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Abstract—Recent work in robotics, particularly in the domains
of object manipulation and affordance learning, has seen the
development of action-grounded features, that is, object features
that are defined dynamically with respect to manipulation actions.
Rather than using pose-invariant features, as is often the case with
object recognition, such features are grounded with respect to the
manipulation of the object, for instance, by using shape features
that describe the surface of an object relative to the push contact
point and direction. In this paper we provide an experimental
comparison between action-grounded features and non-grounded
features in an object affordance classification setting. Using an
experimental platform that gathers 3-D data from the Kinect
RGB-D sensor, as well as push action trajectories from an elec-
tromagnetic tracking system, we provide experimental results that
demonstrate the effectiveness of this action-grounded approach
across a range of state-of-the-art classifiers.

I. INTRODUCTION

In the field of autonomous robotics, vision and control
are often treated as distinct domains in which useful data
and action commands are derived, processed, or manipulated
separately to achieve a broader goal. In the context of robotic
affordance learning [1], [2], this has traditionally been the
standard approach, and simplifying assumptions are often
made in order to make targeted problems more soluble. For
example, in the case of object push affordance learning [3]–
[7], if the desired result is to learn how the positions and
orientations of objects change when pushed, the learning task
can be simplified by selecting prior object models, using
standard computer vision techniques to localise the object
models within a scene, and inferring data such as end effector
contact points on the objects using the models. However,
when fewer assumptions are made about the shapes of objects,
the types of push actions that might be performed, and the
resulting affordances, such techniques may not be as feasible.
On the other hand, the formation of dynamic object models,
through interactive experience, that are semantically associated
with actions at a more intrinsic level, is a promising research
area in that it offers the potential to enhance developmental
robotic learning and, ultimately, robotic autonomy.

In this paper, we explore the use of action-grounded 3-D
object shape features in an object push affordance classification
setting. Using an RGB-D sensor to gather 3-D point cloud data
of objects, and using an electromagnetic tracking system to
gather push trajectory data, objects on a table surface were
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pushed by a human experimenter (cf. Fig. 1) whose hand
motion trajectories were tracked while 3-D point clouds of the
objects were recorded. The objects were pushed from various
different positions on their surfaces and from various different
directions, exhibiting a number of different affordances such as
forward translations, forward topples, left rotations and right
rotations, depending broadly on the shapes of the objects,
their orientations, and how they were pushed. Our chief
point of investigation was to determine whether the proposed
action-grounded 3-D shape feature approach to dynamic object
affordance modeling in this setting offers any improvement
over more standard methods.

A. Related Work

E. Gibson discusses that learning affordances refers to
“narrowing down from a vast manifold of (perceptual) infor-
mation to the minimal, optimal information that specifies the
affordance of an event, object, or layout”[8]. Selection and use
of the action-relevant features have already been studied and
shown to be effective in learning and representing affordances.
For example Montesano et al. [4] learned affordances only
using the object properties that are found to be relevant to
the corresponding actions, for more effective predictions and
planning. Hart and Grupen also discussed the necessity of
selecting the relevant features in order to capture the salient
information while learning affordances [9]. Lately, it was also
shown that use of relevant features in affordance learning can
lead to the discovery of hierarchical structures in predicting in-
terdependent affordances of different complexities[10]. While
all these studies discuss how to select the relevant features from
a general purpose feature set, we aim to find a transformed
feature set based on the actions in consideration.

Implicit encoding of object manipulation information in ob-
ject shape feature descriptors has been applied in the grasping
field, often via the use of haptic or tactile sensors. Recently,
Björkman et al. [11] employed tactile measurements from the
haptic finger sensors on a robotic hand to enhance prior visual
object models via implicit object surface modeling. Meier et
al. [12] developed a probabilistic spatial approach for building
compact 3-D representations of unknown objects probed by
tactile sensors using Kalman filters to build a probabilistic
model of the contact point cloud.

Object shape features from 3-D vision have been used in
prior work on push affordance learning [6], [7], [13], [14],
but grounding such features relative to pushing actions has
not been studied as extensively. Recent work by Hermans
et al. [15], [16] used shape features encoded in a reference
frame defined by object centres and push locations based on
2-D projections of object point clouds. Krainin et al. [17]
developed an approach to building 3-D models of unknown
objects for grasping based on a depth camera observing a
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robotic hand while moving an object and modeling the object
surface dynamically using sets of small surface patches.

