
Project Acronym: ACAT
Project Type: STREP
Project Title: Learning and Execution of Action Categories
Contract Number: 600578
Starting Date: 01-03-2013
Ending Date: 30-04-2016

Deliverable Number: D4.4
Deliverable Title: Action Execution
Type (Internal, Restricted, Public): PU
Authors : Barry Ridge, Andrej Gams, Aljaž Kramberger, Aleš

Ude, Dimitris Chrysostomou, Minija Tamosiunaite,
Florentin Wörgötter, Michael Beetz, Daniel Nyga,
Gheorghe Lisca

Contributing Partners: JSI, AAU, UGOE, SDU, UoB

Contractual Date of Delivery to the EC: 29-02-2016
Actual Date of Delivery to the EC: 01-03-2016

Page 1 of 29

Contents

1 Executive Summary . 3

2 Introduction . 4

3 Action Execution in the IASSES scenario . 5
3.1 Translation of the Pick skill . 5
3.2 Translation of the Place skill . 5
3.3 Execution of Complex Actions . 10

4 Action Execution in the ChemLab Scenario . 13
4.1 The inference of the Neutralization ADT symbolic parameters 13
4.2 The simulation-based execution of the Neutralization ADT 14
4.3 The experience of Neutralization ADT as episodic memory available online to other

robots . 16

5 Action Execution in the UGOE system . 19

6 Conclusions . 21

References . 22

Attached papers . 22

Page 2 of 29

1 Executive Summary

This deliverable provides a report on the procedures, structures and the actual qualitative perfor-
mance of action execution in ACAT. The first part of the deliverable after the introduction, Section
3, describes how action execution is performed by the execution engine in the IASSES scenario with
the AAU system, where one of the main tasks is to deconstruct a linguistic instruction, typically for
picking a rotor cap from a conveyor and placing it on a fixture, into its constituent action primitives
and subsequent action chunks. The execution engine thus translates action primitives, such as “pick
up” and “put down”, from ADTs encoded by the linguistic compiler into a sequence of robot com-
mands to be executed. Also described in Section 3 is how the JSI execution engine makes use of
the AAU skill system to perform action execution in multiple ADTs pertaining to the “Peg In Hole
(PiH)” task.

Section 4 of the deliverable focuses on the ChemLab scenario, where similar natural linguistic
instructions as in the IASSES scenario are considered, and similar robot skills must be executed,
though in a different context, i.e. a chemical laboratory with a robot conducting experiments, and
making use of a different execution engine, in this case involving the PRAC probabilistic planner,
the CRAM execution system, and the KnowRob knowledge processing system. A recently published
paper describing this work [A1] has been attached.

Finally, in Section 5 of the deliverable, ADT execution under the UGOE system is described, where
finite state machines are used to generate the semantic event chain state transitions as defined by
ADTs in an object pick-and-place task. The outputs of the finite state machine are action primitives
that are, similarly as in the IASSES scenario, executed sequentially using the UGOE robot control
system in order to complete semantic event chain transitions. Another similarity shared between the
scenarios is the linking of ROS bag recordings to the ADT descriptions to characterise the action
primitives.

Page 3 of 29

2 Introduction

Figure 1: ADT-based integration between the different execution engines.

In the ACAT project, action data tables (ADTs) are the main data structures that provide the
capacity for integration across the different execution engines of the three systems, which in turn
drive the actual action executions on their respective hardware platforms. Figure 1 (taken from
PPR2) illustrates how ADTs are fed to the execution engines in the Chemlab scenario, IASSES
scenario and the UGOE system respectively, and how the ADTs are used differently in each case to
perform the action executions. The remainder of this deliverable describes how the action execution
thus proceeds in each of those cases, as well as how they make use of the information contained in
the ADTs in more detail.

Page 4 of 29

3 Action Execution in the IASSES scenario

In order to have a holistic approach towards the demonstration of the IASSES scenario, we developed
an execution engine tailored for AAU’s Little Helper Skill Based System. One of the main instructions
under consideration in the IASSES scenario is "Pick a rotor cap from conveyor and put it on a fixture".
This instruction is divided into two action primitives namely "pick up" and "put down". As Figure 2
below illustrates four action chunks are produced from further analysis of the aforementioned action
primitives.

Figure 2: Action primitives and action chunks involved in the instruction "pick up rotor cap from
conveyor and put it on the fixture".

The main role of this execution engine is to interpret the ADT produced by the symbolic compi-
lation from the linguistic compiler to a sequence of robot skills, assist the operator in teaching and
executing the task and return the newly produced ADT back to the ADT database. The first direct
correlation between ADTs and Skill Based System is the action primitives where "pick up" and "put
down" are translated into a "Pick" and "Place" skill respectively. In the tables below we present
the input parameters for the execution of the Pick and Place skills and, further on, we present their
correspondence to the ADT parameters.

3.1 Translation of the Pick skill

A "Pick" skill is defined by several parameters in the Skill Based System (Table 1). As specified
inside an ADT, the action chunks #1 "Tool moves towards rotor cap and grasps it" and #2 "Tool
picks up the rotor cap and lifts it up from the conveyor" contain values for the parameters of the
"Pick" skill. The correspondences between Skill Based System (SBS) and given ADT are shown in
the Table 2.

3.2 Translation of the Place skill

In similar fashion, a "Place" skill is defined by several parameters (Table 3) and the action chunks
#3 "Tool places the rotor cap on the fixture" and #4 "Hand releases the rotor cap and retracts"
contain specifications for the parameters of the "place" skill. Table 4 shows how the values from
the ADT are translated into input parameters for the skill.

