
Action-Grounded Surface Geometry and Volumetric Shape Feature
Representations for Object Affordance Prediction

Barry Ridge and Aleš Ude†

Abstract— Many 3D feature descriptors have been developed
over the years to solve problems that require the representation
of object shape, e. g. object recognition or pose estimation, but
comparatively few have been developed specifically to tackle
the problem of object affordance learning, a domain where
the interaction between action parameters and sensory features
play a crucial role. In previous work, we introduced a feature
descriptor that divided an object point cloud into coarse-
grained cells, derived simple features from each of the cells,
and grounded those features with respect to a reference frame
defined by a pushing action. We also compared this action-
grounded descriptor to an equivalent non-action-grounded
descriptor coupled with action features in a push affordance
classification task and established that the action-grounded
encoding can provide improved performance. In this paper, we
investigate modifying more well-established 3D shape descrip-
tors based on surface geometry, in particular the Viewpoint
Feature Histogram (VFH), such that they are action-grounded
in a similar manner, compare them to volumetric octree-
based representations, and conclude that having multi-scaled
representations in which parts at each scale can be referenced
with respect to each other may be a crucial component in
action-grounded affordance learning.

I. INTRODUCTION

The task of learning to predict object affordances with a
robotic system is a significant one and, despite the compar-
ative ease of affordance learning in humans, belies subtle
challenges at the intersection between action and perception
that have yet to be fully deciphered. Gibson observes that
“One may consider the layout of surrounding surfaces with
reference to a stationary point of observation, . . . Or one may
consider the layout of surrounding surfaces with reference
to a moving point of observation along a path that any
individual can travel. This is much the more useful way
of considering the surroundings, and it recognizes the fact
that animals do in fact move about. The animal that does
not move is asleep – or dead.” [1]. In this paper, we
consider the idea that a dynamic frame of reference based on
possible actions, when describing object surface geometries
with feature descriptors, may be an important discriminative
tool when predicting their respective affordances. We refer
to features defined in this way as action-grounded features.

As Stoytchev notes, “Grounding is a familiar problem
in AI. . . . Grounding, however, is also a very loaded term.
Unfortunately, it is difficult to come up with another term
to replace it with.” [2]. What we loosely mean here by
action-grounded features are features that are defined, in
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some important way, within the context of an action, or in
other words are variant with respect to the action. More
concretely, in our particular scenario, this means features
that are derived within a reference frame formed by the
contact point and push direction vector derived from a push
action trajectory acting on an object. As different pushes
from different directions and with different contact points
are applied to the object, the reference frame will change,
and so too will the features that are derived thereof.

While our previous work provided some tentative results
demonstrating the potential of action-grounded features in
an object push affordance bootstrapping context [3], and in
comparison with non-action-grounded features [4], the 3D
shape features that were used were relatively simplistic com-
pared to the raft of state-of-the-art 3D descriptors currently
in common usage. This study aims at integrating the crucial
aspects of our past efforts with a cross-comparison between
some of those state-of-the-art 3D descriptors re-purposed to
work in an action-grounded setting where possible.

One of the reasons that this can be achieved is because
many of these feature descriptors, having originally been
designed for pose estimation, contain a viewpoint compo-
nent, whereby the content of the descriptor varies depending
on the position of the viewpoint relative to the object. The
viewpoint, and the view direction vector, can function as
effective analogues to the contact point on the surface of
an object given a pushing action, and the push direction
vector respectively. That is precisely how we exploit this
component in order to motivate the design of the first
of our proposed feature descriptor contributions which is
based on describing object surface geometry using angular
histograms. The second of our proposed contributions is
based on multi-scale octree subdivision of object point clouds
and providing geometrical feature descriptors within each
of the subdivisions. The subdivisions, and their respective
features, are defined relative to a reference frame defined by
the push contact point and direction.

In the following we first review the literature on action-
grounded features in robotic affordance learning, as well
as both classical and more modern 3D object feature rep-
resentations. In Section II we introduce the first of our
proposed action-grounded feature descriptors, and in Section
III we describe the second one. Section IV describes our
experiments and results. Finally, in Section V we offer
concluding thoughts and plans for future work.
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A. Related Work

Object push affordance learning is an area of robotic
learning that has seen quite a number of approaches to its
study by various authors [5], [6], [7], [8], [9], [10], [11]
since the classic example by Fitzpatrick et al. [12], often
with different feature representations being used in each
case. Angular histograms have been used as object features
by Ugur et al. [7], [8] in order to describe the shapes of
objects in both affordance traversability studies [7], where a
robot must push its way past certain obstacles in a mobile
environment, and in manipulation studies [8], where a robot
must learn push affordances of objects on a table surface.