In our previous work [18], we developed a similar idea,
employing full 3-D shape features grounded with respect
3-D action trajectories to perform bootstrap discovery and
prediction of object affordance classes using a multi-view self-
supervised learning algorithm. In this work, by contrast, we
focus on examining action-grounded 3-D shape features in
more detail and investigating whether or not they provide an
improvement over features that are not implicitly defined with
respect to the manipulation.

The remainder of the paper is structured as follows. In
the following section, we give a brief overview of our experi-
mental platform including the object point cloud segmentation
process. In Section III we describe how the action-grounded
features and non-grounded features are derived, including the
object segmentation process, the definitions of both the action-
grounded and non-action-grounded feature reference frames,
and the descriptions of the features themselves. In Section
IV we describe our experiments with various state-of-the-art
classifiers and results. Finally, in Section V, we conclude and
discuss potential future work.

II. EXPERIMENTAL SETUP

Fig. 1. Our setup for human object push affordance data gathering.

In our experimental setup for human object push data gath-
ering, shown in Figure 1, we employed a Microsoft Kinect

TM

RGB-D sensor for gathering 3-D point cloud data of scenes
and objects, and a Polhemus Patriot

TM
electromagnetic tracking

system for gathering trajectory data of human hand motions.
A wooden table with a wooden frame was used as the work
surface in order to avoid electromagnetic interference from
metallic objects in the environment. A tracking sensor was
placed at the end of the index finger of a human experimenter,
while the tracking source was located at a corner of the table
with the Kinect facing the table at a 45◦ angle as shown in
Figure 1. Objects were placed at arbitrary locations on the
table surface where they were pushed from various directions
and at various contact points by the experimenter. 3-D point
clouds of the scene were recorded both before and after each
push interaction while hand trajectories were tracked during
the interaction. Both the point clouds and the trajectories were
processed offline where the objects were segmented from the
table surface, object point clouds and push trajectories were
transformed into the push action reference frame, and action-
grounded shape features were extracted.

We used tools from the Point Cloud Library (PCL)1 to
perform dominant plane segmentation on scene point clouds
in order to acquire segmented point clouds of the objects lying
on the table surface. This involved using a pass-through filter
to subtract points in the scene cloud outside certain range
limits, using RANSAC [19] to fit a plane model to the scene
cloud, subtracting those scene points that were plane inliers,
and clustering the remaining points to find the objects using
Euclidean clustering [20].

III. ACTION-GROUNDED VS. NON-GROUNDED
3-D SHAPE FEATURES

In this section, we first discuss how the reference frames
in our definitions of action-grounded and non-action-grounded
features differ, before proceeding to describe the features
themselves.

A. Action-grounded reference frame

We define the action-grounded frame to be the reference
frame with its origin at the contact point on the object, its
positive y-axis pointing in the direction of the pushing motion
parallel to the table surface, its positive z-axis pointing upward
from the table surface, and its positive x-axis pointing to the
right of the object. In order to transform both the object point
cloud and the push trajectory into the action-grounded frame,
we perform the following procedure. Firstly, we transform the
push trajectory from the Patriot tracker reference frame to
the Kinect reference frame by using least-squares adjustment
on a series of control points and calculating a rigid body
transformation of the form x′ = c + Rx, where x′ is the
transformed vector, x is the initial vector, c is the translation
vector, and R is a rotation matrix. The control points are
gathered prior to performing pushing experiments by placing
the tracking sensor at various positions in the workspace,
recording the sensor position, recording the Kinect point cloud
of the scene, then locating the sensor in the point cloud.
Since the pushing motions performed in our experiments
always follow an approximately linear trajectory, we proceed
by using orthogonal distance regression via singular value
decomposition to fit a 3-D line to the push trajectory. Finally,
we find the point of intersection between this fitted line and
the pre-push object point cloud, infer this to be the contact
point, and finally transform the pre-push object point cloud as
well as the push trajectory to the action frame as defined by
the contact point and the fitted line. This process is visualized
in Figure 2.

