
Transfer of Assembly Operations to New Workpiece
Poses by Adaptation to the Desired Force Profile

Bojan Nemec, Fares J. Abu-Dakka,
Barry Ridge, and Aleš Ude

Humanoid and Cognitive Robotics Lab
Jozef Stefan Institute, Ljubljana, Slovenia

email: bojan.nemec@ijs.si

Jimmy A. Jørgensen, Thiusius Rajeeth Savarimuthu,
Jerome Jouffroy, Henrik G. Petersen, and Nobert Krüger

Cognitive Vision Lab
Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Abstract—In this paper we propose a new algorithm that
can be used for adaptation of robot trajectories in automated
assembly tasks. Initial trajectories and forces are obtained by
demonstration and iteratively adapted to specific environment
configurations. The algorithm adapts Cartesian space trajectories
to match the forces recorded during the human demonstration.
Experimentally we show the effectiveness of our approach on
learning of Peg-in-Hole (PiH) task. We performed our exper-
iments on two different robotic platforms with workpieces of
different shapes.

I. INTRODUCTION

Many industrial manufacturing applications include as-
sembly operations. One of the typical operations needed for
the automatic assembly is peg insertion, often referred to
as Peg-in-Hole task (PiH). Positioning inaccuracies and tight
tolerances between the objects involved in PiH operations
require some level of on-line adaptation of the programmed
trajectories. In the literature, a number of approaches to solve
the PiH problem were proposed. They were based on different
strategies that used force feedback control [1], [2], [3], [4].
In general, the appropriate strategy depends on the workpiece
geometry. This often requires an engineer to hard-code a
different strategy for every new workpiece geometry [5], [6].
In this paper we propose a new approach to solve the PiH
problem using Learning by Demonstration (LbD) paradigm
[7]. Unlike standard LbD approaches, we acquire not only
trajectories but also forces and torques arising during the task
demonstration. This paradigm was for example utilized in [8],
[9], where a haptic interface was used to demonstrate the
initial trajectories. The appropriate force profile can also be
learned by means of reinforcement learning [10]. Here we
focus on teaching peg insertion tasks regardless of a workpiece
geometry. We start with a single human demonstration where
both the Cartesian space trajectory and the associated force
/ torque profile of the human execution of the peg-in-hole
operation are recorded, see Fig. 1. When applying the recorded
PiH operation in a new situation, e. g. when a workpiece
is translated and rotated, the robot cannot simply replay the
recorded trajectory due to noise in the estimated workpiece
pose, uncertainties in the posture of the peg in the gripper,
and due to a different joint space configuration of the robot
arm. Since humans are very good at performing assembly
tasks that require compliance and force control, we use human
demonstrated force / torque profiles as reference. Hence, we

are not trying to improve the human policy but rather match
it with the robot. The developed approach enables the robot
to adjust the demonstrated trajectory in few iterations so
that the arising forces and torques during the execution of
the PiH operation are similar to the ones recorded during
human demonstration. Our experimental results show that the
proposed approach is effective for learning of PiH operations
for workpieces with different geometry.

The paper consists of five sections. In Section II we briefly
present the data acquisition procedure used for acquiring
trajectories and forces for an assembly operation. In Section III
we present the policy learning and adaptation algorithm which
uses the dynamic movement primitives (DMP) framework as
the underlying representation of peg insertion trajectories. We
propose an approach to iteratively adapt the learned trajectory
to improve the task performance. This procedure exploits the
properties of DMPs. Results of the experimental evaluation on
two different platforms are given in Section IV, followed by
final remarks and conclusion.

II. LEARNING OF THE PIH TASK BY HUMAN
DEMONSTRATION

In this section we briefly describe the basic procedure
for learning of PiH operations by human demonstration. The
human demonstrations are performed in two different ways:

• Tele-operation using a TrackSTAR 6D pose tracker
from Ascension attached to the object (Fig. 1 a).

