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Abstract— Semantic object mapping in uncertain, percep-
tually degraded environments during long-range multi-robot
autonomous exploration tasks such as search-and-rescue is
important and challenging. During such missions, high recall is
desirable to avoid missing true target objects and high precision
is also critical to avoid wasting valuable operational time on
false positives. Given recent advancements in visual perception
algorithms, the former is largely solvable autonomously, but the
latter is difficult to address without the supervision of a human
operator. However, operational constraints such as mission time,
computational requirements and mesh network bandwidth can
make the operator’s task infeasible unless properly managed.
We propose the Early Recall, Late Precision (EaRLaP) semantic
object mapping pipeline to solve this problem. EaRLaP was
used by Team CoSTAR in DARPA Subterranean Challenge,
where it successfully detected all the artifacts encountered
by the team of robots. We will discuss these results and the
performance of the EaRLaP on various datasets.

I. INTRODUCTION

Multi-robot systems with multi-sensor payloads have fa-
cilitated a breadth of applications in recent years, ranging
from search-and-rescue operations in which such systems
are tasked with autonomously navigating harsh environments
to find survivors [1], to potential unmanned exploration of
subterranean environments of planets, asteroids and other
bodies in our solar system and beyond [2]. These develop-
ments have been fueled in part by a significant increase in
processor efficiency, allowing for advanced neural network
architectures and other complex algorithms to be run in
real-time aboard robots with significant size, weight and
power (SWaP) limitations [3]. In tandem with such advances,
the field is also progressing via the diversification of the
underlying mobility platforms beyond traditional wheeled
systems and towards solutions that are more adapted to
certain types of environments. These include relatively fast-
paced legged robots traversing difficult and unknown terrain
[4].

Thanks to these developments, a critical point has been
reached where it is now possible to run modern, highly
capable algorithms for object detection and localization,
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Fig. 1: Early Recall, Late Precision (EaRLaP) semantic object mapping
pipeline. Objects detected with high recall in robot-gathered images are
localized, then false positives are pruned in multiple stages to respect net-
work constraints before transmission to a base station. After reconciliation
of unique objects, an operator reviews detections to achieve high precision.

terrain navigation, hazard avoidance and other purposes on
a variety of modestly-sized, agile and low-powered robots,
with the goal of semantically mapping harsh environments.
However, while such ideas are compelling in theory, they
can be hampered in practice by a myriad of challenges
when the robots are deployed outside of laboratory settings
in real-world scenarios. One such challenge is that even
state-of-the-art visual detection and localization algorithms
can suffer significant performance drops when faced with
uncontrolled scenarios in which perceptual degradation from
motion blur, shifting luminosity, sensor failure, occlusion and
other ocular hazards, are the rule rather than the exception.
Another significant challenge is posed by communications
constraints. The low-bandwidth wireless mesh networks that
are typically employed by such multi-robot systems demand
that limits be placed on the size and frequency of visual
observation reports sent by robots to an operational base
station.

Depending on the particular application, perceptual degra-
dation may not always be such a concern; however, in tasks
involving object detection and localization in which relatively
high rates of precision and recall are required, severe perfor-
mance gaps can emerge. In the search-and-rescue example,
it is desirable to both always detect real survivors when
they are encountered (high recall) such that all survivors
are rescued, and to only report detections that genuinely are
survivors (high precision) to avoid hampering rescue efforts.
While it is possible to trade off precision for recall, or vice
versa, [5] it can be exceptionally difficult to achieve high
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rates of both in perceptually degraded circumstances. One
possible way to bridge this performance gap is to leverage
a visual detection algorithm to achieve high recall and then
introduce the supervision of a human operator to make up
the precision deficit by identifying true survivors from the
detections reported by the algorithms. The downside to this
approach is that when the recall is high but the precision
is low, the ratio of false positives to true positives that are
initially reported might be extremely high and this has the
potential to overwhelm both the communications network
and the cognitive capacity of the operator in time-critical
scenarios.