The idea of grounding features with respect to a local
reference frame defined by actions like pushing or grasping
has been exploited also by other authors. For instance,
Hermans et al. [13] used a feature descriptor that takes a
segmented object point cloud as input and computes both
local and global shape descriptors from the 2D projection of
the point cloud onto the supporting table surface encoded in
a coordinate frame defined by the object center and a chosen
pushing contact location. A notable difference in our work
presented here is marked by various efforts to extend such
an idea into three dimensions.

Mar et al. [14], with their Oriented Multi-Scale Extended
Gaussian Image (OMS-EGI) descriptor, described a scenario
where angular histograms are computed from octree subdi-
visions of the axis-aligned bounding boxes (AABB) of tool
models with respect to the hand reference frame of an iCub
robot, which vary depending on how the tools are grasped.
This work is similar to both our previous work [3], [4],
and the octree-based feature descriptor we propose in this
paper (cf. Sec. III) in the sense in which objects are divided
into parts, but our work differs in a number of key respects.
Firstly, the OMS-EGI descriptor was extracted from prior
models of tools in [14], whereas we apply our descriptors
directly to object point cloud segmentations from real world
scenes. In addition, the types of features that we encode in
each of the sub-parts are different and their design is also
motivated by the difference in application.

3D shape descriptors have seen much development in
recent years and can be broken down into two categories:
local descriptors, that are fine-grained, where each point on
an object surface carries its own geometric descriptor, such as
Spin Images [15] or Signatures of Histograms of Orientations
(SHOT) [16]; or global descriptors, that are more coarse-
grained and typically operate at the object level where the
objects have typically been segmented beforehand, like the
Global Radius-Based Surface Descriptor (GRSD) [17].

Many of the 3D feature descriptors provided in the popular
Point Cloud Library (PCL) [18], which formed the basis of
the surface geometry descriptors presented in this work, are
built on the core conceptual underpinning of Point Feature
Histograms (PFH) [19]. Here we review some of these
descriptors, focusing primarily on those that are, or that
can be adapted to be, global descriptors. Given point cloud
P = {pppi}, associated estimated surface normals N = {nnni},

and query point ppp, the original PFH algorithm [19] involves
firstly, finding pairs of points pppi and ppp j (i 6= j) in a local k-
neighbourhood or within a certain radius from a given query
point ppp, as well as their associated point normal estimates
nnni and nnn j, and secondly, constructing a Darboux uuuvvvwww frame
coordinate system where

uuu = nnni, vvv = uuu× (ppp j− pppi)/‖ppp j− pppi‖, www = uuu×vvv, (1)

thereby allowing for the calculation of normal angular devi-
ations 〈α,φ ,θ〉 for each point pair as follows:

α = vvv ·nnn j, φ = uuu · (ppp j− pppi)

‖ppp j− pppi‖
, θ = arctan(www ·nnn j,uuu ·nnn j). (2)

These values are then binned into a histogram of size
53 = 125 in the case of PFH [19], where each of the three
feature dimensions are subdivided into five divisions. PFH is
normally used as a local descriptor, where such a histogram
is generated for each of the points in the point cloud with
a relatively small nearest neighbour search radius. However,
it may be used as a global descriptor where a histogram is
calculated just once for a single point (the object centroid for
example) if the search radius is set to the maximum distance
between any two points in the point cloud, that is, large
enough to encompass the whole object.

The original PFH [19] suffers from computational ineffi-
ciency since, not only does it pair the query point ppp with
its neighbours, but it also pairs each of the neighbours with
each other. Thus, for a point cloud with n points and local
neighbourhoods with k neighbours, it offers a complexity of
O(nk2). This motivated the subsequent the Fast Point Feature
Histogram (FPFH) algorithm [20] which only considers
point pairs between the query point and its neighbours, an ef-
ficiency referred to as the Simplified Point Feature Histogram
(SPFH), which helps reduce the complexity to O(nk). FPFH
constructs a histogram of features by constructing separate
histograms in each of the three angular feature dimensions,
dividing them into 11 subdivisions, and concatenating them
together to form 33 bins. FPFH may also be converted to a
global descriptor in the same way as PFH. A more advanced
global descriptor formulation based on FPFH came later in
the guise of the Viewpoint Feature Histogram (VFH) [21].
It is this descriptor that forms the basis of the first of our
proposed contributions, as discussed in the following section.