B. Non-action-grounded reference frame

In the case of the non-action-grounded features, we fit a
bounding box to the object point cloud, found the centroid
of the bounding box, and used that as the origin for our non-
grounded reference frame. The axis orientations were found by
transforming the object point cloud with respect to the Kinect
reference frame such that the positive y-axis pointed from the
origin of the Kinect frame towards the object, parallel to the
table surface; the positive z-axis pointed upward from the table
surface; and the positive x-axis pointed to the right of the
object. This is illustrated for a sample object point cloud in
Figure 3.

1http://pointclouds.org
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(a) Object point clouds be-
fore/after interaction + hand
push trajectory

(b) Point clouds + trajectory
transformed to push action ref-
erence frame.

(c) Pre-push point cloud action
reference frame grounding.

(d) Fitting planes to pre-push
object cloud parts, grounded
with respect to action.

Fig. 2. Action-grounded shape feature extraction pipeline.
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Fig. 3. Sample object point cloud with bounding box and centroid for
definition of non-action-grounded reference frame.

C. Action-grounded 3-D shape features

Fig. 4. Partitioning a sample object point cloud into sub-parts. Top row:
original pre-push object point cloud. Middle row: partitioning planes divide
the point cloud evenly in each dimension to create sub-parts. Bottom row:
planes are fitted to each sub-part for feature extraction.

With the pre-push object point cloud now grounded in
the action reference frame, we turn to generating a feature
descriptor that describes the shapes of the object point clouds
with respect to the pushing action and that is rich enough to
capture the resulting affordance effects. The main idea behind
our approach is to divide the object point clouds into cells of
sub-parts and use the properties of the sub-parts of the point
clouds as a basis for the feature descriptor. More concretely,
we divide each object point cloud evenly with respect to its
minimum and maximum points along each coordinate axis
such that there are seven cells that overlap for redundancy:
one for the overall point cloud, two for the x-axis, two for
the y-axis, and two for the z-axis. We then use two types of

feature descriptors in each cell. To gauge the position of the
sub-part in each cell relative to the action frame, we find the
centroid of the points in the cell, which gives us three features.
To gauge the shape of the sub-part in each cell relative to the
action frame, we fit a planar surface to the points within the
cell and use the two largest coordinates of the plane normal
as features. Examples of these features being extracted from
different point clouds are shown in Figure 7.

Using these five types of features, three for relative part
position and two for planar surface fit orientation, we extract
the five features for each part. This results in the following list
of 35 features that are extracted:

Oa
1...5: Global point cloud centroid/plane features.

Oa
6...10: x-split, left side centroid/plane features.

Oa
11...15: x-split, right side centroid/plane features.

Oa
16...20: y-split, front side centroid/plane features.

Oa
21...25: y-split, back side centroid/plane features.

Oa
26...30: z-split, top side centroid/plane features.

Oa
31...35: z-split, bottom side centroid/plane features.

D. Non-grounded 3-D shape features

For the non-grounded feature set, we used the same
methodolgy in terms of the object parts division as described
in the previous sub-section, and we extracted the same features
as before, but crucially, the reference frame was not defined
with respect to the push action, as with the action-grounded
features, but was defined with respect to the object centroid.
Thus, we have:

Ob
1...35: non-grounded analogues of features Oa

1...35.

Since such an object centroid-oriented approach is a standard
means of deriving features in many computer vision tasks,
such as object recognition and classification, this seemed like
the most reasonable methodology for performing a direct
comparison between the action-grounded features and similar
non-action-grounded features that might have been employed
in their absence.

E. Action features from push trajectories

In order to make it feasible for the classifiers to be able
to predict the affordances of the objects using non-action-
grounded shape features, it is necessary to include information
about the action in the feature descriptor in some form. We
approached this by augmenting the non-grounded 3-D features
with features derived from the object contact point and the
push action trajectory. These were as follows:
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Ob
36...38: x, y, z-coordinates of object contact point.

Ob
39,40: x, y-parameters of push trajectory line fit.

The z-parameter of the line that was fit to the push
trajectory was deemed redundant since all pushes took place in
the same plane, i.e. along the table surface. Combining these
5 features with the 35 features of the previous sub-section
yielded a 40-dimensional feature vector for the non-grounded
feature set.