We present the Early Recall, Late Precision (EaRLaP)
semantic object mapping pipeline that attempts to optimize
human-in-the-loop multi-robot object detection and local-
ization performance under various operational constraints.
EaRLaP, illustrated in Fig. 1, initially maximizes recall to
ensure that no objects are missed and then siphons a number
of detections through a series of filtering stages that gradually
prune false positives and compresses information to respect
various constraints and achieve high precision. EaRLaP is
resilient against uncertainties encountered in the real world
(sensor failures, unknown environments, harsh conditions,
etc.) and has been tested in extremely challenging situations
by the NASA Jet Propulsion Laboratory (JPL). EaRLaP has
been integrated as a critical part of the Networked Belief-
aware Perceptual Autonomy (NeBula) package [6][7] and
was used by the JPL team CoSTAR during the final event
of the DARPA SubT challenge.

The DARPA Subterranean Challenge (SubT) was a 3-
year competition organized by DARPA, that sought novel
approaches to rapidly map, navigate, and search underground
environments [8]. The goal was to find as many artifacts
as possible within a set time limit, and only a very limited
number of submissions could be made to the scoring system
for evaluation. The artifacts consisted of a fixed set of
objects associated with search-and-rescue scenarios, such as
backpacks, ropes and helmets, as well as other entities that
might not fit the usual object definition, such as RF signals
and CO2 gas sources. A critical challenge laid in managing
the quantity and quality of the information presented to the
operator.

Contribution: EaRLaP is an extension of our previous
publication [9] with several new contributions. Firstly, we
provide a formalized description of the problem that was
previously only informally described in [9] and use this as
a basis for defining our proposed solution. Additionally, we
introduce new steps in the pipeline to solve the precision
issues discussed in [9] and update the existing stages with
an enhanced hardware setup and new algorithms to address
the reliability issues discussed in [9]. Finally, this work
provides a quantitative analysis of our performance during
the final event of the DARPA SubT Challenge, where we
have demonstrated some of the strongest semantic object
mapping performance.

In the remainder, we discuss related work in Sec. II, define
the problem formulation in Sec. III, detail the methodology

of the EaRLaP approach in Sec. V, and describe results from
real in-field experiments and SubT final event competition
runs in Sec. VI, before concluding in Sec. VII.

II. RELATED WORK

Perceptually-Resilient CNNs: In perceptually degraded
environments, convolutional neural networks (CNNs) suffer
from reduced performance due to significant differences
between training data and low-quality test images. Combin-
ing thermal and visual images can enable a system to be
robust to low light conditions and obscurant-filled settings
(e.g. dust filled) [10]; however, thermal signals are not
distinct after objects have remained in an environment for an
extended period. To improve the robustness of a detector that
operates in a setting which differs from its training data, [11]
tried domain adaptation and [12] used normalizing flows.
To overcome challenges due to poor image quality, [13]
trained point cloud detectors using adversarial training. These
methods are computationally costly and so not compatible
with the low latency requirement for our detection system.
Object Localization: To localize an object, a robot must
first estimate its own position, which can be done with
SLAM if no prior map of the environment is available [14],
[15]. The robot then estimates the relative position of the
object, which is most commonly done by using a sensor
that provides both color and depth information [9]. Stereo
cameras and depth sensors such as the Intel® RealSense™

series are popular choices for estimating relative object range
from depth images, but they typically only provide accurate
depth estimates up to a relatively short maximum distance.
An alternative to using depth sensors is to either create
a depth map with monocular depth neural networks [16]
or to directly predict an object’s range with a specialized
network [16], however, such monocular depth models do not
generalize well to unknown environments. Another approach
that can avoid these issues, which we describe in this paper,
is to exploit the high accuracy and range of LiDAR sensors
as well as good inter-sensor extrinsic calibration and map
LiDAR range estimates into RGB camera detection images.

DARPA SubT Challenge: Different solutions for seman-
tic object detection and localization in degraded conditions
have been proposed for the DARPA SubT Challenge, where
both object detection and communication bandwidth limits
are challenging. Team MARBLE [17] used the YOLOv3 ar-
chitecture [18] for object detection and handled limited band-
width by reporting each robot’s detection results once within
range of the communications network. Team CERBERUS
[19] used a combination of YOLOv3 and manual confir-
mation for object detection. One downside of the YOLOv3
model however compared to the pruned YOLOv5m6 model
we employed in our pipeline, is that it is not sufficiently
lightweight to provide high detection rates for fast traversal.
Team CSIRO [20] used the DeNet [21] object detector
and tracked and matched object reports within a temporal
window in a similar way to what we implemented in our
pipeline. Team EXPLORER [22] combined simulation data
with real-world data in order to increase training data volume
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for their detection models. Our approach, by comparison,
solely employed real-world data but emphasized large-scale
data gathering in a wide variety of environments which, al-
though costly, can potentially provide more accurate models
that generalize more effectively.