II. ACTION-GROUNDED VIEWPOINT FEATURE
HISTOGRAM

The original motivation behind the VFH was to incorpo-
rate pose estimation into the object recognition provided by
PFH or FPFH, so where those algorithms are invariant to
object pose, VFH is divided into both a viewpoint direction
component and an extended FPFH component to describe the
object geometry. The viewpoint component is calculated by
finding the vector between a given viewpoint and the object
centroid, translating it to each point in the object cloud, and
binning the angles between it and each of their respective
normals to a histogram. The final resulting histogram is a
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concatenation of the histograms from each of the two com-
ponents – three 45-bin histograms built from the extended
FPFH component and a 128-bin histogram for the viewpoint
component – making 263 bins in total. In the PCL, VFH may
be optionally extended with a shape distribution component
that measures the distances of the points to the centroid,
normalises them, and bins them to an additional fourth 45-
bin histogram to make 308 VFH bins in total. This idea was
used to introduce the Clustered Viewpoint Feature Histogram
(CVFH) [22] and allows for discrimination between object
surfaces that might share similar normal distribution but
differ in terms of their point distribution, e.g. elongated
versus compact planar surfaces.

Fig. 1. Action-grounded Darboux frame construction example for the shape
component of AGVFH.

In our proposed action-grounded viewpoint feature his-
togram (AGVFH), we make two key changes to the original
VFH descriptor, modifying both the shape component and
the viewpoint component respectively, in order to ground
the descriptor with respect to the pushing action. In the
case of the shape component, instead of using the object
centroid as the central point for the SPFH computation as in
the original descriptor, we now use the push contact point.
As well as that, we use the push direction normal as the
basis for forming the Darboux frame. This is visualised in
Figure 1 where the Darboux frame is formed between contact
point pppc and a given point in the object point cloud ppp j ∈ P.
The push vector nnnc is found by fitting a line to the push
trajectory from the contact point onwards using least squares
regression. It is worth noting here that although we calculate
the push vector using a push trajectory gathered after the fact
in the experiments described in this paper, in principle such
push vectors could just as easily come from pushes that are
planned in advance by a robot. Thus, we construct a uuuvvvwww
Darboux frame coordinate system where

uuu = nnnc, vvv = uuu× (ppp j− pppc)/‖ppp j− pppc‖, www = uuu×vvv. (3)

The angular histograms are then calculated using:

α = vvv ·nnn j, φ = uuu · (ppp j− pppc)

‖ppp j− pppc‖
, θ = arctan(www ·nnn j,uuu ·nnn j). (4)

In the case of the viewpoint component, we use the contact
point as the viewpoint and replace the vector between the
viewpoint and the object centroid with the push vector. Our
hypothesis, to be borne out experimentally, is that this type of

encoding could provide an advantage in the object affordance
learning setting, where the description of the object surface
geometry relative to the action-grounded reference frame
matters more than an invariant description.

III. ACTION-GROUNDED OCTREE SHAPE
FEATURES

Our proposed action-grounded octree shape features
(AGOSF) representation is similar in nature to our original
action-grounded shape feature descriptor as proposed in [3],
but uses octrees to decompose the point cloud into part
cells instead of separately subdividing along the axes via
partitioning planes. An octree is a recursively specified tree
data structure that subdivides a three dimensional space into
eight octants, each of which may be subsequently subdivided
into a further eight octants, and so on. Thus, an arbitrary
level of detail may be encapsulated by the representation
depending on the octree depth level. This octree subdivision
process is illustrated for a segmented object point cloud
sample in Figure 2. The octree subdivision is similar in
nature to that of the OMS-EGI descriptor by Mar et al. [14],
but our proposed method differs in the types of features
which are encoded in each of the octree cells. Note that the
octree octants, which we refer to as cells in the remainder,
have edge lengths that vary in each dimension depending on
the structure of the object point cloud being decomposed. In
each of the cells, we derive the following features:

• Local surface normal estimate: x, y, z components.
• Centroid: x, y, z components.
• Point count: 1-dimensional.
• Local curvature estimate: 1-dimensional.