• Kinesthetic guiding using the Kuka LWR arm in
gravity compensation mode (Fig. 1 b).

In the first setup we use a magnetic tracker attached to the
peg, which is held by a human demonstrator, to track the
peg’s position and orientation. The demonstrator executes the
peg-in-hole task as usually. The measured poses are used
to tele-operate the robot after being translated and rotated
in such a way that the peg held by the robot is in the
hole when the peg held by a human is in the hole. This is
a constant transformation, which is estimated by the mag-
netic tracker in an initial calibration phase. The developed
demonstration system is precise enough that the tele-operated
robot successfully executes the task together with a human.
The second setup uses the robot gravity compensation mode
to implement kinesthetic guiding, where the human guides

978-1-4799-2722-7/13/$31.00 c© 2013 IEEE

Author’s version — provided for personal and academic use. Do not redistribute.

Fig. 1. a) The tele-operation setup with the position tracker inserted into the
peg and the Universal Robot arm. b) Kinesthetic guiding using Kuka LWR
arm in gravity compensation mode.

the robot’s tool center point along the desired trajectory, for
example so that the peg insertion task is successfully executed.
We measure the Cartesian space trajectory by proprioception
during the execution. In Kuka LWR arm, the force sensors are
located in the robot joints and consequently the forces exerted
from the human operator during the demonstration affect the
measured forces and torques. Therefore, to get the net forces
and torques at the robot tool center point, we repeat the
measured trajectory with the robot, record the resulting joint
torques, and transform them into the corresponding tool center
point forces and torques. We take care that the workspace
configuration does not change during this process and since
our robot can accurately track the joint space trajectories, the
measured forces and torques provide a good reference for
adaptation later. The data acquired by both of our systems can
further be improved by means of reinforcement learning [10],
where a suitable cost function should be minimized. The cost
function should relate to the desired properties of the task, e. g.
smoothness of execution, execution time, etc. In our system
the initial trajectories were good enough for successful peg
insertion, thus refinement through reinforcement learning was
not necessary.

With each successful execution of the PiH task, the sys-
tem acquires the Cartesian space tool center point positions
and orientations (represented as quaternions), velocities, and
accelerations

M = {pj ,qj , ṗj , ωj , p̈j , ω̇j}, (1)

and the associated forces and torques

F = {Fj ,Mj}, (2)

all acquired at times tj , j = 0, . . . , T . Positions and ori-
entations are represented as a frame Q = {p,q}, where
p = [x, y, z] is a 3-dimensional vector and q = (v,u) is a
unit quaternion, respectively.

III. POLICY LEARNING AND ADAPTATION

The demonstrated Cartesian space trajectories that result in
a successful execution of the PiH task are encoded by DMPs.
A DMP for a single degree of freedom trajectory y is defined
by the following set of nonlinear differential equations [11]

τ ż = αz(βz(g − y)− z) + f(x), (3)
τ ẏ = z, (4)
τ ẋ = −αxx, (5)

where x is the phase variable and z is an auxiliary variable.
Parameters αz and βz define the behavior of the second order
system described by (3) and (4). With the choice τ = tT > 0,
αz = 4βz > 0 and αx > 0, the convergence of the underlying
dynamic system to a unique attractor point at y = g, z = 0
is ensured [11]. f(x) is defined as a linear combination of
N nonlinear radial basis functions, which enables the robot to
follow any smooth trajectory from the initial position y0 to the
final configuration g

f(x) =

∑N
i=1 wiΨi(x)
∑N
i=1 Ψi(x)

x, (6)

Ψi(x) = exp
(
−hi (x− ci)2

)
, (7)

where ci are the centers of radial basis functions distributed
along the trajectory and hi are their widths. For each Cartesian
degree of freedom, the weights wi and the goal g are estimated
from the measured data (1) using regression in such a way that
the resulting DMPs encode the desired peg insertion trajectory.
Each position / orientation dimension is encoded as a single
DMP with a common phase variable x. Since quaternions
are calculated by integrating the above system, the integrated
quaternion has to be normalized after each integration step.
The exact solution is proposed in [12], but since we confirmed
experimentally that the differences between both approaches
are small, we use Eq. (3) – (4) also for quaternion integration.
Such an approach simplifies implementation.