III. PROBLEM DESCRIPTION

In this section, we describe a mathematical formulation of
the semantic object mapping problem and illustrate how to
define the problem as a theoretical optimization problem. We
then describe why such optimization is infeasible in closed-
form and illustrate the approximated solution constructed
by breaking the problem into a series of constrained sub-
problems solved by the proposed EaRLaP approach.

A. Semantic Object Mapping Problem (SOMP)

The goal of the semantic object mapping problem is
to detect and localize a set of objects using a mobile
robot autonomously navigating an unknown environment.
The problem is defined using a list of G ground truth object
tuples g = [{pgi , l

g
i }Gi=1], named the ground truth set. Given

an element of the list {pgi , l
g
i }, p

g
i ∈ R3 is the 3D position of

the ground truth object i and li ∈ [0, . . . , L] is its semantic
label, selected from a set of L possible labels. The desired
output of the proposed semantic object mapping algorithm
is a similar list of S tuples s = [{pi, li}Si=1] called the
submission set. Each submitted position is compared with the
closest ground truth position of the same label to compute
the object localization error:

ei(g, si) = min
pgj∈g

|pi − pgj |, s.t., li = lj . (1)

If an object is correctly classified and its localization error
is less than the acceptable limit emax, the object is considered
detected and a positive reward Ri(ei(g, si)) = U(ei ≤ emax)
is received, where U(·) returns 1 when input is true and 0
otherwise. The total reward for the whole submission set is
R(g, s) =

∑S
i=1 Ri(ei(g, si)).

The general semantic object mapping problem considered
is defined as follows - given Smax as the maximum allowed
number of submissions, find the best submission set that
maximizes the detection reward:

s∗ = argmax
s

R(g, s), s.t., |s| ≤ Smax. (2)

B. Multi-Robot SOMP

Let’s assume that there are R robots connected to a
single base station via a mesh network, each using a single
camera. Each robot receives an RGB-D measurement I =
[IRGB, ID,m], where IRGB is an RGB image, ID is the depth
image obtained by a depth sensor (e.g., a LiDAR, stereo
camera or RGB-D sensor) and m is metadata associated
with the image (such as the robot’s position when the image
was captured). Each camera takes an image at rate f for T
seconds, creating 2fRT images (2 images per timestep for
each of the R robots). This defines the vector of all images
I. Note that it is a vector and not a set as the ordering of the
images can be exploited by the object detection algorithm.

We define the function f mapping a vector of images I to
the submission set s parametrized with θ ∈ RNθ

s = {pi, li}Si=0 = f(I; θ). (3)

The parameters θ could be learned from a dataset of the
form [I,g] containing image vectors and associated ground
truth positions and labels. An agent learning the solution
would need to perform the following optimization:

θ∗ = argmax
θ

R(g, s) s.t. s = f(I; θ), |s| ≤ Smax. (4)

First, the reward function in (4) is discontinuous and the
input space is very high dimensional, which makes it difficult
to optimize. Additionally, in practice, and within the confines
of the DARPA SubT challenge in particular, the problem is
subject to a number of additional constraints and nuances
that make the direct optimization of θ infeasible. Thus, in the
following Sec. IV, we describe these additional constraints as
well as how the general problem can be divided into tractable
sub-problems that can be solved by our proposed EaRLaP
pipeline approach.

IV. CONSTRAINED SUB-PROBLEM DECOMPOSITION

In the robot-and-base-station scenario, robots must per-
ceive the environment and communicate their findings with
a base station and we face trade-offs in deciding how to dis-
tribute the computational aspects of this perceptual pipeline
between them. Depending on the computational capabilities
and network bandwidth, it is necessary to perform some
operations on the robot, at the base station, or both. In
addition, we exploited the supervision of a human operator
to create a final high-confidence submission set s, but the
operator can only verify a limited number of detections
within the allotted mission time. With these constraints, we
decompose the function f previously defined in (3) into three
sub-functions - fr for the robot, fb for the base station and
fop for the operator:

f(I; θ) = fop ◦ fb ◦ fr(I), θ = (θr, θb, θop),

s = f(I, θ) = fop (fb (fr (I; θr) ; θb) ; θop) .
(5)