The action-grounded nature of this descriptor is based on
describing the above features, in particular the centroid
features, with respect to the action frame, which is defined
in the same way as previously described in [3], [4]. Thus, the
action frame has its origin at the contact point on the object,
its positive y-axis points in the direction of the pushing
motion parallel to the table surface, its positive z-axis points
upward from the table surface, and its positive x-axis points
to the right of the object.

Our aim with this style of feature design was to capture
both the local, fine-grained and the global, coarse-grained
shape structure of objects at multiple resolutions. Prior to
an object point cloud being decomposed using the octree
subdivision, local estimates of surface normals are taken at
each of the points in the point cloud using the standard
method from the PCL as described in [23] (pp. 45–50).
With these local point normal estimates in place, given a
particular octree cell, a mean may be taken over the point
normals contained within that cell in order to estimate the
local surface normal. This method of estimating the local
surface normal within the cell is an update from our approach
in [3], where RANSAC was used to fit a plane to the points
instead. The important point to note is that surface normal
estimates within cells can provide the local, fine-grained
shape description that we desire within the octree structure.
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Fig. 2. Action-grounded octree shape feature (AGOSF) 3-level octree decomposition of a sample segmented object point cloud.

Meanwhile, the more global, coarse-grained structure is
captured primarily by the centroids of the parts of the point
cloud contained within each of the cells. This means that,
even though both the point clouds of a tennis ball and a foot-
ball would be decomposed into the same number of octree
cells, the centroids of the cells would capture their respective
differences in height, width and breadth. In addition to the
cell centroids, we also include cell point counts in an effort
to capture the structural mass of different parts of the object.
Finally, we also include a local 1-dimensional curvature
estimate in each of the cells, which is the mean over point
curvature estimates derived by taking the ratio between the
minimum eigenvalue and the sum of the eigenvalues of
the covariance matrix of local k-neighbours of each point
(in our experiments we selected a k value of 9). This
method, which is again provided in the PCL and described
further in [23] (pp. 45–50), replaces the curvature estimation
methods we proposed previously in [24]. Thus, depending
on the number of octree depth levels, the AGOSF feature
descriptor can have different dimensionality for arbitrarily
detailed representations, generalising to ∑D

l=0(8
l · 8) for a

given maximum depth level D.
There is, however, an issue with the above described

representation that we have so far ignored. Sometimes,
particularly in cases where an object is irregularly shaped or
when the principle axes of a regularly shaped object are not
well aligned with the action frame, some of the octree cells
will be empty. This poses a problem because it is impossible
to find either point normal estimates or a point centroid in an
empty cell. Obviously this issue does not arise in the case of
our own point counting or with the angular histograms of the
OMS-EGI descriptor- in those cases, if a cell is empty, a zero
is counted. In the absence of a theoretically obvious solution
to this issue, given an instance of an empty cell, we decided
to set the cell normal components, centroid components,
point count, and curvature estimate, all to zeros.

IV. EXPERIMENTS

In the experiments described below, the goal was to take
an affordance dataset of segmented object point clouds, push
action trajectories and associated affordance labels, apply
multiple different feature descriptors to the object point
clouds making use of the push action information where
possible for action-grounding, and train classifiers to learn a
mapping of the form f : Rn→ N from input feature vectors
to affordance class labels, where n is the dimensionality of
a given feature descriptor. We used a random forests (RF)
[25] classification model with 500 trees as the classifier in
all cases, as this has proven reliable from previous work [4].

A. Dataset

We used a slightly modified form of the human push
affordance dataset described in [4] for our experiments,
which consisted of an additional object alongside the five
original household objects: four flat-surfaced objects; a book,
a marshmallow box, a cookie packet, and a biscuit box,
and two curved-surfaced objects; a yoghurt bottle and a
coffee cup. These are illustrated in Fig. 3. The dataset was
collected as follows. Pushes were performed on the objects
by a human wearing a Polhemus Patriot™electromagnetic
tracking device on their hand while a Microsoft Kinect sensor
recorded point cloud data. The tracking device recorded the
trajectory of the fingertip of the human at a frequency of
60Hz while they pushed the objects.