Page 5 of 29

Table 1: Input parameters for the execution of a "pick" skill

Name Type User Input Description

x1 MoveFrame Frame Teach Target coordinate
x2 ApproachDirection Char Teach Direction of approaching the target
x3 ApproachDistance Float Teach Distance of approaching the target
x4 LeavingDistance Float Teach Distance of leaving the target
x5 LeavingDirection Char Teach Direction of leaving the target
x6 ObjectWidth Float Teach Expected width of the object
x7 ObjectTolerance Float Specify Tolerance of the object width
x8 GraspForce Float Specify Grasping Force
x9 Velocity Float Specify Velocity of the manipulator
x10 Stiffness Int Specify Cartesian stiffness of the manipulator

Table 2: Skill based system - ADT correspondences for the "pick" skill

Parameter’s User input Correspondence

name in SBS in ADT

x1 MoveFrame Teach Action Chunk #1 : Required values for the execution
recovered from analysis of start and end points for the
wrist and main object given in the Action Chunk #1

x2 ApproachDirection Teach Analysis of the values in the position component of the
wrist and the main object give the approach direction

x3 ApproachDistance Teach The absolute difference between the <end point> and
<start point> of the wrist gives the ApproachDistance

x4 LeavingDistance Teach Action Chunk #2 : As in x3, LeavingDistance is given
by the absolute difference of the position values for the
<end point> and the <start point> of the wrist

x5 LeavingDirection Teach Direction of leaving the target: Default
x6 ObjectWidth Teach Value derived from the parameters of the main object

given in the ADT
x7 ObjectTolerance Specify Tolerance of the object width: Default
x8 GraspForce Specify Grasping Force: Default
x9 Velocity Specify Movement velocity derived from ADT
x10 Stiffness Specify Cartesian stiffness of the manipulator: Default

Page 6 of 29

Table 3: Input parameters for the execution of a "place" skill

Name Type User Input Description

x1 MoveFrame Frame Teach Target coordinate
x2 ApproachDirection Char Teach Direction of approaching the target
x3 ApproachDistance Float Teach Distance of approaching the target
x4 LeavingDistance Float Teach Distance of leaving the target
x5 LeavingDirection Char Teach Direction of leaving the target
x6 ObjectWidth Float Teach Width of the grasped object
x7 Velocity Float Specify Velocity of the manipulator
x8 Stiffness Int Specify Cartesian stiffness of the manipulator

Table 4: Skill based system - ADT correspondences for the "place" skill

Parameter’s User input Correspondence

name in SBS in ADT

x1 MoveFrame Teach Action Chunk #3 : Analysis of start and end points for
the wrist and main object give the coordinate frame

x2 ApproachDirection Teach Analysis of the values in the position component for
the wrist and main object gives the approach direction

x3 ApproachDistance Teach The absolute difference between the <end point> of
the wrist and <start point> of the main object gives
the ApproachDistance

x4 LeavingDistance Teach Action Chunk #4 : As in x3, LeavingDistance is given
by the absolute difference of the position values for the
<end point> and the <start point> of the main object

x5 LeavingDirection Teach Following the same analysis as in x2 but for action
chunk #2

x6 ObjectWidth Teach Value derived from the parameters of the main object
given in the ADT

x7 Velocity Specify Movement velocity derived from ADT
x8 Stiffness Specify Default value

The scope of the IASSES execution engine is to cover the needs for fast task specification and
execution. During the specification phase, the operator is able to specify the skills needed for the
task either by only writing the instruction to the system or by using a blueprint ADT and a known
similar ADT recorded previously during robot execution. In the former case (when similar ADTs don’t
exist) , the execution engine connects the Skill Based System with the online instruction compiler

Page 7 of 29

(a) Launch screen of SBS (b) System ready for task specification

(c) The operator gives the instruction (d) The instruction is copied automatically to the
online instruction compiler

(e) The list of skills is being generated from the
action chunks of the blueprint ADT

Figure 3: The operator uses an instruction and specifies a list of skills using a blueprint ADT

Page 8 of 29

(a) System ready for task specification (b) The operator can pick a known ADT from
the database

(c) Prompt to re-use or re-teach the parameters
of the "pick" skill

(d) Prompt to re-use or re-teach the parame-
ters of the "place" skill

(e) The system delivers a conversion report to
the operator for verification

(f) The list of skills is being generated from the
action chunks of the known ADT

Figure 4: The operator uses a known ADT and specifies a list of skills with known parameters

Page 9 of 29

using an instruction (Fig. 3c), acquires a blueprint ADT (Fig. 3d), and interprets the action chunks
of the blueprint ADT into a list of robot skills as it is described in the previous tables(Fig. 3e).
The operator will have now to teach the delivered list of skills for successful execution of the task.
Using this connection, the operator can quickly setup the correct order of skills by only giving one
instruction to the system.

In the case when similar ADTs exist, the operator uses a known ADT with the highest ranking in
the ADT database. This rank corresponds to a similarity outcome of the ACAT instruction complier
with other existing ADTs in the database. The execution engine is capable to transfer the list of
skills and all of the skills’ parameters found in the highest ranked ADT to the Skill Based System,
and prepare the robot platform for task execution. In order to keep the operator in the loop, the Skill
Based System will ask him/her specific questions according to the confidence of the data delivered
from the ADT. As Figure 4c and Figure 4d illustrate, the operator has the choice to re-teach or
re-use specific action chunks that correspond to "pick" and "place" skills. As a result, the skills will
be marked with a yellow symbol of "SPEC" for the skills that have to be taught in the next step
and a green symbol of "OK" for the ones that are ready for execution as illustated in Figures 3e
and 4f. In both cases and after a successful execution of an instruction the operator can upload the
new taught ADT back to the ADT system interacting with the GUI and the respective button.

3.3 Execution of Complex Actions

In addition to pick and place tasks described in the section above, the IASSES assembly scenario
presents several challenges where, in several cases, the "Peg In Hole (PIH)" task/skill needs to be
applied to ensure a successful assembly of objects. This method is thus applied in different stages
of the IASSES scenario and includes three out of the four parts: the rotor axle, all eight magnets,
and the rotor cap.

The skill or action of peg in hole insertion is composed of both the motion trajectory and
the associated forces and torques. These have to be adapted online during the insertion phase
so that the execution is successful. The adaptation plays a key role during the execution, as it
compensates for small discrepancies that are the outcome of imperfect grasping, vision miscalibration
and uncertainties due to previously performed assembly tasks. The Peg In Hole task is composed of
three segments:

• Approach phase (the robot tool approaches the hole). This can be executed with the AAU
skill system (cf. Section 3) or with simple point to point movement. The key is to approach
the start position of the action execution.

• PIH execution (robot inserts the object in the hole with force/torque adaptation of the learned
trajectory). This is executed using dynamic movement primitives (DMPs), which allow stop-
ping of the execution in order to minimize the error of force/torque with respect to the
demonstrated data.