Fig. 5. Test objects used in our experiments.

IV. EXPERIMENTS

Fig. 6. The 5 different push types (left) and 4 affordance classes (right).

The experimental environment was set up as shown in
Figure 1. When objects with arbitrarily complex geometries,
or indeed sometimes objects with simple geometries like
balls [21], are used for affordance learning experiments, the
resulting affordances can be quite difficult to hand-label for a
human. Thus, in the absence of unsupervised or self-supervised
affordance class discovery [6], [22], which was not employed
in this work, regularly shaped objects were used in order to
allow for reliable human ground-truth labeling. We selected
5 household objects (cf. Fig. 5) for the experiments: 4 flat-
surfaced objects; a book, a marshmallow box, a cookie packet,
and a biscuit box, and 1 curved-surfaced object; a yoghurt
bottle. A dataset was collected as follows, where object push
tests were performed on each of the 5 objects and the resulting
data was processed, leaving 120 data samples. Objects were
placed at random start locations and in various poses within
the workspace and within view of the Kinect sensor, and the
human experimenter would perform straight-line pushes on
the objects, attempting to keep the pushes within reasonable
limits of 5 different push categories: pushing through the
top, bottom, left, right and centre of the objects respectively,
from the direction of the field of view of the Kinect. Table I

contains a matrix detailing the numbers of samples collected
for each of the objects in each different possible pose. Table II
details the number of different affordances produced by each of
the objects during the interactions. Certain objects prohibited
certain poses and certain affordances. For example, neither
the cookie pack nor the book could be placed in sideways
or upright poses and thus did not produce instances of the
toppling affordance.

TABLE I. OBJECT/POSE MATRIX

Flat Sideways Upright Total
Cookie Pack 18 0 0 18
Mallow Box 9 15 9 33
Biscuit Box 9 15 9 33
Book 18 0 0 18
Yoghurt Bottle 9 0 9 18

Total 63 30 27 120

TABLE II. OBJECT/AFFORDANCE MATRIX

Topple Translate Left Rot. Right Rot. Total
Cookie Pack 0 6 6 6 18
Mallow Box 12 9 6 6 33
Biscuit Box 12 9 6 6 33
Book 0 6 6 6 18
Yoghurt Bottle 6 6 3 3 18

Total 30 36 27 27 120

The data collection process resulted, by inspection, in
4 different affordance categories being produced, and the
samples were hand-labelled with four ground truth labels to
reflect this: left rotation, right rotation, forward translation
and forward topple. These various push types and resulting
affordances categories illustrated conceptually in Figure 6 are
sample object interactions are shown in Fig. 7.

A. Evaluation Procedure

In order to compare action-grounded and non-action-
grounded features, the dataset described in the previous section
was used to set up a classification task where a given classifier
was trained separately with training sets derived from a portion
of the dataset using both action-grounded features and non-
action-grounded, and the learning objective was to predict the
affordance ground truth labels from test sets derived from the
remaining data. For the evaluation, we used 10-fold cross-
validation with multiple different state-of-the-art classifiers.
Two learning vector quantization (LVQ)-based algorithms [23],
generalized relevance learning vector quantization (GRLVQ)
[24] and supervised relevance neural gas (SRNG) [25] were
used, alongside multinomial logistic regression (MLR), support
vector machines (SVM) and random forests (RF) [26]. The
cross-validation was performed in ten separate trials where the
samples in the dataset were randomized and divided into ten
folds, and the results were averaged over the trials in order to
account for random prototype initialization and other variations
between runs in the various algorithms.