Objects were placed at random start locations and in
various poses within the workspace and within view of the
Kinect sensor, and the human experimenter would perform
straight-line pushes on the objects, attempting to keep the
pushes within reasonable limits of 5 different push cat-
egories: pushing through the top, bottom, left, right and
centre of the objects respectively, from the direction of the
field of view of the Kinect. Table I details the number of
different affordances produced by each of the objects during
the interactions. Certain objects prohibited certain certain
affordances. For example, neither the cookie pack nor the
book could easily be placed in sideways or upright poses
and thus did not produce instances of the toppling affordance.
The collected data contained 4 different affordance categories
and the samples were hand-labelled with four ground truth
labels to reflect this: left rotation, right rotation, forward
translation and forward topple. For more details on this
dataset and the data collection process, see [3].

Fig. 3. Test objects used in our experiments.
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TABLE I
OBJECT/AFFORDANCE MATRIX

Topple Trans. Left Rot. Right Rot. Total
Cookie Pack 0 6 6 6 18
Mallow Box 12 9 6 6 33
Biscuit Box 12 9 6 6 33
Book 0 6 6 6 18
Yoghurt Bottle 6 6 3 3 18
Coffee Cup 3 6 5 0 14
Total 33 42 32 27 134

B. Feature Descriptors

In our experimental evaluation we compared multiple
different feature descriptors, including variations of the two
descriptors proposed in this paper. These are listed in the re-
sults of Table II, where our proposed methods are italicized,
and described here in more detail. In the cases where octrees
are used in the feature descriptor, we append the octree
depth level to the descriptor name, thus we use the notation
AGOSF-2 to denote a 72-dimensional AGOSF descriptor
constructed from a two-level octree, AGOSF-3 for a 584-
dimensional descriptor constructed with a three-level octree,
and so on. The “Action Features” in Table II refers to the
addition of six features made up of the x, y and z components
of the push contact point and the x, y and z components of
the normalised push trajectory vector respectively in world
coordinates.

1) PCL Descriptors: In the case of PFH, rather than
estimating point feature histograms for every point in the
point cloud, we form a global descriptor by estimating a
PFH just for the object centroid with a calculation radius
encompassing the entire cloud. We also tested a modification
where, rather than using the object centroid as a basis for
calculation, we use the push contact point. VFH refers to
the PCL version of the VFH descriptor with three 45-bin
histograms built from the extended FPFH component, a 128-
bin histogram for the viewpoint component, and a 45-bin
histogram for the shape distribution component to make
308 bins in total. In the “Origin Viewpoint” version, we
used the default value of (0,0,0) as the viewpoint. In the
“Contact Point Viewpoint” version we use the push contact
point as the viewpoint, but without the push vector viewpoint
modification discussed in Section II. In all VFH cases, we
use the scale variance as proposed in the CVFH paper [22]
by keeping the histograms unnormalised. We also investigate
two additional global descriptors from the PCL: the Global
Fast Point Feature Histogram (GFPFH) [26] and Global
Radius-Based Surace Descriptor (GRSD) [17].

2) OMS-EGI Descriptor: We implemented our own ver-
sion of the OMS-EGI descriptor in Matlab. Note that our
usage of the descriptor does not precisely follow the method-
ology of the original authors [14], since they applied it to
prior models of objects, rather than to partial views of objects
from segmented point clouds as in our case. In addition,
they used the descriptor for clustering tool pose categories in
order to subsequently inform an affordance prediction model,
rather than for direct affordance prediction, as in our case.

3) Our Descriptors: AGVFH refers to our proposed
action-grounded VFH feature descriptor as described in Sec-
tion II. AGSF refers to our 35-dimensional action-grounded
shape feature descriptor from [3]. Descriptors preceded by
“Non-” refer to non-action-grounded equivalents of their
counterparts, where the object point clouds are first trans-
formed to the action frame in order to preserve similar object
orientation, but whose centroids are then translated to the
origin prior to feature extraction. The AGOSF features are
as previously described in Section III.

