Ci\  Fi; in6;

= ( YFiy i,a)) (5.4.17)

Whenin., = 2;3, (5.4.14) comes from our de nition ah. (5.4.15) follows from the
inductive assumption. Since ti&, ;, cubes are the only objects that carry any mass in

the pre-image oF;, i, we get (5.4.16). (5.4.17) follows directly from (5.4.13).

This proves (5.4.1). Thus, we also have
m(A)= ( (A)) forallA2A
which, according to Cara#lodory's Uniqueness Theorem (Theorem 1.1.15), shows that

mB)= ( %B)) foralB2 (A): (5.4.18)

Lemma 5.4.2.f (x) = m([0;x])  ix forall x 2 [O; P 3]

Proof. A graph off (x) = m([0; x]) can be seen in Figure 5.4.1. We prove this result by

dividing into three distinct cases. The last case is shgmibre dif cult to prove than the
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rst two cases:

P3

f(x)

<
11
A

L
wl
= T e

|
]
+
C”lw\
+
]
©
wl

Figure 5.4.1: A graph of (x) = m([0; x]) and the liney = %x whenx 2 [0; P 3]. The
intervals used in each of the cases in the proof of Lemma &ré.also shown.

hpf p= P~ _i
Caselix2 2+ 2+ g;pB
We have:
p_ p- p.
3 3 3
—+ —+ 4.
O R (5.4.19)
P3 3
- gt g
_ "3
2
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We get (5.4.19) by noting th&tis a monotonic increasing function.

ho o b b
Case2:x2 22+ 2+ 5
We have:
p§!
1 (5.4.20)
_
) ®p_ p_ p.!
1 3 3 3
S o+
4 8 6 8
L
X

As in the previous case, we get (5.4.20) becdusemonotonic increasing.

h o
Case3:x2 0,3

h pi g hp pl
Notethat 0,2 = .S % 3 .Wewould like to show that

f (X) %xwhenxzs; 3 foralln 1

p_

We do this fom = 1, then prove by induction. First we show tHain the interval0; -]

is anS; re-scaling off in the intervall0; P 3]. Recall thatSy(x) = ix andS; (x) = 8x
P P

and note thaf () = 2. We want to show that (x) = S,(f (8x)) or thatf (x) =

P _ P
=f (8x) for all x 2 [0; 2]. Lettingx 2 [0; 2] we have:

f(x) = m(0;x])
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X4
P m(S; *([0:x))
i=1

= pm(S, *([0; x]) (5.4.21)

= £ m(0;8)

p— 1 .
= 5f @)

Equation (5.4.21) comes as a direct resultSpfbeing the only map that maps to the
P _ P
interval[0; .2]. Clearly the linelx in the interval[0; P 3] rescales tgx in [0; 2] under

P
S: because for ak 2 [0; 2],

—X = Si(3:8x)
11
é.Z.SX.

1 P3Py — (P3.P3
Sof(x)  zx holds for allx 2 Si([5°; 3]) = [ 5] We can now show that the
3
' 64

inequality f (x) %x Is also valid in the interva]0; -] by starting the induction. We

P —
assume thait (x) zllx forallx 2 S} ([TS? P 3]) forsomen 1and prove it fom + 1.

So we assume that

hpé.p

f (x) %{xforallxzsln -

and aim to prove that

hp p_
f (x) %x forallx 2 St 2 P 3

L5 P
Letx 2 S/ ([ 3]). We have

f(x) = m(0;x])
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X4
p m(S; *([0;x])

i=1

= pm(S; 1([0;x])

= Sm(0;S, ")

= %f (S, *(x)): (5.4.22)

P. P
SinceS, *(x) 2 SI! ([?3; P 3]) and our inductive assumption states th@t) %x for all

P~ _
x 2 S5 P 3]), using (5.4.22) we conclude:

1
8

f(S;*(x)

1
:Zsll(x)
1

—-:8

7 X

X:

f(x)

ARl RI

We have shown that

1 - _p.
f(x) foorallxz 02 [ &2+

thus completing the proof. n

Proposition 5.4.3. (4 x)  3x

Proof. We can easily prove this using Lemma 5.4.1 and Lemma 5.4\&nG4 X,

(4x)=( *([0;x])
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where[0;x]  F. Using the two lemmas, we have

(o) = m0x) 4

5.5 Proof of Main Result
Recall Theorem 5.2.1 which says th&t(C) = P 3. We now prove this result.

Proof. We start with the upper bound:

“ " This follows from Theorem 4.5.1.

“ 7 According to the mass distribution principle, ifV) | Vj for all measurable sets

V, thenH!(C) (C).

(a) Case 1.1 (b) Case 1.2

Figure 5.5.1: A seV is shown intersecting exactly @ cubes at the rst level of the

construction of a Sierpinski sponge in (a), and in ({)intersects exactly &; cubes.
While there are other possible con gurations, the two showovatassist our calculations

because/ intersects particular cubes that provide the lowest possitihmeter folV .