In the cases of both the GRLVQ and SRNG models2,
following the notation used in [25], the main learning rate
parameter ε+ was set to 0.2, while ε− was set to 0.04, and ε

2http://www.mathworks.com/matlabcentral/fileexchange/
17415-neural-network-classifiers
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Fig. 7. Action-grounded shape feature extraction. Top row: pre-push and post-push 3-D point clouds and action trajectories for the five test objects being
pushed in various different ways. Bottom row: action-grounded shape feature extraction (cf. Section III-C) for the pre-push point clouds. Plane fits are shown
in red for the x-axis divisions of the point clouds, in green for the y-axis divisions, and in blue for the z-axis divisions. Four different affordances are visible
in the columns from left to right: forward translation, forward topple, right rotation, and left rotation.

for the λ feature relevance update was set to 0.02. A set of
60 prototype vectors were used in each case, divided into 15
prototypes per class. Training ran for 5000 epochs over the
training data in each case to ensure convergence. The logistic
regression model used a multinomial logit link function and a
confidence interval of 95%. In the case of the SVM model3,
parameters were optimized using cross validation over the
training data prior to training. The random forests model4 used
500 trees.

TABLE III. MEAN 10-FOLD CROSS-VALIDATION PREDICTION
RESULTS: TRAINING SETS

Non-Grounded Action-Grounded
GRLVQ 95.1± 3% 97.1± 2%
SRNG 95.4± 3% 97.8± 2%
SVM 97.1± 2% 98.6± 1%
MLR 100.0± 0% 100.0± 0%
RF 100.0± 0% 100.0± 0%

TABLE IV. MEAN 10-FOLD CROSS-VALIDATION PREDICTION
RESULTS: TEST SETS

Non-Grounded Action-Grounded
GRLVQ 87.8± 11% 92.2± 9%
SRNG 88.6± 11% 93.0± 8%
SVM 83.6± 10% 86.1± 10%
MLR 74.3± 12% 77.2± 11%
RF 84.8± 11% 95.7± 6%

B. Results

The discussion of the results is divided into two sub-
sections. In the first of these, we analyse the performance of
each of the classifiers on both the non-grounded and action-
grounded datasets in an effort to evaluate whether action-
grounding can result in classification performance gains. In
the second, we look at how action-grounding affects the
relevances of individual features by exploiting the feature
relevance determination mechanism provided by the SRNG
algorithm.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm
4https://code.google.com/p/randomforest-matlab

TABLE V. MEAN 10-FOLD CROSS-VALIDATION CONFUSION MATRIX:
NON-ACTION-GROUNDED FEATURES, SRNG

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 80.0% 20.0% 0% 0%
Translate 13.9% 86.1% 0% 0%
Left Rot. 0% 0% 100.0% 0%

Right Rot. 0% 0% 0% 100.0%

TABLE VI. MEAN 10-FOLD CROSS-VALIDATION CONFUSION
MATRIX: ACTION-GROUNDED FEATURES, SRNG

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 76.7% 23.3% 0% 0%
Translate 5.6% 94.4% 0% 0%
Left Rot. 0% 0% 100.0% 0%

Right Rot. 0% 0% 0% 100.0%

1) Classifier Performance: The main classifier perfor-
mance results are shown in Tables III and IV, where average
cross-validation classification matching accuracies are shown
for the 9-fold training sets and single-fold test sets respectively.
GRLVQ and SRNG, the two learning vector quantization
methods, perform robustly in all cases and benefit from action-
grounding in both training and test cases. An improvement
in the results for these two methods is also evident here
compared to the results presented in [18] on the same dataset,
which is due to the substantial increase in training epochs
used in this paper (5000 vs. 100) to ensure convergence for
better comparison with the other methods. Tables V and VI
show confusion matrices for test set results for non-action-
grounded features and action-grounded features respectively,
where the results were summed over the ten folds in each
trial and averaged over all ten trials. SRNG tends to confuse
topples for translations and translations for topples in both
cases, though when action-grounded features are used, its error
rate for translations is reduced by almost 10%.

Interestingly, while the SVM also benefits from action-
grounding, it does not perform quite as well as the LVQ-
based methods, which are likely deriving a comparative benefit
from their in-built feature relevance determination mechanisms
which the SVM, in the implementation used here, does not
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TABLE VII. MEAN 10-FOLD CROSS-VALIDATION CONFUSION
MATRIX: NON-ACTION-GROUNDED FEATURES, RF

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 83.3% 16.7% 0% 0%
Translate 22.2% 69.4% 2.8% 5.6%
Left Rot. 7.4% 0% 92.6% 0%

Right Rot. 3.7% 3.7% 0% 92.6%

TABLE VIII. MEAN 10-FOLD CROSS-VALIDATION CONFUSION
MATRIX: ACTION-GROUNDED FEATURES, RF

Prediction
Topple Translate Left Rot. Right Rot.