C. Results

We performed t = 10 trials of k-fold cross validation with
k = 10 using the random forests classifier on each of the
descriptors and took the mean of the following F1 score
calculation over all trials and folds in order to evaluate their
respective performance and produce the results in Table II:

TP =
t

∑
i=1

k

∑
j=1

TP(i, j), FP =
t

∑
i=1

k

∑
j=1

FP(i, j), FN =
t

∑
i=1

k

∑
j=1

FN(i, j),

F1 = (2 ·TP) / (2 ·TP + FP + FN),

where TP denotes the number of true positives, FP denotes
the number of false positives, FN denotes the number of
false negatives, and i and j index the trials and folds
respectively. The multiple trials were conducted in order to
mitigate against random variations in the learning process.
The results in Table II have been divided for convenience into
four groups of the following categories: surface geometry-
based descriptors; our descriptors from [3], [4]; 2-level
depth octree-based descriptors (OMS-EGI and AGOSF); 3-
level depth octree-based descriptors. We present confusion
matrices for AGOSF-3, AGVFH, and OMS-EGI-3 in Tables
III, IV, and V respectively. In addition, we present the
top 20 most relevant features as determined by the random
forests algorithm (described as “variable importance” in [25])
averaged over all trials and folds for the AGOSF-3 descriptor
in Fig. 4. Overall, as can be seen in Table II, the 3-depth
octree-based AGOSF-3 descriptor outperforms all of the

TABLE II
10-FOLD CV RANDOM FORESTS CLASSIFIER RESULTS

Features F-Score
Object Centroid PFH [19] + Action Features 0.4053
Contact Point PFH 0.2566
GFPFH [26] + Action Features 0.4550
GRSD [17] + Action Features 0.4021
Origin Viewpoint VFH [21] 0.3130
Origin Viewpoint VFH [21] + Action Features 0.3948
Contact Point Viewpoint VFH [21] 0.3688
Contact Point Viewpoint VFH [21] + Action Features 0.4725
AGVFH (cf. Sec. II) 0.8889
Non-AGSF [4] + Action Features 0.8706
AGSF [3] 0.9184
OMS-EGI-2 [14] 0.5751
OMS-EGI-3 [14] 0.6480
Non-AGOSF-2 (cf. Sec. III & IV-B) + Action Features 0.8801
AGOSF-2 (cf. Sec. III) 0.9391
Non-AGOSF-3 (cf. Sec. III & IV-B) + Action Features 0.7042
AGOSF-3 (cf. Sec. III) 0.9526

Author’s version — provided for personal and academic use. Do not redistribute.



other methods with a relatively high mean F-score of 0.9588.
We discuss the results in more detail in the following sub-
sections.

TABLE III
10-TRIAL, 10-FOLD CV CONFUSION MATRIX: AGOSF-3

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 280 50 0 0
Translate 10 410 0 0
Left Rot. 0 0 320 0

Right Rot. 0 0 0 270

TABLE IV
10-TRIAL, 10-FOLD CV CONFUSION MATRIX: AGVFH

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 270 60 0 0
Translate 80 330 10 0
Left Rot. 10 10 290 10

Right Rot. 0 20 0 250

TABLE V
10-TRIAL, 10-FOLD CV CONFUSION MATRIX: OMS-EGI-3

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 270 60 0 0
Translate 70 340 60 50
Left Rot. 30 100 170 20

Right Rot. 10 110 0 150

1) Surface Geometry-Based Descriptors: Of all of the
surface geometry-based descriptors we tested, few, if any,
performed particularly well in our experiments. The one
exception is our AGVFH descriptor, which received a mean
F-score of 0.8618. As can be seen in the confusion matrix
of Table IV, it sometimes confuses topples for forward
translations. We speculate that the reason why AGVFH
does so much better than the rest of its surface geometry-
based counterparts is because action-grounding the reference
frame when computing the shape component heavily aids the
discriminative capabilities of the descriptor in this type of
affordance learning task (cf. Sec. IV-C.4).

2) Octree-Based Descriptors: In the case of the more vol-
umetric octree-based representations, our proposed AGOSF
descriptors also do quite a bit better than their OMS-EGI
counterparts, at both the less-detailed 2-level depth, and at
the more detailed 3-level depth. We note that the difference
in performance here is most likely due to the OMS-EGI
descriptor lacking a mechanism for describing the distances
of octree cells with respect to one another, something that is
encoded by the inclusion of centroid features in the AGOSF
descriptor. Some evidence for this assertion is provided in the
results of Figure 4, which shows that the top 20 most relevant
features provided by AGOSF are almost exclusively centroid
features. It is also worth noting that the octree-based AGOSF
methods significantly outperform the surface geometry-based
AGVFH when the third octree depth level is used. We reason

that this is due to the multi-scale nature of the representation.
Describing the shapes of the objects at multiple granularities
is likely to provide an advantage over the angular histogram
approach of AGVFH.