5.5 Proof of Main Result 117

Case 1.V intersect2; 3; 4,5 or 6 of theC; cubes.
The method for verifying that(V) | Vjin each of these situations is similar,

so we group them all under one main case here.

Case 1.1V interseﬁts exactly 2 of thg; cubes.
6 _ 23

Vi = > —— V):

Vi g 8 (V)

Case 1.2:V interseﬁts exactly 3 of thg; cubes.
., 6 _33
Vj - > — V):
Vi g 8 (V)

Figure 5.5.2: Case 1.3V intersects exactly 4 of thg; cubes.

Case 1.3V intersects exactly 4 of thg; cubes.

p §2p 23 p §P =P 23

3
8 - 8

Case 1.4V intersects exactly 5 of thg§; cubes.

. P 2P 6P_ 5P _
1Vj 3 §3—§3>§3 (V):

Case 1.5V intersects exactly 6 of th§; cubes.
P- 2P- _ 6P
3 - 3=23 V):
3 3 (V)
Case 2.V intersects or 8 of theC; cubes.

Vi
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() Case 1.4 (b) Case 1.5

Figure 5.5.3: Cases 1.4 and 1.%. intersects exactly 5 of th€; cubes on the left of this
gure andV intersects exactly € cubes on the right.

This main case breaks down into two subcases which are, rikectink ones in
the preceding main case, dealt with in a similar way. For tmpgse of laying out
some notational details, we will assume momentarily thattersects exactly 8 of
theC;.

Given aC;j, letu; be the vertexC; shares withC. and letw; be the vertex of
C; that is not a member a®C. Let G; denote the plane that is perpendicular
to the line that passes through andw;, and that passes through. LetA;
denote the plane that is perpendicular to the line that gahseughu; andw;, that
intersects the boundar@V of V and that is parallel t&; . Leta; = d(u;; A;) and

p_
g = d(Gj;A)). Itsclear thatg; + g = -2 for allj and that

©

jVij g 3+ g+ O (5.5.1)
Vi gp 3+ G, + Gy (5.5.2)
jVj gp 3+ O, + Oy (5.5.3)
jiVj gp 3+, + G, (5.5.4)

Having established the necessary notation, we now proceibe two subcases.
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Figure 5.5.4: Case 2.1V intersects exactly 8 of thg; cubes.

Case 2.1.V intersects exactly 8 of thg; cubes.

By adding Equations (5.5.1), (5.5.2), (5.5.3) and (5.5.4) get

. 6P -
4JVJ 4:§ 3+91+921+922+923+931+932+933+g4
. 6Ph—- 1
Vi §3+ﬂm+%+%+%+%+%+%ﬁ%)
6b- 1P
= 8 3"‘2( 3 (utayt+ay,+taytat+asta,t )
p

-1
= 33@+%+%+%+%+%+%+w (5.5.5)

By Lemma 5.4.3 and Equation (5.5.5), we have:

V) "3 ((da)r (Ba)+ (dam)+ (day)+

(4ag)+ (4ag)*+ (4ag)+ (4a))
p_
3 (@it ap +ay, + Ayt a t At At A
j Vi
Case 2.2.V intersects exactly 7 of thg; cubes.
Without loss of generality, we can assume that V does notsettC,. Using

the same notation, but disregarding Equation (5.5.1), we mosv add Equations
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Figure 5.5.5: Case 2.2V intersects exactly 7 of thg; cubes.

(5.5.2), (5.5.3) and (5.5.4) to get:

. 6P ~
3JVJ 3§ 3+ 921 + 922 + 923 + g31 + g32 + g33

o 6P~ 1
JVJ a 3+§(921+922+923+g31+g32+g33)

P~ 1P_
3+ é( 3 (321 tag, t az, tag tagt 8.33)

|
T ool oo

-1
= 3 é(azl + 8y, + @y, + az, + as, + az,) (5.5.6)

By Lemma 5.4.3 and Equation (5.5.6) above, we have:

7P —
V) g 3 ((da)+ (4ay)+ (dag)+ (dag)+
(4a3)+ (4az)+ (4az))
P 1 _
é 3 Z(a]_ + dy, + dy, + do, + dz, + dsz, + 3.33). (557)
But subtracting (5.5.7) from (5.5.6) we get:
. P~ 1
JVJ (V) 3 é(a21 + ay, + az, + az, + az, + 8.33)
7P- 1
é 3+ Z(al + dy, + dy, + do, + dgz, + dsz, + a33)
P- 1 1
= 3 3 1—2(6121 +ay, + ay +ag +agt+as)t Zal
1P~ 1 6P
- 3 —= 3
8 0 2 %
4P-  2P-
= 3 3 37 3 0:
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Figure 5.5.6: Case 3V intersects exactly C; cube.

Case 3.V intersects exactly C; cube.

We divide this into 2 distinct subcases:

Case 3.1V intersects 2, 3, 4,5, 6, 7 or@,;, cubes.

Case 3.2V intersects exactly T;,;, cube.