Since forces and toques are used only as desired variables
along the trajectory and not as robot control variables, they
do not need to be encoded by DMPs. Instead we use a linear
combination of radial basis functions

Fd,j(x) =

∑
i w

F,j
i Ψi(x)

∑N
i=1 Ψi(x)

x, (8)

Md,j(x) =

∑
i w

M,j
i Ψi(x)

∑N
i=1 Ψi(x)

x, (9)

j = 1, . . . , 3, to approximate the desired forces and
torques along the phase xi = x(ti). We denote Fd =
[Fd,1, Fd,2, Fd,3]T and Md = [Md,1,Md,2,Md,3]T . Linear
systems similar to (21) need to be solved in order to estimate
Fd and Md from the measured force / torque data (2).

When the robot executes the demonstrated trajectory, the
resulting forces and torques differ from the ones that were
measured during human demonstration. This happens due to
small displacements arising from inaccurate pose estimation,
reduced accuracy of the robot tracking control due to changes
in the robot configuration (note that the original trajectory must
be moved to a new configuration defined by a workpiece), and
uncertainties in the placement of the peg in the gripper. This
could worsen or even prevent the successful execution of the
PiH task. In order to adapt to a new situation, we propose to
modify the demonstrated trajectory according to the admittance
(indirect compliance) control law [13]

pr(x) = p′DMP (x) + Ks1ep(x) + øp(x), (10)
qr(x) = χ(Ks2eq(x)) ∗ øq(x) ∗ q′DMP (x), (11)

where pr(x) is the position vector fed to the robot controller,
(p′DMP ,q

′
DMP) is the displaced demonstrated trajectory com-

puted by integrating the learned DMPs pDMP , qDMP and

Author’s version — provided for personal and academic use. Do not redistribute.

applying the workpiece displacement (∆tw,∆qw),

(0,p′DMP (x)) = ∆qw ∗ (0,pDMP (x)) ∗∆qw + (0,∆tw),

q′DMP (x) = ∆qw ∗ qDMP (x).

Ks1 and Ks2 are 3× 3 diagonal matrices, qr(x) is the orien-
tation quaternion fed to the robot controller, and qDMP (x) is
the reference quaternion obtained by integrating the learned
DMP. The quaternion product ∗, defined as q1 ∗ q2 =
(v1,u1) ∗ (v2,u2) = (v1v2, v2u1 + v1u2 + u1 × u2), has
been used in (11). The feedback error term, i. e. Ks1ep(x) and
χ(Ks2eq(x)), respectively, provides force / torque feedback
control. Vectors øp(x) and øq(x) denote additional displace-
ments and rotations, respectively, which are learned on line
(see Section III-A). The idea is to move as much of the
feedback error as possible to these displacement vectors.
Initially, they are set to øp = [0, 0, 0]T and øq = (1, 0, 0, 0).
The errors ep(x) and eq(x) are defined as

(0, ep(x)) = q(x) ∗ (0,Fd(x)− F) ∗ q(x), (12)

(0, eq(x)) = q(x) ∗ (0,Md(x)−M) ∗ q(x), (13)

where Fd(x) is the desired reference force at phase x as
acquired from human demonstration, F the current measured
force, Md(x) is the desired reference torque, M the current
measured torque, and q(x) the unit quaternion specifying the
current tool orientation. χ denotes the transformation which
maps an angular velocity to a unit quaternion describing the
resulting rotation within the sampling time 4t

χ(ω) =

(
cos
‖ω‖4t

2
,
ω

‖ω‖sin
‖ω‖4t

2

)
. (14)