In this decomposition, the data I is first processed on the
robot using fr(I, θr) = Dr such that the amount of data
|Dr| being transmitted from the robot to the base station is
within the communication bandwidth limit Sb, i.e. |Dr| <
Sb. Finding the optimal θr thus follows the same manner of
SOMP problem (4) using the mathematical formulation:

θ∗r = argmax
θr

R(g,Dr)

s.t. Dr = fr(I; θr), |Dr| ≤ Sb. (6)

The amount of transmitted data |Dr| on the base station
is assumed to be greater than the maximum number of
submissions Smax. We further process Dr on the base station
with fb(Dr, θb) = Db to condense the data into Db, such
that |Db| is small enough for a human operator to review
within time limit. The maximum size of Db is governed
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Fig. 2: Hierarchical decomposition of the semantic object mapping problem. f is divided into three sub-functions and these sub-functions are further
divided to reach a composition of seven sub-functions, which is the EaRLaP semantic object mapping pipeline.

by the maximum human cognitive load Sop or maximum
trained human operator cognitive load, which is also assumed
to be greater than Smax. Once again, finding the θb is an
optimization problem of the same form as (4).

Finally, the operator is responsible for manually processing
Db to create the set of submissions s = fop(Db, θop), and
for ensuring that |s| < Smax. This follows the formulation
(4), but fop does not follow a mathematical formulation
since θop represents the operator’s human brain process
capability. Note that this is still an optimization problem,
and the operator undergoes training to optimize the detection
performance.

With this high-level decomposition of f in place, we
can further decompose the sub-functions fr, fb and fop
hierarchically into a set of N tractable lower-level sub-
functions fi(Di−1; θi), each of which permit similar opti-
mization formulations as (6), which are then combined to
give a solution to the original problem:

f(I; θ) = fN ◦ · · · ◦ fi ◦ · · · ◦ f1(D0; θ1), (7)

where θ = (θ1, . . . , θN ) provides parameterizations for each
sub-function, D0 = I, and Di = fi(Di−1; θi) ∀i = 1, . . . , N
are outputs after each sub-function. These outputs Di contain
positions and labels to solve the SOMP but may also include
additional data gathered in the previous sub-functions and
that will be used in later sub-functions (i.e. images, point
clouds, bounding boxes, confidences etc.).

V. EARLAP SEMANTIC OBJECT MAPPING PIPELINE

The implementation of (7) that was designed for the
EaRLaP pipeline and ultimately deployed in the final events
of the DARPA SubT Challenge consisted of N = 7 different
sub-functions as illustrated in Fig. 2 and detailed below.
f1 - Object Detector: The sensor payloads on the robots

contain multiple cameras to cover the entire field of view
(FOV), however, this entails that multiple high-rate image
streams must be handled by CNN object detectors at a
low rate on robot processors with limited computational
power. To ensure computational power is used efficiently, an
image selection filter samples a subset of images with higher
quality. To obtain high-quality detections, in particular for
small objects in low lighting environments, high-resolution
images [23] must be used. Lightweight models designed for
real-time application and high-resolution images, such as the
family of YOLO models [24], are suitable for f1.

Given an RGB image IRGB, the object detector outputs Nd
detections with associated labels, confidences and bounding
boxes {l, c,B}Ndi=1 = gyolo(IRGB). Only the detections with
label l and confidence higher than tl are passed on to the
next sub-function.
f2 - Color Filter: After the CNN step, to remove false-

positive detections, a function that extracts handcrafted fea-
tures can be applied if object types contain outstanding
features, such as color and shape. These shallow feature
filters can be easily trained to reject clear false positives. In
the SubT case, the object types and their respective coloring
are known and object detection results with unexpected color
patterns can be eliminated. To identify the color of an object,
the segment of the RGB image IRGB inside the detection
bounding box B, that is IBRGB, is transformed to HSV color
space and a mask Ml is applied which is tailored to the color
of each object l. Note that in practice Ml must accept a wide
spectrum of color to account for the different conditions in
which we might encounter an object. The masked bounding
box is thresholded and the remaining pixels are counted to
obtain an object color score percentage p. Each object l has
a multiplier βl > 1 such that the color score defined by
gcol(l, I