Proving Case 3.1 simply requires a repeat of the proofs in tasel case 2 over
C; instead ofC. . Case 3.2 requires that we divide it into a further 2 subcasesav

V intersects either 2, 3, 4, 5, 6, 7 0G3,,j, cubes or exactly on€; cube.

1j2j3

Ci
1ijj2 2;’E‘>;4;5;6;70r8Cj]j2

1Cj,s 234567 0r8Cj,,
Ju23 P T J123
A

[e]

VAN

1GCj 2,3,4,5,6;7 or 8GCj ;i

Figure 5.5.7: A tree representation of the proof of Case 3.
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The cases wher¢ intersects 2, 3, 4,5, 6, 7 or@, ;, cubes can be proven for
all n by repeating the proofs for Case 1 and Case 2. Whamtersects exactly one

Ci, j, forall n, we have

[
\ Ci, j. = fxo:
n
So (V) =0 | Vjand we are done. A tree structure of these subcases is shown

in Figure 5.5.7.



Chapter 6

Further Directions

In this chapter we take a brief look at some further dirediam which the work
discussed up until now could taken. As was mentioned in Cha&pteuring the course
of his studies, the author became patrticularly interestetbrated function systems with
condensation. In the next section, we take a look at how theséhaff measure behaves
when measuring such sets. In the subsequent section, vevreeime of the work of
Zhou, Zhu and Luo on packing measure and discuss how thengpokéasure of the

Sierpinski carpet and Sierpinski sponge might be calcdlate

6.1 Iterated Function Systems with Condensation and the

Hausdorff Measure

Let us consider the set shown in Figure 6.1.1 which is in a detepnetric space
(X;d) in R2. This set is generated by the IFS used to generate the Sikirgiarpet in
Chapter 4, as well as a condensation set which is similar t&ibminski carpet from

Chapter 4 an(% of its size. The condensation set is located in the centreeobét and

123
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Figure 6.1.1: This diagram shows the rst two levels of the ¢angion of a Sierpinski
carpet with a condensation set which ﬁsthe size of a regular Sierpinski carpet (as
described in Chapter 4). Note that only the rst two levels of tdoastruction of the
condensation set are shown.

smaller copies of it are transformed into the four cornerhefimage under the action of
the IFS. In the following, we will label the original carp€t Assuming that the IFS used
to generate the original carpetfiS;; S,; Ss; S4g with contraction ratio$ 7; 3; 3; 29, then

1.
4!
if we label the condensation &t the invariant set for the IFS mixed with is given by

!
4

Ke=C]| [ Si(Ke)

i=1
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Looking at theK . set in the gure, the following heuristic calculation of iksausdorff

measure seems reasonable:

HY(K¢) = HYK)+ HY(C)+4H* %C +16H* 1—160 +
P 1 1 1
= 2+H!' K +H! K +H! ZK +
4 4 4
p

5. L1 1.1 1.

+ = + = + = +
2 4H (K) 4H (K) 4H (K)
p_+}p§+}p§+}p§+

= 2
P 1 1 1
= + -+ -+ -+
21 4 4 4
= +1:

We can generalise the calculation as follows. L8tg,, be some IFS in a complete
metric spacé€X;d) in R" and letf ¢igy, be its associated contraction ratios. We will label
the invariant set generated by the IKS We will assume that the open set condition holds
sothatk has positive nite Hausdorff measure at the critical dimens Given some non-
empty compact set in the metric space, the invariant set generated by the IE®dni
with C in the usual way is labellel .. We will also assume th&t< H4m™+ ¢(C) < 1 .

We may derive the following using the standard propertiggeofted function systems:

!
m

K = S(Ke [ C

‘jnl - ! n

= [ S S(Ke) [ € [ C
i;l mi=1 I _ I

= [ S Si(Ke) | [ S [ C
i=1 i=1 ni=L
[ [ [

= Si S Si(Ke) [
i=1 i=1 i=fy ,
[m [m . m ’

S S(C) [ [ S [ C
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[™ [™ ™
= S S S( (Ke) [
Cl S(C) [ Si S(C) [
[™ - [™ [™ )
= K[ C] S(C) [ Si S(C) [
i=1 i=1 i=1

As is highlighted by Falconer in [Fal90], the Hausdorff dms®n is stable under
countable unions, so since tBe mappings transforn® to similar copies of itself, it is

safe to say that
s=dimy K. =max fdimy K; dimy Cg:

Assuming the5;(C) are disjoint, taking the Hausdorff measure of both sidessin

both the countable additivity and scaling properties of $thuff measure we get:

xn XX
H(K)+ H(C)+  H(S(C)+ HS(S (SI(C)) +
i=1 j=1 i=1
X0
= H(K)+ H¥C)+  GHYC)+ CCHS(C) +
=1 j=1 i=1
xn X,
= H(K)+ HYC) 1+ o+ S +
i=1 j=1 i=1

0 [ | 1
= H¥(K)+ H(C)@1+ ¢ + ¢ + A:

H3(Kc)

Owing to the de nition of Hausdorff dimension (De nition 3.6), we now have two

distinct cases:
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Case 1l:is=dimy K > dimy C:

0 ! ! 1

H3(Ko) = HK)+ HXC)@1+ ¢ + ¢ + A
i=1 i=1
0 I I, 1
xn xn
= HS(K)+0 @1+ ¢+ c + A
i=1 i=1
= H3(K):
Case2s=dimy C dimyK:
0 I, 1, 1
xn xn
H3(Ko) = H(K)+ HX(C)@1+ ¢+ ¢ + A
i=1 i=1

Looking at the second case, which is the more interestindh@ftivo, clearly the
P
in nite sum in brackets is a geometric series, s¢ if ., ¢¢) < 1, the sum converges and
P
we have a positive nite value for S(K.). If however(" 7, ¢) 1, the sum diverges

and we are left wittHS(K;) =+ 1 .

This leaves us in a rather puzzling situation. If we take #tegenerated by the IFS
with condensation from Figure 6.1.1 wheye dimy K = dimy C = 1 and construct a
similar set using the same condensation set, but an IFS iigtitlg smaller contraction
ratios (:24999999%ay, as opposed tp then while the former set retains its Hausdorff
measure oft 1 , the latter set will have positive nite Hausdorff measu@milarly, if
we were to take the original IFS with condensation and reneomse=of the four similarity
mappings from the IFS so that we have three similaritiesen &g, each with a contrac-
tion ratio of%, the invariant set generated by this new IFS with condemsatould have
positive nite Hausdorff measure. The original set genedaby the IFS with conden-

sation is not hugely different to the sets generated by tleenwdi ed examples. Each
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of the three sets is clearly a fractal. This begs some irniageguestions. Should the
Hausdorff measure differ so markedly between such siméd&s”s Based on the above
calculation, it is clear that there exists an extremelydasigiss of fractal sets which have
Hausdorff measure of 1 . Would it be possible to construct a modi ed version of the
Hausdorff measure which would assign a positive nite valusuch sets? Perhaps these

guestions could form a good basis for some future work.

6.2 Packing Measure and Dimension

The packing measure and dimension are considered to be af iegportance to the
Hausdorff measure and dimension in the modern world ofdfaEometry. Making their
rst appearance in the 1980's in papers by Tricot [Tri82]ylta & Tricot [TT85] and
Raymond & Tricot [RT88], they are similar to the Hausdorff ree@e and dimension,
but use ef cientpackingsof small balls instead of ef cientoveringsof small balls in
their de nition. As Falconer points out in [Fal90], givenahthe Hausdorff dimension
extends the basic premise of the lower box counting dimergiag by utilising ef cient
coverings of balls of differing radii as opposed to balls @fial radii, it is natural to try to
extend the idea behind the upper box counting dimengion in a similar way, so that
dense packings of disjoint balls of differing radii are ugestead of disjoint balls of equal
radii. This is precisely what is attempted with the packingehsion, which requires that

we derive a suitable notion of packing measure rst.

6.2.1 De nitions

The following de nition of -approximative pre-packing measure is structured in a

similar way to the de nition of -approximative Hausdorff measure, but uses dense pack-
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ings of disjoint balls instead of economical coverings ob#imalls. Note that the term
centered -packingof some se€E in a metric spaceX refers to a countable family of
closed balls inX with centres irE and radii at most.
De nition 6.2.1. We de ne the -approximatives-dimensional pre-packing measure of a
setE X, whereX is a metric space, as:
( )
5S(E) =sup diam(B;)® : fB;g; is a centered-packing of E :

i=1

In a similar way as with the Hausdorff measure, we seek thi¢ ifrP* as tends to
zero and de ne the pre-packing measure as follows:
De nition 6.2.2. Letting E be de ned as in the previous de nition, the pre-packing mea-

sure ofE is:

P°(E) = lim P°(E):
10

Unfortunately, as was illustrated by Taylor and Tricot iTBb], P ® is not necessarily
countable subadditive and so, not necessarily a measureevdéo, we can modify the
above de nition to something that can be shown to be a Borelsonea We call this the
packing measure and it is de ned below.

De nition 6.2.3. Letting E be de ned as in the previous de nitions, ttlseedimensional
packing measure @& is:

| ( % o )
P*(E) = inf P(E):E E;

This conveniently leads us to a de nition of packing dimemswhich, again, is simi-

lar to the Hausdorff de nition of dimension:
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De nition 6.2.4. The packing dimension of the Sétas de ned in the above is given by

dim,E =supfs: P°(E)= 1g =inffs:P°(E)=0g:

It is well known thatdimy E~ dimp E  dimg E. A proof of this may be found in

[Faloo].

6.2.2 Packing measure of Sierpinski sets

In [JZZL03] and [JZ04], the authors Jia, Zhou, Zhu & Luo aral&liZhu respectively,
calculate the packing measure of Sierpinski sets in theepldnch are similar to the one
we analysed in Chapter 4. The authors of [JZZL03] develop lanigae for calculating
the packing measure of the Cartesian product of the middié-@antor set with itself,
but their method can be generalised for other similar Sasipicarpets under certain
conditions. A paper [ZZL04] due to Zhu, Zhou and Luo also exighich analyses the
packing measure of a class of generalised Sierpinski sgobgeunfortunately a suitable

translation could not be obtained at the time of writing.