• Release and retract (the robot hand releases the part and retracts).

A more detailed illustration of the PIH primitive with action chunks as appearing in the ADT is
given in the Fig. 5.

Page 10 of 29

Action primitive :: Peg In Hole

ACTION CHUNK :: 2
The PIH action with

adaptation is performed to
insert the rotor cap on the

rotor axle

ACTION CHUNK :: 1
The tool with grasped rotor

cap moves towards the rotor
axle and makes the contact

ACTION CHUNK :: 3
The tool releases the rotor

cap and departs

Figure 5: Action primitives described for an example: "Place the rotor cap on the rotor axle".

3.3.1 PIH execution using DMPs

The execution of the DMPs was discussed in deliverable D4.3 [R4], which also describes statistical
generalization between successful executions to adapt to a modified task parameter, such as the
depth of the hole. The paper entitled “Generalization of Peg-in-Hole Skill for Intelligent Robotic
Assembly” attached to Deliverable 4.3 [R4] provided details on the adaptation of the trajectory to
minimize the difference between the desired force/torque profile and the measured one. In summary,
the execution of the motion is stopped until the change in orientation reduces the aforementioned
errors. Because this prolongs the motion, the corrected poses are stored for the next execution,
which can be faster.

3.3.2 Object specific actions

ADTs store information on execution of specific actions with specific objects. Here we will explain
the specificity of PIH actions for different objects in the IASSES scenario.

Rotor axle: The robot axle has to be inserted into the press, where the tolerances of the press
are quite large and, technically, the PiH action is not required. But, the axle also has to be inserted
into the ring, where the PiH skill is required. Therefore, at the end of the placement of the axle the
motion has to be adapted.

Magnets: Eight magnets have to be inserted in total. After each insertion the axle is rotated. The
insertion of magnets is different for each magnet, because with the increasing number of magnets,
the force/torque profile is changed. Therefore, we recorded eight ADTs for magnet insertion, where
the difference is only in the force profiles and the annotation of which magnet it is for. We acquired
the eight profiles through first executing and optimizing one motion and then using this profile as
the initial reference for optimization when an additional magnet is inserted. Thus we optimized the
profiles for all eight magnets.

Rotor cap: The rotor cap is much wider than the axle, but at the top there is a chance it might
get stuck on the top, where it is not shaped to guide the top opening onto the shaft. When we

Page 11 of 29

detect the contact of the top plate on the shaft (with the force sensor), we initiate a random search,
which performs straight motions, but at an arbitrary angle of the motion. At the same time the cap
is pushed down using admittance control. Once it "sits", it is only pushed down until the end.

3.3.3 Relation to ADTs

These actions are encoded directly in the ADTs, where the force/torque profiles are stored in ac-
companying ROS bags, with the timing data stored in the ADT XML table. The ADT XML tables
are generated via the use of the ADT XML Tool and ADT GUI Editor from the ACAT ADT Tools
suite [R1] previously described in deliverable D1.2 [R7]. In each of the eight separated ADTs that
are created, the associated magnet is assigned as the main object and given a numerical label (e.g.
"Magnet 1", "Magnet 2", etc.), with the primary object being the axle. The semantic event chain
table, as well as the action chunks, that are described in each of the ADT XML files, associate start
and end timestamps that index the ROS bags with each of the objects, indicating their respective
involvements at each stage of the action execution.

Page 12 of 29

Figure 6: UoB Execution system in the context of "Neutralize 10ml of hydrocloric acid." command.
Figure taken from PPR2.

4 Action Execution in the ChemLab Scenario

In the Chemlab scenario we consider natural instructions like "Neutralize 10ml of hydrochloric acid."
[A1] to be executed. When the PR2 robot is tasked to perform this instruction the PRAC system
[R5] probabilistically infers the plan which must run the symbolic and subsymbolic parameters of
the plan. Once inferred, the plan and its symbolic and subsymbolic parameters are saved into the
Neutralization ADT (cf. Table 5). Through a ROS service call, the CRAM [R3] system is triggered
to execute the plan with the symbolic parameters probabilistically inferred.

Note, that UoB uses a very complex execution system, where many other components are
participating in execution side-by-side with ADTs. At the execution time, when the CRAM system
(cf. Figure 6) executes the probabilistically inferred plan it queries the Neutralization ADT through
the KnowRob [R8] knowledge processing system. If the Neutralization ADT doesn’t contain the
requested parameters then CRAM requests these parameters from the learning-from-games module.
This module asks the human users to demonstrate the neutralization action multiple times then it
learns the parameters requested by the plan being in execution from the demonstrations collected
so far.

After the successful execution of the plan the parameters learned from the users are saved through
KnowRob into the Neutralization ADT from which they were initially missing.

4.1 The inference of the Neutralization ADT symbolic parameters

The PRAC system probabilistically infers that for the Neutralization action core (cf. Table 5) the
wordnet [R9] concepts hcl.n.01, naoh.n.01 have the roles AcidSubstance and AlkalineSubstance
respectively. Furthermore the PRAC probabilistically refines the previously obtained results and
identifies the Adding action core through which the Neutralization action core is achievable. Si-
multaneously the PRAC infers that the wordnet concepts hcl.n.01 and naoh.n.01 have the roles
of NewMember respectively Group within this context. In the next phase of the probabilistically
inference the PRAC infers that in order to perform the initial requested command the Pipetting
action core is the most specialized. For the Pipetting action core the wordnet concepts hcl.n.01
and naoh.n.01 have the roles Source respectively Destination and that the pipet plan must be run
with the Source and Destination as parameters (cf. Figure 7).

At this point the PRAC system triggers the execution of the pipet plan and forwards the inferred

Page 13 of 29

Action Core Action Role Wordnet Concept Description

Neutralization AcidSubstance hcl.n.01 the acid substance
Neutralization AlkalineSubstance naoh.n.01 the base substance
Neutralization AchievedBy addition.n.01 the next executable action core
Adding NewMember hcl.n.01 the acid substance
Adding Group naoh.n.01 the base substance
Adding AchievedBy pipetting.n.01 the next more refined and executable action core
Pipetting Source hcl.n.01 the acid substance
Pipetting Destination naoh.n.01 the base substance
Pipetting Quantity mililiter.n.01 the quantity

Table 5: The Neutralization ADT

parameters to the CRAM system which starts running the pipet plan.