B
RGB) = min(βl · p, 1) ∈ [0, 1] returns 1 if even only

part of IBRGB is the correct color. To filter detections, the color
score is multiplied with the YOLO confidence, and the same
YOLO threshold tl is used to decide if a detection moves on
to the next step. βl is tuned using a representative labeled
dataset.
f3 - Robot Reconciler: The global position of a given

robot relative to a calibration gate at its starting point is
estimated by other system modules [14], [15], however, the
detected objects still need to be reconciled and localized
relative to the robot. In order to initially eliminate noisy
detections, when a detection with label l is received, it is
removed if the robot has not moved at least dmin meters or
rotated αmin degrees since the last observation of another
object l. The remaining detections must then be reconciled
with previously mapped object candidates based on proxim-
ity.

Given an observation, those candidates that are not com-
patible with the bearing of the observation are not considered
(a detection from the front camera cannot come from a
candidate located behind the robot, for example). Candidates
further than a set maximum distance ddmax from the robot are
also filtered since detection performance drops significantly
beyond that point. If there are multiple candidates after
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this initial stage, matching the detection with a candidate
close to the robot and the detection direction is favored.
After matching the detection to a candidate, the candidate’s
position and metadata are updated to keep some information
about the detection (i.e. its detection confidence and color
confidence). If there are no remaining candidates after this
process, a new object is created in the map, becoming a new
candidate for reconciliation of subsequent object detections.

Through this reconciliation process, we aggregate multiple
detections of the same object into what we call a report. As
we reconcile more observations of the same object instance
into a single report, our localization uncertainty decreases
and our confidence in this report increases.

The primary means used for robot-relative object position
localization are bearing estimates (implemented using the
GTSAM library [25]), but the estimates can have high
variance, particularly with respect to object range. To refine
the range, one could exploit depth images ID produced
by stereo cameras or RGB-D sensors, however, this can
quickly lose accuracy or fail completely at large distances
depending on the lighting conditions. Instead, we make use
of an alternative approach that transforms LiDAR-derived 3D
point clouds into the camera frame in which the object has
been detected, re-projects the 3D LiDAR points to 2D image
pixels, determines which of those points/pixels lie within
the detected object bounding box B, and calculates their
mean distance in the camera frame. This approach relies on
good LiDAR-camera extrinsic calibration but provides more
accurate results at distances outside of the effective range of
RGB-D sensors.

Given a calibrated camera and an object detection with
associated bounding box B and estimated range d, we can
project B from 2D to 3D to obtain the estimated object size.
If an object of class l has well-defined dimensions (e.g. a
backpack of size 30x30x30cm), a size score gsize(l,B) ∈
[0, 1] can be created that measures how well B matches the
object size. Similarly to the color score, this must account
for a wide range of sizes observed in practice, mainly due
to noisy measurements of d and inaccurate B.
f4 - Communications Filter: To limit the quantity of

reports sent from the robots to the base station, we only
transmit reports in which multiple observations have been
reconciled. Additionally, reports for which the median report
confidence of all reconciled observations is high are favored.
f5 - Base Reconciler: In practice, the reconciliation of f3

does not always group the detections perfectly and a robot
might send multiple reports of the same object to the base
station. Additionally, when multiple robots communicate to
the base station, they could report the same objects if they
explore the same areas. These reports can be merged into
a unique object. A report is grouped into an existing report
cluster if it is spatially closer than dbmin to an existing report
in that cluster of the same object class. Such distance-based
reconciliation assumes that objects of interest are sparsely
distributed in the environment. However, false-positive de-
tections can be located close to each other and can be
merged into one object during this step. Additionally, when

exploring multi-floor buildings, objects on different floors
can be reconciled together if dbmin is not chosen wisely.
f6 - Scorability Ranker: In order to mitigate against a

time-pressured operator missing true positives while evalu-
ating the reconciled reports on the base station, it is prudent
to attempt to rank the reports in terms of their scoring
potential. A detection D = {l, c,B} ∈ gyolo(IRGB) produced
by running the detector on a given image IRGB is assigned a
scorability confidence

gD(D) = c · gcol(l, I
B
RGB) · gsize(l,B). (8)