In this section, we will take a look at the result garneredibyedal in [JZZL03] and
sketch its proof. The main result is as follows:
Theorem 6.2.5.The packing measure of the Cartesian product of the middie @antor

set with itself, labelle C is as follows:
P|0g3 4(C C) - 4|Og3 4:

The full proof of this result, incorporating the proofs of amber of necessary lemmas,
is too lengthy to be fully dissected here, so we will try taatta broad overview of the

main problem and analyse the key lemmas in more detail. Wevgth some notation:
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We refer to the middle-third Cantor set in the unit intervaCaand the Cartesian product
of two such Cantor sets & C. Establishing an orthogonal coordinate systefRinwe
deneEy=[0;1] [O;1]which shares a vertex with the origin, and an [#$; f,; f3; f49
such that the IFS acting dfy yieldsC C which, naturally, is invariant under the action
of the IFS. The proof from [JZZL03] requires that the IFS sa8 a stronger version of

the open set condition known as tsigong separation conditiowhich we now de ne:

conditionis satised ifS(E) \ S;(E) = ; foralli;j withi 6 j.

The speci ¢ IFS mappings are important to us in the proof, sae& ne them as follows:
fi(x) = g+ h wherei = f1;2;3;4g;x 2 R?;

whereby = (0;0);b, = (4;0);bs = (4;5);by = (0;3). Sof; maps to the bottom-left
of Eq, f, maps to the bottom-right,; maps to the top-right and, maps to the top-left.

Clearly we have

4
C C= fa.(C OC):

n=1

The termbasic square of thath levelis used in a similar way as in previous chapters.
For instancef 1(Ey) is a basic square of the rst level of the construction@f C,
f2(f1(Ep)) is a basic square of the second level of the construction@od.sincidentally,
the phrasesnth level of the construction & C” and* nth iteration of the IFS over

Eo” are interchangeable in the current context. For any integel0, de ne

Iy = vt 211,2,340;) =120 Kg;

|
—h
~~
i
N
w

I, f(ig;ioig i)l 211,2,3,40;) =1;2;:::0:
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Foranyk 1, let

f:ll_(zfll f12 f13 flk:

The following notation is used to de ne the union of all basguares from levgb + k
onwards that lie in the bottom-left-most basic square akthdevel of the construction

of C C (i.e. thekth iteration of the IFS oveE,).

[ [ )
Fok = fi, fi, fi, f1(Eo) (p 1) (6.2.1)

n=p (i1iz:in)2ln

We refer to the packing dimension of the €=t C as

s=dimp(C C)=log;4

This is a well known result.

As always, we shall refer to a ball of radiucentered at a point asB, (x). However,

we may also use the notati@(x; r) interchangeably to mean the same thing.

This rstlemmais the packing measure analogue of PropmsRi2.5 introduced in Chap-
ter 3.

Lemma6.2.7.LetE  R™ be a Borel set, be a nite Borel measurd)<c< 1 .

(@) If “ﬂw cforall x 2 E, thenPS(E) ng.
r' 0
(b) If mw cforall x 2 E, thenPS(E) 25@_
r!
Proof. Omitted. -

Jiaet al proceed by de ning a self-similar measurewith supportC  C for any
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Borel sett  R™. This measure acts by taking the packing measure of any gaerof
C C and normalising it by the total packing measur&of C. We de ne the measure

as follows:

_ PS(E\ (C Q)

E)= —psc o (6.2.2)

The previous lemma (6.2.7) tells us that the packing measu C is determined
by the lower spherical density of every point@f C, so we proceed by making the
following two de nitions for lower spherical density. Thest takes the density of a point
X with respect to the measureand the second takes the densitya#ith respect to the

packing measure:

speuy i (Br(X)) n.
D (’X)_I:WO—(Zr)S x 2 R":
s/5s. vy — 1 Po(Br(X)) n.
D3(P®;x) = !Lr!no—(Zr)S X2 R":

Jiaet al make use of the following lemma which is taken from [TT86] §R@88] and is
required in the proof of the subsequent lemma:

Lemma 6.2.8.LetD®(P¢®; x) be de ned as above. Then
D®(P%;x)=1 forPs-almostallx2 C C.

This next lemma is one of the key lemmas required for the pobdtheorem 6.2.5
and we actually proved a similar result for the Hausdorff suea in Chapter 3, namely
Theorem 3.3.13.

Lemma6.2.9.Let andD?( ;x ) be de ned as above. Then

1
S - - _
P3(C C)= DS x) for -almostallx2 C C.
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Proof. Using both the de nition oD ®( ;x ) and Lemma 6.2.8, we have:

(B/(¥)
o (2r)s
PB(0\ (C_©)
o PS(C C)2r)s
_ 1 PYB(0)\ (€ C))
Ps(C OC)rio (2r)s
1 S S.
- PS(C C)Q (P ’X)
1

Ps(C C)

D°(;x)

for PS-almostallx 2 C  C. is simply a normalised version &f°, so this also holds

for -almostallx 2 C C. O
Lemma6.2.10.Letk > 1. Let andF be de ned asin(6.2.2)and(6.2.1)respectively.