The proposed controller tracks simultaneously the desired
position and orientations and forces and torques. Force / torque
adaptation requires low gains (matrices Ks) for stable and ro-
bust operation. Thus, force adaptation is usually slow. In order
to effectively minimize the force / torque error, we propose
slowing down the trajectory execution using DMP slow-down
feedback. For DMP phase stopping [11], the original equation
for phase (5) is replaced with

τ ẋ = − αxx

1 + αpx‖e‖
, (15)

where e is the combined force / torque error

‖e‖ = ‖[eTp , eTq]‖. (16)

Note that in case of large forces or torques, the error ‖e‖
becomes large which in turn makes the phase change ẋ small.
Thus the phase evolution is stopped until the robot reduces the
force / torque error. During the execution of the demonstrated
trajectory, the resulting positions and orientations offsets are
captured depending on the phase variable x, which ensures that
the sampling is independent of the trajectory duration. Thus,
the trajectory is sampled exactly the same number of times
as during the human demonstration, even when the phase is
slowed down during the execution according to (15).

A. Offset Learning

The goal of learning is to iteratively modify in sequential
steps the positional and orientational part of the demonstrated
trajectory so that the transformed trajectory results in similar

forces and torques as during the human demonstration. The
offset trajectory is updated at each iteration step as follows

upj,l+1 = øp,l(xj) + Ks1ep(xj), (17)
uqj,l+1 = χ(Ks2eq(xj)) ∗ øq,l(xj). (18)

The updates are actually part of Eq. (10) and (11). Index l de-
notes the learning trial. Each component øk of the offsets øp,l
and øq,l of this newly sampled offset trajectory is represented
as a linear combination of M radial basis functions (similarly
as for DMPs in Eq. (6))

øk(x) =

∑M
i=1 wi,kΨi(x)
∑M
i=1 Ψi(x)

x. (19)

The new data points {ukj,l+1}, j = 0, . . . , T , are obtained
from the k-th components of the offsets trajectories, where
k = 1, 2, 3 denote the components of the positional part
upj,l+1 and k = 4, 5, 6, 7 the components of the quaternion
part uqj,l+1. The aim of optimization is to find weights {wi,k}
that minimize the quadratic cost function

T∑

j=0

(øk(xj)− ukj,l+1)2. (20)

The optimal weights wk are then computed by solving the
following linear system of equations

Awk = øk, (21)

wk =

w1,k

...
wM,k

 , øk =

øk(x0)
...

øk(xT)

 ,

A =

ψ1(x0)x0∑M
i=1 ψi(x0)

· · · ψM (x0)x0∑M
i=1 ψi(x0)

...
. . .

...
ψ1(xT)xT∑M
i=1 ψi(xT)

· · · ψM (xT)xT∑M
i=1 ψi(xT)

 .

ψi are the Gaussian kernel functions from (7). It is also possi-
ble to compute a solution to (21) recursively by incrementally
updating the following quantities

Pj = Pj−1 −
Pj−1ajaT

j Pj−1
1 + aT

j Pj−1aj
, (22)

wj = wj−1 + (f(tj)− aT
j wj−1)Pjaj , (23)

where aj is the T + 1 dimensional column vector associated
with the corresponding row of the matrix A and the optimal
weights are w = wT+1. Index j denotes the j-th phase
sample. In the latter case we avoid saving the complete offset
trajectory during the adaptation. Note that – similar to the DMP
integration – the quaternion part of the offset trajectory øq has
to be normalized before being used in Eq. (11).