The scorability of a report R = {Di}ndi=1 is then computed
as

gR(R) = α(nd) ·
1

nd

nd∑
i=1

gD(Di), (9)

where α(nd) is a function of the number of detections nd per
reconciled report, used to penalize reports with a low number
of observations, and the reports are ranked with respect to gR
in descending order. α(nd) is tuned based on a few factors.
The minimum is 2, as two false positives are less likely
to be predicted in a row. α(nd) is further adjusted based
on the model’s performance on the objects’ sizes and the
environment’s lighting condition. Size score is tuned using a
labeled dataset.
f7 - Human Filter: A graphical user interface (GUI) was

developed that allows the human operator to control robotic
exploration behavior and perform certain actions. Once the
detections from f1 have been reconciled as objects and then
ordered using f6, the operator can review them and manually
decide whether to include them in the final submission set
s using the GUI. The operator may also manually make
adjustments to the report as necessary in cases of poor
reconciliation, etc.

VI. EXPERIMENTAL RESULTS

This section will showcase the results obtained by Team
CoSTAR, who implemented EaRLaP to detect and locate ob-
jects during the Final Event of the DARPA SubT Challenge.

Although Team CoSTAR detected objects using a wide
range of sensors, the EaRLaP methodology presented in
Sec. V was motivated primarily by visual detection. This
section will discuss the results applied to the following RGB-
detectable objects from the competition: backpack, drill, fire
extinguisher, helmet, cube, rope and survivor.

Team CoSTAR deployed Husky and Spot mobility
platforms: commercially available wheeled vehicles and
quadrupeds, respectively. A customized payload that com-
prised of sensors and computing processors was developed to
facilitate high-level autonomy [4]. The payload includes five
Intel® RealSense™ D455 cameras, arranged on the robots to
provide a near 360◦ FOV. The RealSense cameras were con-
nected directly to an NVIDIA® Jetson AGX Xavier™ to run
custom camera drivers, YOLO object detector (f1) and the
color filtering (f2). The data was later transmitted to an Intel®

NUC computer to perform the reconciliation (f3) and select
the objects to send to the base via wireless communication
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(f4). The robots carried and deployed communication nodes
to establish a communication mesh to connect to the base
station. The base is a custom-made computer with multiple
GPUs and is connected to a monitor displaying the GUI
where the operator monitored the mission and interacted with
the robots.

Different methods and parameters were selected for each
sub-function for the final event of the DARPA SubT Chal-
lenge. For the image selector, we used the highest variance
of the Laplacian [26] to compute and select the least blurry
images in the 25Hz image streaming queue. Team CoSTAR’s
robots’ top speed is 1m/s and we aimed for detections at
least once every 25cm. This required the model to run at
least 5hz per camera. To achieve this, in f1, we used a
YOLOv5m6 [24] model with input size of 1280x768 and
pruned using channel pruning, decreasing the model size
by 22.5%. The SiLU activations were replaced with ReLU,
allowing quantization (MinMax strategy) for INT8 inference.
Finally, the model was hardware optimized with TensorRT.
For communications filter f4, regardless of the total number
of observations reconciled in a report, a maximum of 4
compressed images (brightest, least blurry, highest report
confidence, closest) were kept for inspection by the human
operator in order to further minimize the amount of trans-
mitted data.

A. Evaluation Criteria

The normative interpretation of precision/recall metrics in
a computer vision problem involves, for example, running
an object detector on a given image dataset I = {Ii}li=1 to
produce a set of detections DI = {Di}mi=1 and comparing
the Di to a ground truth set GI = {Gi}ni=1 to produce true
positive (TP ), false positive (FP ) and false negative (FN )
counts such that TP +FP = m and TP +FN = n. In this
case, n is counted across all images in I. In our scenario, we
are not only interested in such image-based metrics, but also
in object-based metrics. To help explain this, we introduce
the notion of an environment E in which the physical ground
truth objects GE = {Gi}ki=1 are positioned and within which
all images Ii ∈ I are gathered such that k ≤ n. By
reconciling the Di ∈ DI detections with respect to the true
physical ground truth objects Gi ∈ GE , we can introduce
object-based precision/recall metrics such that TP + FN =
k. This allows us to measure EaRLaP performance when only
counting a true positive for each physical ground truth object
once and when reconciling detections into object reports
across the various pipeline stages.