4.2 The simulation-based execution of the Neutralization ADT

At execution time the pipet plan calls other sub-plans for grasp, unscrew Algorithm 2 screw the
caps of different containers. Figure 8 depicts the PR2 robot ready to run the pipet plan in Gazebo
simulation. The GzWeb client of Gazebo simulator is completely integrated in the PRAC system.

Algorithm 1 The pipet and aspirate plans
1: (def-plan pipet (source instrument amount destination)
2: (seq
3: (aspirate (source instrument amount))
4: (dispense (instrument amount destination))))
5:
6: (def-plan aspirate (source instrument amount)
7: (seq
8: (recognize source)
9: (move (object-part effector instrument)

10: (above source))
11: (recognize (object-part button instrument))
12: (press (object-part button instrument))
13: (move (object-part effector instrument)
14: (inside source))
15: (release (object-part button instrument))
16: (move (object-part effector instrument)
17: (above source))))

The pipet plan (cf. Algorithm 1) represents a sequence of calls to aspirate and dispense plans.
Each of the two sub-plans call other more specialized sub-plans like the unscrew plan in order to
prepare the containers which hold the substances to be combined.

The unscrew plan (cf. Algorithm 2) sequentially calls the grasp plan twice then queries the
unscrew ADT for the unscrew-trajectory. If the unscrew ADT (cf. Figure 9) contains the unscrew-
trajectory then this trajectory is returned and immediately executed. If the unscrew ADT doesn’t
contain an unscrew-trajectory then the learning from games module is queried through compute-

Page 14 of 29

Figure 7: Probabilistic inference in the PRAC

Figure 8: The simulation of the neutralization command in Gazebo simulator.

Page 15 of 29

Algorithm 2 The unscrew plan
1: (def-plan unscrew (object-part object-body)
2: (seq
3: (grasp object-body)
4: (grasp object-part)
5: (let (unscrew-trajectory (querry-adt "unscrew" object-part object-body))
6: (if unscrew-trajectory
7: (execute unscrew-trajectory)
8: (progn
9: (let ((computed-trajectory (compute-unscrew-trajectory object-part object-body)))

10: (execute computed-trajectory)
11: (push-add "unscrew" computed-trajectory)))))))

unscrew-trajectory call and the computed-trajectory resulted is immediately executed. The computed-
trajectory is saved also into the unscrew ADT.

4.3 The experience of Neutralization ADT as episodic memory available online to
other robots

At the execution time of the pipet plan the CRAM system creates execution logs called pipetting
episodic memory. The pipetting episodic memory is loaded into openEASE [R6] online knowledge
base for autonomous robots (cf. Figure 10).

openEASE online knowledge base is able to answer a large variety of questions about the pipetting
episodic memory like: What was the trajectory of the right gripper while grasping the pipette?, On
which objects the unscrewing action was performed? Or even where was the tip of the pipette at
dispensing time?.

Page 16 of 29

Figure 9: KnowRob’s ontology extended with the ADT concepts.

Page 17 of 29

Figure 10: The episodic memory of the Neutralization ADT in openEASE online knowledge base
for robots.

Page 18 of 29

5 Action Execution in the UGOE system

The UGOE system is not specifically attributed to any of the two ACAT scenarios but is used for
sub-symbolic compilation experiments (e.g. see D3.2 and D3.3) in both scenarios.

The UGOE system uses the movement primitive sequence as given by ADTs for execution and
uses the action chunk sequence from the ADTs, to follow the progress of the action.

In the UGOE system the unit of execution is an “action” which co-insides in granularity with
ADT-action (see the Glossary of Terms in PPR2). An ADT-action starts with the manipulator
approaching an object and ends when the manipulator retracts having released the object.

In an ADT we use the following action roles, as defined in the Glossary of terms in PPR2:

• Manipulator: The doer of the action, the object that causes the changes in the relations of
objects. This could be a human or robot hand.

• Main object: The first object which is touched by the manipulator. This is the main target of
the action.

• Primary object: The first object, with which the relation of main object changes.

• Secondary object: The second object with which the relation of main objects changes.

Each pair of these objects provides a relation, which, as defined by the SEC framework in the
ADT, can be: (changing) A-to-T (absent to touching), N-to-T (not touching to touching), T-to-A
(touching to absent), T-to-N (touching to non-touching) or unchanging N-to-N (non-touching), T-
to-T (touching), A-to-A (absent). UGOE uses execution based on finite state machines (FSM, [R2])
to create these Semantic Event Chain transitions. The SEC-based transitions (action chunks in the
ATD) cannot normally be achieved by just a single movement. (E.g. we have reach (arm movement)
and grasp (hand movement) included until the manipulator first touches the object for picking up).
Hence, execution is performed based on movement primitives which are the sub-segments of the
action chunks as defined by the Semantic Event Chain. Thus, the outputs of the FSM are the
primitives which should be executed sequentially until the SEC-transition (i.e. action chunk in the
ADT) completes.

The movement primitives are the simple functions that the control system of UGOE hardware
(robot arm and hand) can perform. These primitives, when combined together, create meaningful
manipulation actions. In the UGOE system, we use the following movement primitives:

• arm_move(goal_pose): Move the robot arm to the pose defined by goal_pose

• arm_move_periodic(V, ω): Move the robot arm periodically along the direction of V with
frequency ω.

• exert(f) : Exert the force equal to f at the robot end effector.

• hand_move(goal_angles): Move the robot hand to the configuration specified by joint
angles denoted by goal_angles

• grasp() : Grasp the object which is inside the fingers of the hand

• ungrasp(): Ungrasp the previously grasped object.

Page 19 of 29

Note, that similar sets of movement primitives are used for controlling in many robotic systems
consisting of arm and hand. Thus, in the last version of the ADT format primitives are indicated
for each action chunk, which makes execution of the ADTs at the UGOE system straightforward:
implementing the movement primitive sequence given in each ADT action chunk in order to achieve
the SEC-transition by which the action chunk is characterized.

Figure 11 indicates snapshots of action execution at UGOE representing action chunk and action
primitive execution.