3) Action-Grounding: Our results support the general
claim that action-grounding can improve performance in
an affordance learning task such as the one presented in
these experiments. Action-grounding the VFH descriptor
provided a substantial performance improvement over its
non-action-grounded analogues. Our previously proposed
action-grounded features [3], [4] once more proved to be
better than their non-action-grounded equivalent on a slightly
expanded dataset. The action-grounding paradigm also ap-
peared to work well in the case of octree-based descriptors,
particularly as the depth of the octree increased.

Feature Relevances

0 0.005 0.01 0.015 0.02 0.025 0.03

Depth 1, Bin 1: Centroid Z

Depth 2, Bin 13: Centroid X

Depth 2, Bin 34: Centroid X

Depth 2, Bin 60: Centroid X

Depth 2, Bin 26: Centroid X

Depth 2, Bin 41: Centroid X

Depth 2, Bin 62: Centroid X

Depth 2, Bin 32: Centroid X

Depth 1, Bin 4: Centroid X

Depth 2, Bin 6: Centroid X

Depth 2, Bin 42: Centroid X

Depth 1, Bin 1: Centroid X

Depth 1, Bin 2: Centroid X

Depth 1, Bin 8: Centroid X

Depth 2, Bin 30: Centroid X

Depth 1, Bin 5: Centroid X

Depth 2, Bin 16: Centroid X

Depth 1, Bin 6: Centroid X

Depth 2, Bin 58: Centroid X

Depth 2, Bin 44: Centroid X

Fig. 4. Top 20 feature relevances for the AGOSF-3 descriptor averaged
over all 10 cross validation folds in all 10 trials.

4) Feature Relevance: According to the results of Figure
4, the top 20 most relevant features provided by AGOSF-3
are almost entirely made up of the x components of centroid
features from octree cells at various depth levels. This makes
sense within the context of the presented affordance learning
task, since, in order to be able to distinguish between forward
translations, left rotations, and right rotations, when pushing
forward towards an object, it is useful to know the relative
positions of object parts along the x-axis of the action-
grounded reference frame. In addition, we observe that one of
the top 20 features is a centroid z component, which indicates
some selectivity for features that might predict the toppling
affordance.

Figure 5 shows a comparison between feature relevances
for the AGVFH descriptor and the contact point viewpoint
VFH descriptor with action features. There are noticeable
differences here, but in particular, the most relevant features
for AGVFH occur at the extremities of the φ bin as opposed
to the centre of the φ bin for VFH. Since, in the case
of AGVFH, the φ features measure the angular deviations
between the push vector and the vectors between the contact
point and other object points, it is likely that the most active
φ features for a given object are on opposite sides of the
spectrum for pushes that are instigated on opposite sides
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of the object respectively. This may be the reason why the
classifier learns to favour features that discriminate between
opposite φ angles, since opposite φ angles indicate opposite
pushes, which in turn often indicate opposite affordances, at
least in this experimental setting.
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Fig. 5. Feature relevances for AGVFH (blue) vs. Contact Point Viewpoint
VFH + Action Features (green).

V. CONCLUSIONS AND FUTURE WORK

We proposed two novel feature descriptors based on the
paradigm of action-grounding for object affordance learning
tasks. The first of these is based on modifying the viewpoint
feature histogram such that both its shape and viewpoint
components are grounded with respect to a push action
reference frame. The second one is based on subdividing the
object point cloud using a multi-scale octree and defining lo-
cal features within each of the octree cells. We demonstrated
the effectiveness of these methods in a cross-comparison with
related descriptors in both shape geometry-based and octree-
based categories on an object affordance learning dataset.

With regard to future work, we aim to test these feature
description methods in affordance learning experiments using
a real robot. It would be of particular interest to test the
efficacy of the descriptors in affordance regression tasks
where the objective is to predict the object motion vector or
other continuous variables, such as the distance an object will
travel. A wider variety of objects, including balls, cylinders,
etc. would inevitably lead to a wider variety of affordances,
but they would also be much more difficult to predict and to
structure the experiments around such that the learning task
is feasible. To this end, we anticipate that a more data-driven
approach to the learning apparatus in combination with the
essential characteristics of the types of feature descriptors we
have proposed in the above could prove fruitful.
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