B. Control Scheme

Fig. 2 shows the implementation scheme for the proposed
learning algorithm. In this scheme, Md denotes the original
demonstrated trajectory, which is encoded by DMPs. Qd refers
to the output signal obtained by integrating (3) – (5) and ap-
plying the workpiece displacement (∆tw,∆qw) as estimated
by vision, which occurs in block T1 . Fd denotes the forces

Author’s version — provided for personal and academic use. Do not redistribute.

and torques captured during the execution of the demonstrated
trajectory and Fd calculates the output by evaluating (8) and
(9). Due to the noise induced by the errors in the vision system,
robot tracking errors, and imperfect grasping, the measured
forces/torques F,M differ from the desired demonstrated
forces/torques Fd. Our goal is to minimize this difference.
During the execution, the measured forces/torques F,M are
compared to the desired demonstrated forces/torques Fd. In
T2 this error is transformed into robot base coordinates.
Using admittance control (10) – (11), the position / orientation
offset is calculated and added to the existing offset from the
previous iteration step. This offset is computed using function
approximation in the block ø(x) = {øp(x),øq(x)}. Motor
commands Qc are given as the aggregation of the DMP
generated trajectory, force feedback (10) – (11) and the offset
learned in several iterations (17) – (18). The whole procedure
is repeated until the measured forces match the desired forces.
This algorithm belongs to a class of Iterative Learning Control,
where we applied current iteration causal learning [14], [15].

Special attention should be paid to the proper selection of
the gain Ks1 and Ks2. The admittance control law as defined
by (10) and (11) modifies positions / orientations according to
the force error signal and the selected gains Ks1 and Ks2.
Higher gains result in faster updates, but cause chattering
around the set point ep = 0 and eq = 0. We propose to
apply nonlinear gains in order to combine the benefits of faster
updating and prevent the chattering around the set point

Ks1 = Ks10

(
1− exp

(
−‖ep‖

2

σ1

))
I, (24)

Ks2 = Ks20

(
1− exp

(
−‖eq‖

2

σ2

))
I. (25)

Parameters Ks10 and Ks20 are appropriately chosen for stable
and repulsive behavior at large force / torque error signals.
Parameters σ1 and σ2 define the range, where the gains drop
to zero in order to prevent chattering. In our approach, the
originally demonstrated trajectory is always preserved and
we learn offsets to this trajectory rather than modifying the
trajectory itself. In such a case, the offsets can be easily
reset when we encounter new situations. Another benefit is
the improved stability of the overall learning control scheme.
Namely, it was found that the repeated learning and execution
of the same signals with a DMP is subject to an exponentially
growing bias, which is caused by the discrete implementation

- +
+

+

+

+

�	(x)d�	(t)d

�	(t)d �	(x)dT1

T2K

ROBOT �
�c

Memory

�t		,	�qw w

�(x)u(t) F,M

phase	stopping	signal

e

Fig. 2. The learning scheme

of the DMP integration. In our algorithm, the learned offset is
encoded as a linear combination of Gaussian kernel functions,
which does not involve the integration and therefore is not
subject to this bias.

IV. EXPERIMENTAL EVALUATION

The proposed LbD procedure was implemented on two
different robot platform shown in Fig. 1 a and b, respectively:

• A 6 D.O.F Universal Robot arm - type UR5 - equipped
with a SCHUNK SDH gripper and a force/torque wrist
sensor. This robot uses high gain non-compliant con-
troller. Therefore, we implemented admittance force
control law (Eq. 10 and 11).

• A 7 D.O.F. Kuka LWR robot equipped with a two-
finger gripper. This robot is capable of measuring
joint torques and can switch to Cartesian compliance
control.

The task was the insertion of the square and round peg into
a hole of the Cranfield benchmark. Trajectories were obtained
using tele-operation and kinesthetic guiding as described in
Section. II. We executed the trajectory for different randomly
selected positions of the base plate. The measured trajectory
data was translated and rotated into new configurations using
the pose of the base plate as estimated by vision. In this
scenario the uncertainties come from vision. Therefore, the
resulting forces during the execution of the demonstrated
trajectory may exceed the expected ones.