Figure 11: Execution of ADT-action “Pick and Place” at the UGOE system. The ADT-action
consists of four action chunks. Stop frames from the video are shown and the action chunks are the
transitions between those frames indicated by red arrows. For implementing robot control in action
chunks 1 and 3 two movement primitives are needed to achieve the required state at the end of the
chunk. Those primitives are indicated by blue pointers. In the remaining action chunks (3 and 4)
only one movement primitive is required per chunk and those are not indicated separately.

In order to generalize based on previously executed ADTs we associate the obtained goal_poses
for the arm_move primitive to the objects in the action (main, primary and secondary) based on
the distance and the direction of robot movement, to determine which object has been the target
of the robot at that movement primitive. We calculate relative poses of the arm to those objects.
When the ADT has to be re-used (generalized) in a different scene configuration, we then recalculate
movements of the manipulator so that the same relatives poses to specific objects (main, primary
and secondary) and in-between the objects are achieved. In case that no object could be associated
to a goal_pose in the original ADT, the argument of the arm_move() movement primitive is set
to void, indicating an arbitrary pose. The exact value of the void poses can be set during the action.

The hand_move primitives are taken from rosbag recordings representing the corresponding
grasps. In the rosbag the configuration sequence of the concrete gripper is recorded. As grasps
required in manipulation are very much gripper-dependent we did not attempt to develop a platform-
independent representation of the grasps. Thus, we use rosbag entries directly for implementing
hand_move primitives, while into the ADT we lift only very general grasp information, like grasp
type and grasp force, which in principle could indeed be transferred between different grippers.
However, this is not fully informative about required hand movements and requires either recordings
in the configuration space for the same gripper, as we use at UGOE, or grasp planning, which would
be a prevalent approach e.g. at partner SDU.

Page 20 of 29

6 Conclusions

The purpose of this deliverable was to describe how action execution proceeds in the ACAT project
under the three different execution engines in the IASSES scenario, the ChemLab scenario, and the
UGOE system respectively. The deliverable demonstrated, in each case, how ADTs are variously
interpreted at the symbolic level and translated into robot actions at the subsymbolic level. Examples
in the IASSES scenario included the translation of the “pick skill” and the “place skill”, as well as
peg-in-hole execution. The ChemLab scenario description provided an example of the simulation-
based execution of the acid neutralization ADT, with a recent publication attached [A1] describing
the work in further detail. Finally, the description of the UGOE system provided an example of
“pick and place” ADT execution where finite state machines are used to create semantic event chain
transitions.

Page 21 of 29

References

[R1] ACAT ADT Tools. https://github.com/barryridge/acat-adt-tools. 2016.

[R2] M. J. Aein, E. E. Aksoy, M. Tamosiunaite, J. Papon, A. Ude, and F. Wörgötter. “To-
ward a library of manipulation actions based on Semantic Object-Action Relations”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013.

[R3] M. Beetz, L. Mösenlechner, and M. Tenorth. “CRAM – A Cognitive Robot Abstract
Machine for Everyday Manipulation in Human Environments”. In: IROS. Taipei, Taiwan,
2010, pp. 1012–1017.

[R4] A. Gams et al. Deliverable 4.3: Scene analysis and movement description - Update of
D4.1. Tech. rep. EU FP7 STREP Project ACAT, 2015.

[R5] D. Nyga and M. Beetz. “Everything Robots Always Wanted to Know about Housework
(But were afraid to ask)”. In: IROS. 2012.

[R6] openEASE. open-ease.org. 2015.

[R7] B. Ridge et al. Deliverable 1.2: Sensori-motor and text data-fusion. Tech. rep. EU FP7
STREP Project ACAT, 2015.

[R8] M. Tenorth and M. Beetz. “KnowRob – A Knowledge Processing Infrastructure for
Cognition-enabled Robots”. In: International Journal of Robotics Research (IJRR) 32.5
(2013), pp. 566 –590.

[R9] WordNet. wordnet.princeton.edu. 2008.

Attached papers

[A1] G. Lisca, D. Nyga, F. Bálint-Benczédi, H. Langer, and M. Beetz. “Towards Robots Con-
ducting Chemical Experiments”. In: IROS. Hamburg, Germany, 2015.

Page 22 of 29

Towards Robots Conducting Chemical Experiments

Gheorghe Lisca, Daniel Nyga, Ferenc Bálint-Benczédi, Hagen Langer and Michael Beetz

Abstract— Autonomous mobile robots are employed to per-
form increasingly complex tasks which require appropriate
task descriptions, accurate object recognition, and dexterous
object manipulation. In this paper we will address three key
questions: How to obtain appropriate task descriptions from
natural language (NL) instructions, how to choose the control
program to perform a task description, and how to recognize and
manipulate the objects referred by a task description? We describe
an evaluated robotic agent which takes a natural language
instruction stating a step of DNA extraction procedure as a
starting point. The system is able to transform the textual
instruction into an abstract symbolic plan representation. It can
reason about the representation and answer queries about what,
how, and why it is done. The robot selects the most appropriate
control programs and robustly coordinates all manipulations
required by the task description. The execution is based on a
perception sub-system which is able to locate and recognize
the objects and instruments needed in the DNA extraction
procedure.

I. INTRODUCTION

As the area of autonomous robot manipulation gets more
mature it is also getting more important that we better
understand the nature of the underlying information process-
ing mechanism by building complete systems that perform
human-scale manipulation tasks. The importance of research
concerning the building of complete robotic agents cannot
be overestimated. We have made impressive progress in
component technologies such as navigation, grasping, and
perception but so far it is not clear how the individual
components have to be pieced together to produce competent
autonomous activity.

Consider, for example, the control of robot motions. We
see many systems that produce and often even learn to
produce very sophisticated motion patterns such as flipping a
pancake or catching a ball in a cup. However, these systems
have no idea of what they are doing. You cannot ask them
about the desired and undesired effects of actions, how the
course of action could be changed in order to avoid some
unwanted side effect, and so on. For example, the result of
pouring a chemical substance into a container might cause
an explosion.