B. Objectives

When dealing with harsh unknown environments, it is
very unlikely for the robots to be able to fully explore
them, especially if there are time constraints. One of Team
CoSTAR’s strategic goals during SubT was, therefore, to
aim for the highest possible recall to avoid the operator
missing scores for the true positive objects that the robots
encountered. Aiming for high recall often comes at the cost
of poor precision [5]. Before CoSTAR adopted the EaRLaP

pipeline [9], the team (as well as other teams [20]) suffered
from low precision. During the 2020 Urban Circuit of the
DARPA SubT Challenge, the human operator was unable to
identify some true positive objects in a timely manner as
they were mixed between hundreds of false positives. Given
the many other tasks the operator had to manage (including
deploying robots, checking sensor health, setting exploration
strategy, etc.), an additional strategic goal was, therefore,
to greatly reduce the number of false positives they had to
process for scoring submission in order to save them time for
these critical tasks and to maximize precision. In this section,
we aim to demonstrate using the data from the SubT Final
Event and the evaluation criteria in Sec. VI-A, that EaRLaP
was indeed effective at achieving these strategic goals.

TABLE I: Number of TP and FP images/reports at the output
of different sub-problems.

Detection
Output 1

Robot
Output 2

Base
Output 3

Preliminary Run
(3 robots)
(9 true objects)

TP 4574 45 10
FP 4490 238 50

time4 19h 35min 7.5min

Final Run
(3 robots)
(4 true objects)

TP 3699 45 4
FP 3956 260 48

time4 16h 38min 6.5min

See Fig. 2 for the definition of Detection/Robot/Base Output
1 Number of bounding box image detections

2 Reports where many image detections have been reconciled by the robot
3 Groups of reports, reconciled on the base station

4 Estimated time to evaluate each column using an average of 7.5s per image or
object report

TABLE II: True Positive (TP ) and False Positive (FP )
objects at the output of different sub-problems.

Detection
Output

Robot
Output

Base
Output

Operator
Output

Preliminary Run
(3 robots)
(9 true objects)

TP 9 9 9 8
FP 278 99 48 0

Recall 100% 100% 100% 89%
Precision 3.1% 8.3% 17.24% 100%

Final Run
(3 robots)
(4 true objects)

TP 4 4 4 4
FP 479 113 48 0

Recall 100% 100% 100% 100%
Precision 0.8% 3.4% 7.7% 100%

See Fig. 2 for the definition of Detection/Robot/Base Output. Operator Output is the
solution submitted by the operator.

C. Key Results

The competition took place between Sep. 21st–24th, 2021.
Over the first three days, competing teams performed in two
preliminary runs of 30 minutes each, in which 20 artifacts
were hidden. Tables I and II show results from the second
preliminary run. Using EaRLaP, Team CoSTAR scored the
most artifacts of all teams during this round, finishing at
the top of the score table. CoSTAR proceeded into the
final run as one of the favorites to win. The run lasted
one hour and consisted of 40 artifacts. Unfortunately, in the
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final run, our robots encountered challenging conditions and
struggled to explore the environment as effectively as in prior
runs. Between one Husky and two Spots, only four RGB-
detectable objects were encountered. The team utilized more
robots with diverse sensory capabilities, thus allowing us to
score a total of 13 artifacts and achieving a final rank of 5th

place, but data from these robots could not be retrieved.
In Tables I and II, we also show results from some of the

most important EaRLaP sub-problems (as illustrated in Fig.
2) using data from both the preliminary and final runs. Table
I shows results for the image-based metrics discussed in Sec.
VI-A. In order to produce this table, each image or report
from each run was manually labeled to be a true positive
(TP ) or false positive (FP ). In the Detection Output column
we have bounding box detections from our filtered object
detector (f1 + f2), while in the Robot Output column we
have reports where multiple detections have been reconciled
together on the robots (f4) and in the Base Output column
we have groups of reports on the base station (f6). A human
operator could theoretically review the data at any of these
sub-problems’ outputs (although it might not be a good
use of their time) therefore, Table I shows the amount of
information that would be exposed to the operator at those
stages. This table, however, gives no information on the
number of actual objects that the operator would encounter,
which is what is truly important for the DARPA SubT
challenge and the semantic object mapping problem (i.e. the
detector can generate 50 detections of the same backpack).