A. Experimenting with UR5 platform

The learning procedure was implemented in C++ and
linked to the robot using ROS [16]. The results for square
peg insertion are shown in Fig. 3 – 5. Fig. 3 shows the learned
offsets of the positional part of the trajectory in six consecutive

0 0.5 1 1.5 2 2.5
−2

−1

0

1
x 10−3

X
−o

ffs
et

 [m
]

0 0.5 1 1.5 2 2.5
−5

0

5

10
x 10−4

Y
−o

ffs
et

 [m
]

0 0.5 1 1.5 2 2.5
−10

−5

0

5
x 10−4

time [s]

Z
−o

ffs
et

 [m
]

1
2
3
4
5
6
7

Fig. 3. Positional part of the learned offset in 6 consecutive cycles. Cycle 1
denotes the execution of the demonstrated trajectory (zero offset).

Author’s version — provided for personal and academic use. Do not redistribute.

0 0.5 1 1.5 2 2.5
−10

0

10
F

x
 [

N
]

0 0.5 1 1.5 2 2.5
−10

0

10

20

F
y
 [

N
]

0 0.5 1 1.5 2 2.5
−40

−20

0

20

time [s]

F
z
 [

N
]

1
2
3
4
5
6
7

Fig. 4. Forces measured during the execution of the square PiH task. Dashed
lines (cycle 1) correspond to the original DMP trajectory and solid lines to
the adjusted trajectories in 6 consecutive learning cycles.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

time [s]

1
2
3
4
5
6
7

Fig. 5. Phase evolution during the execution of the square PiH task. Dashed
line corresponds to an ideal phase without DMP stopping actions and solid
lines to the actual phase in 6 consecutive cycles.

cycles. Fig. 4 shows the forces and torques that result from the
execution of the original (demonstrated) trajectories and the
adjusted (learned) trajectories. Note that the adjusted trajectory
results in generally lower forces and torques. The constant
offset in the force profile is due to imperfect force sensor
calibration. Fig. 5 shows the phase evolution during learning.
The phase measured during human demonstration is shown
as dotted line. Whenever the difference between the measured
and the desired forces became large, the phase was slowed
down due to the force / torque error in Eq. (15) until the
force controller sufficiently reduced it. Our learning procedure
reduces the differences between the desired and measured
forces and torques. This makes phase stopping less frequent
and consequently the execution time decreases in each learning
cycle as seen in Fig. 5. Note that in all plots time is normalized
to the equal duration in order to compare the adaptation of
the proposed algorithm trough iterations. Next experiment
was similar to the previous one, except that we used another
demonstrated trajectory and that the base plate was translated
and rotated to another position. As can be seen in Fig. 6 – 8,
our algorithm can deal with such changes. Due to the vision
errors – especially at the beginning of learning – the execution
was much slower, but after learning it becomes comparable to

the first experiment where the base plate was not moved. In

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2
x 10−3

X
−

of
fs

et
 [m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2
x 10−3

Y
−

of
fs

et
 [m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2
x 10−3

time [s]

Z
−

of
fs

et
 [m

]

 1
2
3
4
5
6
7

Fig. 6. The learned offset in 6 consecutive cycles. Cycle 1 denotes zero
offset.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−20

0

20

40

F
x
 [
N

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−20

0

20

40

F
y
 [
N

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−100

−50

0

50

time [s]

F
z
 [
N

]

1
2
3
4
5
6
7

Fig. 7. Forces measured during the execution of the square PiH task in 6
consecutive learning cycles.

order to demonstrate that our algorithm is not dependent on
the shape of the workpiece, we repeated the same experiment
using round peg. The results shown in Figs. 9 – 11 demonstrate
that the algorithm works equally well for round peg and is
therefore suitable for different peg shapes.