The reason for this situation is that in order to learn
or generate sophisticated motions you have to completely
formulate the problem in a mathematical model that is then
solved in order to generate a control law that constitutes
a desirable mathematical solution. The problems of how
the mathematical models and computational problems can
be generated by a robot tasked with a NL instruction and

Institute for Artificial Intelligence, Department for Computer Science,
University of Bremen, Germany. {lisca, nyga, balintbe,
hlanger, beetz}@cs.uni-bremen.de

Fig. 1: Uni-Bremen’s PR2 pipetting.

looking at a particular scene has not received sufficient
attention. The same holds for the problem of enabling robots
to answer questions about what they are doing, how, why,
what could possibly happen, and so on.

In this paper we describe a robotic agent that is capable
of autonomously conducting chemical experiments with ordi-
nary laboratory equipment based on NL instructions for these
experiments. The actions that the robotic agent is to perform
include taking tubes, opening and closing them, putting them
into a rack, mixing chemical substances through pipetting,
and operating a centrifuge by opening and closing it, loading
and unloading it, and pushing the start button.

The application is interesting because it requires the robot
to perform only a small set of manipulation actions but by
combining these actions in different ways and performing
them with different substances and quantities the robot can
potentially perform thousands of different chemical experi-
ments by reading and executing instructions for experiments.
In addition, large knowledge bases about chemistry that are
available in standardized and machine readable form in the
semantic web enable us to realize knowledgeable robots with
comparatively little effort.

The main contribution of this paper is the realization
of a complete robot agent that can autonomously conduct
(carefully selected) chemical experiments. In this context the
main technical contributions are:

1) The generation of abstractly parameterized plans from
NL instructions, which means that a language instruc-
tion such as “neutralize 250ml hydrochloric acid” is
translated into an abstractly parameterized action de-
scription like the one in Algorithm 1. This description

Fig. 2: Agent’s Conceptual Architecture

Algorithm 1 Abstractly Parametrized Action Description
1: (perform
2: (an action
3: (type pipetting)
4: (object-acted-on ...)
5: (source ...)
6: (destination ...)))

names the plan to be called, namely pipetting, and
assigns each of the formal parameters of the pipetting
plan an abstract symbolic parameter description. To deal
with the incompleteness and ambiguities of NL instruc-
tions the robotic agent employs first-order probabilistic
reasoning to carry out this interpretation step.

2) A knowledge-enabled perception component that is able
to recognize symbolically described objects such as “the
pipette containing the acid substance” or “the lid of the
tube in the rack” and localize them accurately enough
to allow for high precision manipulation tasks such as
putting a tip on the pipette.

3) The perceptually grounded execution of abstractly pa-
rameterized plans that takes abstract descriptions of
objects, locations, and actions and translates them into
specific numeric parameters such as the 6D pose of the
pipette for releasing the content of the pipette.

4) The acquisition and the reasoning about episodic mem-
ories of chemical experiment activities that enable the
robotic agent to answer queries about what it did in the
episode, how, why, what happened, etc.

The robotic agent was shown in a public demonstration
(see youtube video1), in which it participated in the Ocean
Sampling Day.

The remainder of this paper is structured in the following
way: Section II will present an overview of our system. In
Section III we will describe the NL understanding compo-
nent. Section V will explain the first symbolic representation
of an instruction. In Section V-A the reasoning mechanism
which separates the symbolic task descriptions in more
specific symbolic descriptions for action, object and location,
will be presented. In Section V-B we will explain how the
specific descriptions are used at runtime. The experiments
and drawn conclusions will be summarized in the sections
VI and VIII, respectively.

1https://www.youtube.com/watch?v=sB7_xEARquM

II. CONCEPTUAL ARCHITECTURE OF THE ROBOTIC
AGENT

From describing the DNA Extraction Procedure and
Pipette Usage through NL instructions to having the robot
reactively pipetting: which are the key steps an intelligent
robot has to go trough in order to parametrize its control
programs from NL? The first step is to understand the NL
instructions which task him (cf. Figure 2).

The two sets of NL instructions for neutralization and
pipette usage are parsed using the Stanford parser [1], and
the identified syntactic roles are stored in a probabilistic first
order relational database. WordNet [2] is used for identifying
word meanings. Based on the meanings and syntactic roles of
instruction’s words, the action cores for pipetting, aspirating
and dispensing which match the best given instructions are
identified. The matching process assigns action roles to the
words in the instruction. The roles of action cores which
don’t have an instruction word associated with them, will be
used to infer instruction’s implicit words which are missing
from instruction’s text. aspirating and dispensing involve
the instrument pipette which doesn’t explicitly appear in the
Pipette Usage instructions’ text.

Each action core has a Plan Schema, detailed in Section
V, associated with it. A plan schema groups into a tuple the
action verb and the action roles from the same action core.
The tuple can be regarded as an abstract description of an
action. Defined in this way, a plan schema is fully parame-
terizable by its associated action core. A fully parametrized
plan schema is a plan schema for which all its action roles
were replaced by instruction-specific entities.

In the first phase of the third step, from previously
obtained fully parametrized plan schema, the Reasoning
Mechanism, detailed in Section V-A, extracts the symbolic
descriptions of objects, locations and actions. We call these
symbolic descriptions: designators. In the second phase of
this step, from the freshly extracted action designator, the
reasoning mechanism infers which control program is the
most competent one for performing the manipulations re-
quired by the action description. We call the control program
simply plan and the entire collection of control programs
Plan Library.

In the fourth step, from the plan library, the Reactive

Execution Engine, detailed in Section V-B, retrieves the
plan inferred by the reasoning mechanism. The plan gets
the previously extracted object and location designators as
parameters and runs as a normal program. At plan’s runtime
the reactive execution engine triggers the Semantic Logging
[3] module to log plan’s context, goals events and the sensor
data which influenced robot’s decisions. OpenEASE [4] is the
web-based knowledge service which collects the data about
robot’s runtime experiences and makes it available to other
robots.

III. GENERATING ABSTRACTLY PARAMETERIZED PLANS
FROM NL INSTRUCTIONS

Robotic agents acting in human environments must be
capable of proficiently performing complete jobs in open
environments that they have not been preprogrammed for.
A promising direction towards this skill, which has gained
a lot of attraction in the recent couple of years, is to equip
robots with the capability to acquire new high-level skills
from interpreting NL instructions, which can be found in
abundance on the web. Instruction sheets provide a rough
and sketchy sequence of actions that needs to be executed
in order to accomplish a task.