It is thus necessary to introduce Table II, where we
counted the number of unique object instances at the output
of the different sub-problems and used the object-based met-
rics discussed in Sec. VI-A. To create this table, an annotator
had to go through all the images or reports (depending on
the sub-problem) and keep track of all unique objects already
detected to determine whether to add a new object or not.
Additionally, the annotator identified the TP as the objects
that we are trying to detect, and all the rest was FP. In
addition to being directly related to the goal of the DARPA
SubT challenge and semantic mapping problem, using object
instances also allows us to break the barrier of different
data types at the output of different sub-problems. It thus
enables us to compare the performance at various stages of
the EaRLaP pipeline, with particular attention being paid to
the object-based recall and precision.

From Table II, it can be seen that in both the preliminary
and final runs we reached our objective since all TP objects
encountered by the robots reached the operator. This was
possible due to the wide FOV covered by the cameras and
the design of our object detector (f1). During the preliminary
run, the operator made an error as they did not recognize a
backpack detected at a far distance and in a dark area as a
true positive. This may be explained by the fact that this was
a practice round and the operator thus was not required to
perform at their fullest capacity. This serves as a poignant
reminder that although a human’s intervention is required to
achieve extremely high precision, the operator can also make
mistakes. Despite this error, CoSTAR still scored higher than

any other team in this particular round.
As expected, the YOLO CNN eliminated a large number

of false positives, shown by the Detection Output column
in Table II. However, the table shows that as we advance
through the sub-functions, the precision increases while the
recall is kept at 100%. Although each sub-function might
only contribute slightly to improving precision, the com-
pounding effect of all sub-problems leads to a 5x increase
in precision for the preliminary run and a 9.5x increase for
the final run.

When introducing the seven sub-functions in Sec. V, we
required that some sub-functions reduce the amount of in-
formation such that the detected objects could be transmitted
on low-bandwidth wireless networks and displayed to the
operator. Table I shows that during the preliminary round
the object detector generated more than 9000 detections, but
after reconciliation on the robot, all of this information was
reduced to less than 300 reports, which is low enough to
avoid saturating the communication network. After recon-
ciliation on the base station, this is further reduced to just
60 different objects, which is manageable for a human to
manually inspect.

We used an efficient GUI, shown in Fig. 3, which is
optimized such that the operator can review all detections
rapidly. We estimate that reviewing and accepting or rejecting
an object on the GUI takes between 5 and 10 seconds. Table I
shows that if a human were to sort through all the detections
generated by the neural network, it would take almost 19
hours to do so for the preliminary round, which is only 30
minutes long. Despite a significant data reduction after the
robot reconciliation, it would still take a human more than
30 minutes to inspect. However, at the end of our pipeline,
we managed to reduce the operator’s work duration on this
task to 7.5 minutes, which is 25% of the total run time.
Therefore, we successfully achieved our goal. Additionally,
thanks to the report scorability ranker (f6), the nine true
positive objects are among the first objects displayed to the
operator.

VII. CONCLUSION

This paper studied the task of semantic object mapping
using human-in-the-loop multi-robot systems and defined
a mathematical formulation of the problem. The proposed
EaRLaP pipeline decomposes the problem into sub-problems
to achieve high precision and high recall under computa-
tional, communication network, and human cognitive load
constraints, and ultimately to provide high-quality informa-
tion for human operators. EaRLaP was implemented by
being decomposed into seven sub-functions and deployed by
Team CoSTAR in the final events of the DARPA SubT Chal-
lenge to perform search-and-rescue in perceptually-degraded
environments. The performance showed that EaRLaP main-
tained high recall under the constraints and pruned false
positives effectively to allow the human operator to achieve
high precision within a time limit. This paper is also a
general report of the competition. In future work, we would
like to perform ablation studies to evaluate the comparative
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Fig. 3: An example of the GUI in the base station shows a candidate
submission that contains three artifacts reported from different robots at
different times. a) A highlighted report. b) Reports are grouped based on
high, median, and low report confidence. c) Reports are ordered by report
confidence d) report confidence value and artifact label e) more information
on YOLO confidence and color/size scores. f) 3D position of the selected
report, where the operator can adjust it before submission.

performance of EaRLaP both with and without the various
sub-functions described in Sec. V, as well as performing
further field experiments in other scenarios.
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