B. Experimenting with Kuka

Additional experiments were conducted on Kuka LWR
arms. The learning procedure was implemented in Matlab,
which communicated with the Kuka LWR controller using Fast
Research Interface [17]. Figs. 12 – 14 show the experimental
results of the algorithm on the Kuka robot. The obtained results

Author’s version — provided for personal and academic use. Do not redistribute.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time [s]

1
2
3
4
5
6
7

Fig. 8. Phase evolution during the execution of the square PiH task 6
consecutive cycles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−2

0

2

4
x 10−3

X
−

of
fs

et
 [m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−4

−2

0

2
x 10−3

Y
−

of
fs

et
 [m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−4

−2

0

2
x 10−3

time [s]

Z
−

of
fs

et
 [m

]

1
2
3
4
5
6
7

Fig. 9. Positional part of the learned offset in 6 consecutive cycles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−20

0

20

40

F
x
 [
N

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−40

−20

0

20

F
y
 [
N

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−100

−50

0

50

time [s]

F
z
 [
N

]

1
2
3
4
5
6
7

Fig. 10. Forces measured during the execution of the round PiH task in 6
consecutive learning cycles.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

time [s]

1
2
3
4
5
6
7

Fig. 11. Phase evolution during the execution of the round PiH task in 6
consecutive cycles.

are comparable with the results obtained with the UR5, but
the insertion is generally smoother and more robust due to the
Cartesian impedance control.

0 1 2 3 4 5 6 7 8
−0.02

0

0.02

0.04

X
 o

ffs
et

 [m
]

0 1 2 3 4 5 6 7 8
−0.02

−0.01

0

0.01

Y
 o

ffs
et

 [m
]

0 1 2 3 4 5 6 7 8
−0.01

0

0.01

time (s)

Z
 o

ffs
et

 [m
]

1
2
3
4
5
6

Fig. 12. Positional part of the learned offset in 5 consecutive cycles. Cycle
1 denotes the execution of the demonstrated trajectory (zero offset).

V. CONCLUSION

We proposed a new approach for learning by demon-
stration, which considers both positions and orientations and
forces and torques arising during a human demonstration. We
focused on tasks that require accurate force control, such as
for example peg-in-hole insertion. Direct replication of the
demonstrated trajectories leads to suboptimal performance due
to misalignments caused by noise, which can arise due to
the inaccuracies of the vision system, due to uncertainties
in the gripping pose, and due to the Cartesian space robot
tracking error caused by a different joint space configuration.
Since humans are very good at performing tasks that require
compliance and force control, we utilize human demonstration
to obtain reference force / torque profiles for the PiH task. Dur-
ing task execution, the robot attempts to replicate the learned
forces and torques rather than positions and orientations. Our
learning procedure modifies the demonstrated trajectory in
such a way that the resulting forces and torques match the
demonstrated ones. The adaptation to the desired forces can
be accomplished using either admittance or impedance control
law, where the robot motion is modified to reduce the force
/ torque error. Since force adaptation is usually slow (due to

Author’s version — provided for personal and academic use. Do not redistribute.

0 1 2 3 4 5 6 7 8
−20

0

20
F

x
[N

]

0 1 2 3 4 5 6 7 8
−5

0

5

10

F
y

[N
]

0 1 2 3 4 5 6 7 8
−10

0

10

20

time (s)

F
z

[N
]

1
2
3
4
5
6

Fig. 13. Forces measured during the execution of the square PiH task. Dashed
lines (cycle 1) correspond to the original DMP trajectory and solid lines to
the adjusted trajectories in 5 consecutive learning cycles.

0 2 4 5 6 10 12 14
0

0.2

0.4

0.6

0.8

1

time (s)

1
2
3
4
5
6

Fig. 14. Phase evolution during the execution of the square PiH task. Dashed
line corresponds to an ideal phase without DMP stopping actions and solid
lines to the actual phase in 5 consecutive cycles.

the low force / torque gains, which are required for stable
operation), we slow down the trajectory evolution whenever
the force / torque error becomes large. This is accomplished
using the DMP stopping technique. During the execution we
capture the offset to the demonstrated trajectory caused by the
feedback controller and this offset is added to the demonstrated
trajectory in the next learning cycle. In most cases we can
effectively execute the task after a few iterations. The offset
trajectory is encoded with Gaussian kernel functions and
estimated as described in Section III-A. Experimental results
demonstrate robustness and fast adaptation capability of the
proposed algorithm on two different robot platforms. One of
the major advantages of the proposed approach is that it is
independent on the workpiece geometry, which is not the case
in many industrial implementations of the PiH task.