However, these instructions typically are written by hu-
mans and are intended for human use, so they lack massive
amounts of information about how particular action steps are
to be executed, on which objects they are to be performed,
which utensils to be used and so on. In addition, a specific
action can be achieved in different ways or even must be
achieved in a very particular way, depending on the current
context the action takes place in. As an example, consider
an action like ‘add hydrochloric acid’, which might be taken
from an instruction sheet describing a chemical experiment.
It is neither specified explicitly where to add the acid to,
how much of it, or how to add it. If the amount that is to
be transferred is very small and accurately specified, such
as ‘5 drops’, one may want to choose a pipette for doing
the addition. Conversely, if 100 ml should be transferred,
one should use a measuring cup and pour directly from the
container where the acid is located.

Thus, instructions stated in NL are severely vaguely
formulated, they are ambiguous and underspecified, and
proficiently performing instructions requires a robotic agent
to interpret what is meant by an instruction by understanding
what is given and inferring what is necessary.

Probabilistic Action Cores (PRAC) [5] are action-specific
first-order probabilistic knowledge bases that are able to
interpret instructions formulated in NL and infer the most
probable completion of an action with respect to its abstract,
symbolic parameterizations. More specifically, action cores
can be regarded as abstract patterns of actions and events,
which have a set of formal parameters attached that must all
be known in order to parameterize a robot plan appropriately.
As an example, consider the NL instruction “neutralize 10
ml of hydrochloric acid.” In this example, a ‘Neutralization’
(in a chemical sense) represents an action core, which has
attached to it two action roles, namely an AcidSubstance

AcidSubstance
Neutralize 75 ml of hydrochloric acid.

ActionCore Quantity

acid.n.01

hcl.n.01 milliliter.n.01 (75)

Adding

chemical.n.01 base.n.11

NeutralizationNeutralize

NewMemberAcidSubstance

is-a

AlkalineSubstance

AchievedBy

is-ais-a naoh.n.01

Group

Quantity

is-a

metric_unit.n.01chemical.n.01 is-a

ActionCore Pipetting

Quantity

AchievedBy

Destination

Source

Fig. 4: Exemplary instance of action cores and their action roles
for the ‘neutralization’ example. The colored nodes are given as
evidence, whereas the gray nodes and the role assignments need to
be inferred.

and an AlkalineSubstance, which both must be known in
order to perform the neutralization. However, in the original
instruction, the alkali counterpart is not specified. From a
probabilistic point of view, one can query for the most
likely role assignment given what is explicitly stated in the
instruction:

arg max
c

P

action-core(a,Neutralization)

is-a(s, c) AcidSubstance(a, hcl)
is-a(hcl, hcl.n.01)

AlkalineSubstance(a, s)

 ,

i.e. we are querying for the most probable type c of an entity
s that fills the AlkalineSubstance role, given the action core
Neutralization and the type hcl.n.01 of the AcidSubstance
role. A graphical representation of this action core is given
in Figure 4.

In many cases, it is not sufficient to consider the action
verb as it is stated in an instruction. In our example, the
neutralization is not a directly executable action. It rather
denotes a chemical process that needs to be triggered. A
robot thus needs to be equipped with reasoning capabilities
that allow to infer how a particular action can be achieved.
The neutralization, for instance, can be achieved by adding
the alkaline substance to the acid that is to be neutralized,
and, since the amount of 10 ml is small an accurately
specified, the adding action can be achieved by pipetting
one substance to the other. PRAC uses a dedicated action
role AchievedBy, which enables to reason about which action
can be achieved by some other action, given its abstract
parameterization.

PRACs are implemented as Markov logic networks [6],
a powerful knowledge representation formalism combining
first-order logic and probability theory. A key concept in
PRAC is heavy exploitation of taxonomic knowledge, which
enables to learn PRACs from very sparse data. By exploiting
the relational structure of concepts in a real-world taxonomy
like the WordNet lexical database, PRAC can perform rea-
soning about concepts that it has not been trained with.

Action cores can be regarded as conceptualizations of
actions that can have an abstract plan schemata attached
to them. In these cases, action roles interface the formal

Fig. 3: Action Cores: Neutralizing, Pipetting, Aspirating and Dispensing

Description of
objects through
their properties

name(rack)
shape(box)
color(green)

contains(emtpy tube)

name(pipette)
shape(cylindrical & flat)

color(white)
attribute(has button)

name(bottle)
shape(cylindrical)
color(transparent)

contains(liquid)

name(tips box)
shape(box)

color(blue&white)
location(on the table)
contains(small tubes)

name(trash)
shape(box)
color(red)

contains(objects)
has(cavity)

Fig. 5: Description of the perceived objects

parameters of the plan. For a more detailed discussion of
the PRAC system, we refer to [7].

IV. KNOWLEDGE-ENABLED PERCEPTION OF
EXPERIMENT SETUPS

Detecting the necessary objects for executing the exper-
iment becomes challenging, given the nature of the tasks
which are needed to executed and the noisy input data.
Furthermore it is not enough to detect the labels of each
object, but identifying parts of them is also necessary (e.g.
opening of a bottle or a tube). To address these challenges
we use a knowledge-driven approach, where the perception
system can reason about the objects it perceives and infer the
correct processing step for detecting the parts of the objects
to be manipulated[8].

This is done through a two step process. First the objects,
their corresponding class lables, visual properties and their
initial pose are detected. Since the objects are represented
in our knowledge-base, based on their class labels we have
access to information that can help further examining them.
In Figure 5 for example the objects rack and bottle have
the property contains, from which we can infer the next
processing step necessary to find the openings of the bottle
or detect if the tubes are closed or open.

We define Prolog rules which are able to deduce parame-

Algorithm 2 Prolog rule for deducing the radius of a
cylindircal container to be detected.

1: fitCircle(Object, Radius) :-
2: category(Object, ’container’),
3: object-part(Object, Opening),
4: geo_primitive(Object, ’cylindrical’),
5: radius(Opening, Radius).

Fig. 6: The fitted circles on containers’ openings

terizations for more general perception algorithms, in order
to detect the necessary parts of the objects. For example the
predicate from Algorithm 2 deduces the radius of a circle that
needs to be fit to an object that is a cylindrical container. The
results of the perception system after executing this query are
shown in Figure 6.