Thenforanyp 1,k 1we have:

(Fpx) =1, Fo =1, Fox =1

Proof. We omit the proof for this lemma, but it may be found in [JZZ[.JZZL04] and
[Fen03]. n

Lemma6.2.11.Forn 0, letV, denote the set of all vertices of all basic squares at the

nth level of the construction o€ C. Then
S7 . —_ 1
D°(;x)= = foranyx 2 V,.

Proof.

X is a vertex of a basic square at thth level of the construction of C, so
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this basic square must have sidelength. Letr =3 " 3 (™1 ThenB,(x)
contains only one basic square from the 1-th level of the construction. Recall

thats = log; 4, so3* = 4 and we have

(Br(X)) _ 4 (n+l) 4 (n+1) 4 (n+l) 1-

@ (@37 2800) p3n1 I ° 240 &

Therefore

(Bi(x) 1

e #

and hence

(Br(x)) 1.

e @ &

We will not go into the detail of the proof of this inequalityit in [JZZL03], the

authors argue that sin€2 C is self-similar, it suf ces to consider only 2 V, and

p—
TZ <r % They then prove the inequality for wheris the origin in three cases:
q

pi 2 2 1 1 P
WhenT<r §,When§<r 1+3—2and 1+5<r 2. The rst

and last cases follow easily from the de nitions, but the diédcase requires some

tricky numerical calculations involving inductive and syratrical arguments.

Lemma 6.2.12.Let andF, be de ned as in6.2.2)& (6.2.1)respectively. Then

D(;x) = for -almostallx2 C C.

=

Proof.

T
! Fpx .Thenx2 Fyforallp landk 1.

Tl
“ 7 Letx2 (C C)\ k1 piFp
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Taking an integek 1, itis clear from the de nition ofFy, that there exists an

integern,  p such that wepmay Nd/n, 2 Vi, (WhereV, is de ned as in Lemma
2

Ip+k’

6.2.11) with distx; yn,)
1

I T ek we have

Takingrp, =

1 1

3 3nptl

B(Xrp) B Yny; (6.2.3)

Note that due to the de nition of and the strong separation condition over the IFS

ff1,f5,f3,f40, itisclearthat (f;, fi, fi. (Eo)) = 4_1n;

Taking of both sides of Equation (6.2.3) and dividing (& ,)°, we have

(B(X;rp)) (B(yn,;3 ™ 3 (ne*1)y)
(2rp)s (2rp)s
4 (np+1)
B 23(3 np 3 (np+l) 3 (np+k)'U§)s
1

4 25(1 31 3K Qs

Note thatx 2 (C C)\ Fpx . Lettingp!1 ,we have

p1'Pb

1
4 25(1 31 3K 2

D°(;x)

fork 1 Lettingk!1l ,

1 1
3s
1 T 1
forx2 (C C)\ k1 p1Fpk
T 1 T 1 ;
By Lemma 6.2.10, k1 p1Fpk = 1;which means that the-measure

of any other set that intersec®s C must be zero. Therefor®( ;x ) 4% holds
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for -almostallx2 C C.

“ " Givenr > 0, it suf ces to show that

B(Ar) 1 :
@n)s e for -almostallA2 C C:
. T,
ButsinceC C = ., (fi(Eo)\ (C C)),andf1(Ep) \ (C C),f2(Ep) \
(C OC),f3(Eg) \ (C C)andfs(Eg) \ (C C) are all geometrically similar

to one another, it is enough to prove that

(B(Ar) 1 _
o # for -almostallA 2 f;(Ep)\ (C C): (6.2.4)

As well as that, sinc&€ C is self-similar, proving Equation (6.2.4) for when

Ps P~. . .
TZ <r 2 is equivalent to proving that

(B(A;r))

1
(2r)s 4 for -amostallA 2 f“(Eo)\ (C C);

P P
wheng% <r  Z#forallk > Oandi = 1;2;3;4. Lettingk ! 1 , this would
account for all possibla 2 f1(Eg)\ (C C), thus giving us Equation (6.2.4) for

allr> 0.
. : Ps P~
So we simply need to show Equation (6.2.4) #§r< r 2.

Of course we know from Lemma 6.2.11 that

im _(Br00) _ 1
mo (2r)s 45

for any vertexx of a basic square at any given level of the constructio@ of C.

Therefore, if we could show that

(B(A;r)) (B(O;r)) for -almostallA 2 f1(Ep)\ (C C)
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P —
WhenT2 <r P 2 and whereO refers to the origin0; 0), we would have our

result.