Tr
ut

h

Topple 96.7% 3.3% 0% 0%
Translate 8.3% 91.7% 0% 0%
Left Rot. 0% 0% 100.0% 0%

Right Rot. 0% 0% 0% 100.0%

share. The MLR model, given its high performance on training
data and relatively poor performance on test data in both
the non-grounded and action-grounded cases clearly suffers
here from overfitting. It could be the case that the high-
dimensionality of the datasets causes it difficulty and that it
would benefit from dimensionality reduction or regularization,
though neither have yet been tested.

The random forests model, on the other hand, performs
much more stably between training and testing sets and appears
to benefit even more considerably than the other classifiers
from the action-grounding of features, offering a ∼10% per-
formance increase in said case. This becomes even more clear
when analysing the confusion matrices for random forests
in Tables V and VI respectively. When using non-grounded
features, the model tended to predict topples or rotations in
some ∼30% of cases when it should have been predicting
translations. These errors were reduced significantly (∼8%)
when action-grounded features were used.

The action-grounded feature set, therefore, appears to in-
duce superior performance over the non-grounded feature set
in all classifier comparisons across both training and test sets in
this experiment, which is encouraging, though as is discussed
later in Section V, more extensive testing would be necessary
before more general conclusions can be drawn.
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Fig. 8. SRNG feature relevance results for the non-grounded features dataset.
Results are shown with a log scale.
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Fig. 9. SRNG feature relevance results for the action-grounded features
dataset. Results are shown with a log scale.

2) Feature Relevance: Figures 8 and 9 show average fea-
ture relevance bar charts as derived from the SRNG classifier
over the ten trials of 10-fold cross-validation for the non-
grounded and action-grounded feature sets respectively. Per-
haps the most prominent result here is the more distributed
spread of different features that show significance in the case
of the action-grounded dataset. Of the non-grounded features
shown in Fig. 8, two of the push action features, those being
the x and z coordinates of the object contact point respec-
tively, as well as the z-coordinate of the z-axis bottom side
part from the 3-D features, show significant relevance. This
matches with intuition as to what might make good predictors
given the affordance classes involved in this experiment, since
these features, crucially, encode both push height and planar
direction, necessary for distinguishing topples vs. translations
and left vs. right rotations respectively.

It seems evident from these results therefore that, in the
case of these experiments at least, most of the relevant in-
formation for affordance prediction was provided by the push
features and not the shape features themselves. It is worth
noting also that SRNG outperforms all the other classifiers
in test cases in the non-grounded features experiment (cf.
Table IV), which may be because it is able to single out
these important features owing to its powerful in-built feature
relevance determination mechanism. By contrast, in the case of
the action-grounded features experiment, the action-grounding
spreads this information out via intrinsic encoding across the
feature set, thus allowing the other classifiers lacking such a
feature relevance determining component to also benefit from
it.

V. CONCLUSIONS AND FUTURE WORK

To conclude, in this paper, we have presented an experi-
mental comparison between action-grounded and non-action-
grounded features derived from 3-D point clouds of objects.
The experimental results demonstrated that action-grounded
features can be effective for scenarios like object affordance
learning by showing increased performance over similar non-
grounded features across a range of state-of-the-art classifiers.
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With regard to future work, we would like to explore the
possibilities of using different point cloud divisions, parts-
based structures and potentially part-hierarchies, beyond what
has been presented here with bipartite axis splits. It would also
be interesting to investigate the use of different shape features
within the parts and sub-parts. From the affordance learning
perspective, we also aim to implement regression capabilities
that would allow for continuous prediction of object and object
part positions.

Although the results presented here are encouraging, it is
also difficult to draw broader conclusions about the general-
isation capabilities of action-grounded features from this one
study alone. In particular, it would be both interesting and
important to expand this work to more complex scenarios
where the shape features, as opposed to the push features,
play a more significant predictive role. Therefore, we hope
to expand on this study in future work with more objects,
affordances, and action types, as well as implementation on a
humanoid robot platform.
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