Video of our experiments is available at
http://www.ijs.si/usr/nemec/Video-ICAR.m4v
The first part of the video shows a human demonstration
of the peg-in-hole operation in the tele-operation setup. The
second part shows the round and square peg insertion on both
robots. Note that the insertion time decreases significantly
after learning.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies) un-
der grant agreement no. 269959, IntellAct.

REFERENCES

[1] S.-K. Yun, “Compliant manipulation for peg-in-hole: Is passive compli-
ance a key to learn contact motion?” in IEEE International Conference
on Robotics and Automation (ICRA), Pasadena, California, 2008, pp.
1647–1652.

[2] K. Hirana, T. Suzuki, and S. Okuma, “Optimal motion planning for
assembly skill based on mixed logical dynamical system,” in 7th In-
ternational Workshop on Advanced Motion Control, Maribor, Slovenia,
2002, pp. 359–364.

[3] P. R. Giordano, A. Stemmer, K. Arbter, and A. Albu-Schaffer, “Robotic
assembly of complex planar parts: An experimental evaluation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nice, France, 2008, pp. 3775–3782.

[4] W. S. Newman, M. S. Branicky, H. A. Podgurski, S. Chhatpar,
L. Huang, J. Swaminathan, and H. Zhang, “Force-responsive robotic
assembly of transmission components,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), vol. 3, Detroit, Michigan,
1999, pp. 2096–2102.

[5] H. Bruyninckx, S. Dutre, and J. De Schutter, “Peg-on-hole: a model
based solution to peg and hole alignment,” in IEEE International
Conference on Robotics and Automation (ICRA), vol. 2, Nagoya, Japan,
1995, pp. 1919–1924.

[6] J. Xiao, “Goal-contact relaxation graphs for contact-based fine motion
planning,” in IEEE International Symposium on Assembly and Task
Planning (ISATP), Marina del Rey, California, 1997, pp. 25–30.

[7] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[8] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[9] L. Rozo, P. Jiménez, and C. Torras, “A robot learning from demonstra-
tion framework to perform force-based manipulation tasks,” Inteligent
Service Robotics, vol. 6, pp. 33–51, 2013.

[10] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning force
control policies for compliant manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco,
CA, USA, 2011, pp. 4639–4644.

[11] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs.
optimal control – a unifying view,” Progress in Brain Research, vol.
165, no. 6, pp. 425–445, 2007.

[12] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online move-
ment adaptation based on previous sensor experiences,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), San
Francisco, California, 2011, pp. 365–371.

[13] L. Villani and J. De Schutter, “Force control,” in Springer Handbook of
Robotics, B. Siciliano and O. Khatib, Eds. Springer Berlin Heidelberg,
2008, pp. 161–185.

[14] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning
control,” Control Systems, IEEE, vol. 26, no. 3, pp. 96 – 114, june 2006.

[15] K. Moore, Y. Chen, and H.-S. Ahn, “Iterative learning control: A
tutorial and big picture view,” in Decision and Control, 2006 45th IEEE
Conference on, dec. 2006, pp. 2352 –2357.

[16] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibsz,
E. Bergery, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, Kobe,
Japan, 2009.

[17] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface
for the KUKA lightweight robot,” in ICRA Workshop on Innovative
Robot Control Architectures for Demanding (Research) Applications
– How to Modify and Enhance Commercial Controllers, Anchorage,
Alaska, 2010.

Author’s version — provided for personal and academic use. Do not redistribute.