We draw a diagonal line ik, between(0; 0) and(1; 1). Becausé ;(Eo)\ (C C)
Is symmetric with respect to this diagonal, it is enough tosiderA 2 S;, where
S, is the triangle formed irf 1(E() between the diagonal and tlkeaxis. Given

P _
Tz <r P 2 we have two distinct cases:

Case 1:B(O;r)\ (f2(Eo) [ f3(Eo))

It is easily seen that

B(A;r)\ (f2(Eo) [ f3(Eo)) B(O;r)\ (fa(Eo) [ fs(Eo)),

since the origirO is the furthest point ir5; from all points inf ,(Eg) [ f3(Eo).

Therefore,
(B(AN)\ (f2(Eo) [ fa(Eo)))  (B(O;r)\ (f2(Eo) [ fa(Eo))).

Case 2:B(O;r)\ f4(Eo)

To prove that (B(A;r)\ f4(Eo)) (B(O;r)\ f4(Eo)) is more dif cult and
requires a good deal of geometrical manipulation. elial do this by analysing
progressively smaller triangles that sit insfie They show that there is a certain

subset of these triangles which does not satisfy the equdtiat this subset has

zero -measure, thus the equation holds fealmost allA 2 S;.

Thus, giverr > Owe have

(B(A;r) (B(O;r))

@r)s @) for -almostallA2 C C

and lettingr ! 0,

BAr) . (B(Oir) _ 1
% @) Hﬁ() @) = I for -almostallA2 C C
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by Lemma 6.2.11.

We may now prove Theorem 6.2.5:

Proof. The result follows easily from Lemmas 6.2.9 and 6.2.12. n

6.2.3 Remarks

As we have seen, it is possible to successfully use lowerrgtheensity and its
respective properties to nd the packing measure of a se¢ particular method shown
above extends to a more general class of fractal seRjras claimed by Ji&t al in
[JZZLO03]. Letting0 < 3 and supposing thdt (x) = x;f »(x) =1 + X where

X 2 [0;1] and thatC is the invariant set associated with the IHS; f ,g, then the result
psO)(c c)y=4 20@ O

can be achieved, whes¢ ) =log . 4.

Interestingly, Jiat alalso note that their method cannot be used to calculate the pa

ing measure of self-af ne sets such @§ C%.

In general, it seems to be easier to calculate results fdapgeneasure using local
properties than to do so for Hausdorff measure. This is laidge to results like Lemma
6.2.8 which can directly relate local spherical densityhte measure being used. The
more useful local density results for Hausdorff measusearlconvex density as opposed
to spherical density and obviously it is easier to work witlli$than with convex sets

when attempting calculations involving coverings or pagsi.



Bibliography

[AS99] Elizabeth Ayer and Robert S. StricharExact Hausdorff measure and inter-
vals of maximum density for Cantor setsans. Amer. Math. So&51(1999),

no. 9, 3725-3741. MR MR1433110 (99m:28014)

[Bae94] Soo BaekDimensions of the perturbed Cantor sBeal Analysis Exchange
19(1)(1993/1994), 269-273.

[Bae98] , Dimensions of weakly convergent deranged Cantor, s&al Analy-

sis Exchang@3(2) (1997/1998), 689—696.

[Bar66] Robert G. BartleThe elements of integratipdohn Wiley & Sons Inc., New
York, 1966. MR MR0200398 (34 #293)

[Bar88] Michael F. Barnsleyrractals everywhereAcademic Press, Boston, 1988.

[Bes28] A. S. BesicovitchDn the fundamental geometrical properties of linearly mea-

surable plane sets of point®lath. Ann. 98 (1928), no. 1, 422-464. MR
MR1512414

[Bes34] , Sets of fractional dimensions (iv): On rational approximast to real

numbersJournal of the London Mathematical Sociét{1934), 126-131.

[Bes35] , On the sum of digits of real numbers represented in the dygditem

Math. Ann.110(1935), no. 1, 321-330. MR MR1512941

140



Bibliography 141

[Bes38]

[Bes39]

[BT54]

[Carl4]

[Edg90]

[Falge]

[Faloo]

[Fen03]

[Haul8]

, On the fundamental geometrical properties of linearly nueas
able plane sets of points (JIMath. Ann.115(1938), no. 1, 296-329. MR
MR1513189

__, On the fundamental geometrical properties of linearly nueakle
plane sets of points (llJ)Math. Ann. 116 (1939), no. 1, 349-357. MR
MR1513231

A. S. Besicovitch and S. J. Taylddn the complementary intervals of a linear
closed set of zero Lebesgue measurd.ondon Math. So29 (1954), 449—
459. MR MR0064849 (16,344d)

Constantin Caraélodory,Uber das lineare maRvon punktmengen-eine verall-
gemeinerung desihgenbegriffsNachrichten K. Gesell. Wissensch. G (1914),
404-426.

Gerald A Edgartyleasure, topology, and fractal geomet8pringer, 1990.

K. J. FalconerThe geometry of fractal set€ambridge Tracts in Mathemat-
ics, vol. 85, Cambridge University Press, Cambridge, 1986. WRB867284
(88d:28001)

, Fractal geometry John Wiley & Sons Ltd., Chichester, 1990. MR
MR1102677 (92}:28008)

D.-J. FengExact packing measure of linear Cantor se¥ath. Nachr.248-
249(2003), 102-109.

Felix HausdorffPimension undiuReres MafdMath. Ann.79(1918), no. 1-2,
157-179. MR MR1511917



Bibliography 142

[HS65] Edwin Hewitt and Karl Stromber&eal and abstract analysis. A modern treat-
ment of the theory of functions of a real variap&pringer-Verlag, New York,

1965. MR MR0188387 (32 #5826)

[HS91] Norman B Hasser and Joseph A SullivReal analysisCourier Dover Publi-

cations, 1991.

[Hut81] John E. Hutchinsorkractals and self-similarity Indiana Univ. Math. J30
(1981), no. 5, 713-747. MR MR625600 (82h:49026)

[Jun99] Soon-Mo Jund)n the Hausdorff measure of a class of self-similar,deesal

Analysis Exchang@4(1)(1998/1999), 121-138.

[JZ04] Baoguo Jia and Zhiwei Zhahe packing measure of a class of generalized
Sierpinski carpetAnalysis in Theory and Applicatior0 (2004), no. 1, 69—
76.

[JZZ02] Baoguo Jia, Zuoling Zhou, and Zhiwei ZhiJower bound for the Hausdorff
measure of the Sierpinski gaskibnlinearityl5 (2002), 393-404.

[JZZL03] Baoguo Jia, Zuoling Zhou, Zhiwei Zhu, and Jun LUde packing measure
of the Cartesian product of the middle third Cantor set withlftséournal of

Mathematical Analysis and Applicatio288(2003), no. 2, 424-441.

[Mar86] Jacques MariorMesure de Hausdorff d'un fracta similtude interne Ann.

sc. math. Qabec10(1)(1986), 51-84.

[Mar87] , Mesures de Hausdorff d'ensembles fractalen. sc. math. Qebec

11(1)(1987), 111-132.

[Mat95] Pertti Mattila,Geometry of sets and measures in Euclidean sp&asbridge
Studies in Advanced Mathematics, vol. 44, Cambridge UnityePsess, Cam-
bridge, 1995, Fractals and recti ability. MR MR1333890 (988006)



Bibliography 143

[Mei02] Sandra Meinershagemhe Hausdorff measure and the packing measure on a

perturbed Cantor seReal Analysis Exchangg7(1)(2001/2002), 177-190.

[Mor46] P. A. P. MoranAdditive functions of intervals and Hausdorff measufeoc.

Cambridge Philos. Sod2 (1946), 15-23. MR MR0014397 (7,278f)

[OIs05] Lars OlsenDensity theorems for Hausdorff and packing measures of self

similar sets Unpublished (2005).

[Per93] Mario PeruggiaDiscrete iterated function system& K Peters, Wellesley,

Massachusetts, 1993.

[RT88] X Saint Raymond and Claude Tricd®acking regularity of sets im-space
Math. Proc. Cambridge Philos. Sd®3(1988), 133-145.

[Sut75] Wilson A Sutherlandntroduction to metric and topological spaceSxford

University Press, 1975.

[Tri82] Claude Tricot,Two de nitions of fractional dimensignMath. Proc. Camb.

Phil. Soc.91(1982), 57-74.

[TT85] S. James Taylor and Claude Tric&acking measure, and its evaluation for
a Brownian path Transactions of the American Mathematical Soci288

(1985), no. 2, 679-699.

[TT86] _____, The packing measure of recti able subsets of the pldath. Proc.
Cambridge Philos. S089 (1986), 285—-296.

[Yeh00] J YehLectures on real analysisVorld Scienti ¢, 2000.

[ZFOO]  Zuoling Zhou and Li FengA new estimate of the Hausdorff measure of the

Sierpinski gasketNonlinearity13 (2000), 479-491.



Bibliography 144

[ZF04] , Twelve open problems on the exact value of the Hausdorff meeasu
and on topological entropy: a brief survey of recent resuenlinearity 17

(2004), no. 2, 493-502. MR MR2039054 (2004k:28015)

[Zho97a] Zuoling Zhou,Hausdorff measure of Sierpinski gask&ci. China A40
(1997), 1016-21.

[Zho97D] , The Hausdorff measures of the Koch curve and Sierpinski gaske

Prog. Nat. Sci7 (1997), 401-6.

[Zho98] , The Hausdorff measures of the self-similar sets- the KochecGci.

China A41(1998), 723-8.

[ZW99] Zuoling Zhou and Min WuThe Hausdorff measure of a Siefipki carpet Sci.
China Ser. A42(1999), no. 7, 673—680. MR MR1717001 (2001a:28007)

[2Z01] Z Zhu and Zuoling ZhouThe upper convex density and Hausdorff measure:

the Koch curveActa Sci. Nat. Univ. SunyasedD (2001), 1-3.

[ZZL04] Z Zhu, Z Zhou, and J LuoThe packing measure of a class of generalized

Sierpinski sponge€£hinese Annals of Mathemati&eries A(2004).