V. PERCEPTUALLY GROUNDED EXECUTION OF
ABSTRACTLY PARAMETRIZED PLANS

As we introduced it in Section II, a plan schema is a
template defined over an action verb and the set of action
roles defined within an action core.

(〈Action Verb〉 (〈Action Role0〉 . . . 〈Action Rolen〉))

A fully parameterized plan schema guides the reasoning
mechanism in inferring the most adequate plan which has to
run in order for robot to execute the instructions with which
is tasked. pipetting plan schema, Code Excerpt 3, states that
the pipetting action firstly needs a source which contains
a specific chemical and is of type container and secondly it
needs a destination which contains another specific chemical
and is of type container too. pipetting plan schema starts
to capture what has to be done for the pipetting action.
Once the pipetting action schema is fully parameterized it
specifies exactly with which objects the pipetting action has
to be performed. pipetting fully parameterized plan schema

Algorithm 3 Plan Schemata
1: (pipetting
2: (from ((source Pipetting)
3: (chemical (contains (source Pipetting)))
4: (type (is-a (source Pipetting)))))
5: (into ((destination Pipetting)
6: (chemical (contains (destination Pipetting)))
7: (type (is-a (destination Pipetting))))))
8:
9: (aspirating

10: (from ((source Aspirating)
11: (chemical (contains (source Aspirating)))))
12: (amount (quantity Aspirating))
13: (into ((instrument Aspirating))))
14:
15: (screwing
16: (the (mobile-object Screwing))
17: (on (fixed-object Screwing))
18: (using (tool Screwing)))

Algorithm 4 Action Designators
1: (pipetting
2: (from Container)
3: (with Instrument)
4: (into Container))
5:
6: (aspirating
7: (from Container)
8: (amount Quantity)
9: (into Instrument))

doesn’t contain how pipetting has to be done. How an action
will be done only the control programs know. screwing fully
parameterized plan schema cannot specify how pressing and
rotating motions must happen. Instead the screw plan knows
it must simultaneously run the press and rotate plans.

A. Reasoning On Fully Parametrized Plan Schemata

From a fully parametrized plan schema our Prolog-based
reasoning mechanism extracts designators for: actions, ob-
jects, and locations. In particular for the fully parametrized
pipetting plan schema the reasoning mechanism extracts the
action designator for pipetting action, the object designa-
tors for pipette and containers and the location designators
relative to them. In Code Excerpts 5 - 6. Designators are
symbolic descriptions. Syntactically they have the form of a
set of attribute-value pairs. Semantically they start existing

((〈attr0〉 〈val0〉) . . . (〈attrn〉 〈valn〉))

as underspecified descriptions for each entity involved by
NL instruction and needs a representation. The semantics of
a designator gives the designator’s type. While the control
system is running those symbolic representations grow com-
plex incorporating more details about the entities they are
referring to.

The Pipetting action designator from Code Excerpt 4 states
what pipetting action needs in terms of classes of entities
- specifically it needs two entities of type Container and
an entity of type Instrument. The difference between the
pipetting plan schema and the pipetting action designator
resides on their different domains of definition. The first of
them is defined over the set of action roles and the second
is defined over the set of symbolic features.

Test tube designator Code Excerpt 5 states that it is of
type Container, having a size of 500ml, contains NaOH, and

Algorithm 5 Object Designators
1: (test-tube
2: (type Container)
3: (size 500ml)
4: (contains NaOH)
5: (has-a
6: (cover
7: (type cap)
8: (color blue))))
9:

10: (pipette
11: (type instrument)
12: (capacity 10ml)
13: (has-a button-designator)
14: (has-a effector-designator))

Algorithm 6 Location Designators
1: (above
2: test-tube-designator)
3:
4: (inside
5: bottle-NaOH-designator)

has-a cover of type cap and color blue. The robot’s Object
Recognition System detailed in Section IV accepts the vague
and symbolic object designators of test tube and returns it
enriched with more perceived details like for example test
tube’s 6D pose.

Location designators are defined relative to object designa-
tors. They behave like space quantifiers and refer to different
regions around objects. Above and inside are two location
designators. They are defined relatively to at least one object.
In Code Excerpt 6 they refer to the spatial region above the
test tube and to the spatial region inside the bottle containing
the chemical compound NaOH.

B. Plan Execution

The reasoning mechanism infers from pipetting action
designator that the pipet plan, depicted in Code Excerpt 7,
is the most competent to perform it. The pipet plan takes as
arguments four designators which symbolically describe the
source holding the liquid from which the amount must be
transfered into the destination by using the instrument. Inside
its body, the pipet plan coordinates sequentially another two
plans which aspirate a specific amount of liquid into the
instrument and dispense it into the destination. At its turn
the aspirate plan coordinates other simpler plans which move
an object, press an object part respectively release an object
part. In order to move instrument’s effector (pipette’s tip)
the object-part quantifier is used to cast the effector as an
object and give it as actual parameter to the move plan call.
Internally the move plan figures out the relation between
object’s frame to be moved and object’s grasping points.
Taking into account this relation the plan is appropriately
parametrizing the controller to perform the right motions.

1) Plan Language: For coding the pipet plan we used
CRAM Plan Language (CPL) [9] which reimplements and
extends RPL [10]. CPL’s control structures are designed to
allow reasoning about the plan and revising it in case a failure
is detected. Plans implemented in CPL can be more than
a sequence of atomic actions. They can run concurrently,
in loops, they can be synchronized and they benefit of
failure handling mechanism. Reasoning on plans can be done

Algorithm 7 Pipetting Plan
1: (def-plan pipet (source instrument amount destination)
2: (seq
3: (aspirate (source instrument amount))
4: (dispense (instrument amount destination))))
5:
6: (def-plan aspirate (source instrument amount)
7: (seq
8: (recognize source)
9: (move (object-part effector instrument)

10: (above source))
11: (recognize (object-part button instrument))
12: (press (object-part button instrument))
13: (move (object-part effector instrument)
14: (inside source))
15: (release (object-part button instrument))
16: (move (object-part effector instrument)
17: (above source))))

without a complete understanding of a whole plan because
CPL’s control structures support annotation.

2) Plan Library: Top-down the plan library contains task
abstract but action specific plans. Bottom-up it contains hard-
ware specific plans which communicate with robot’s object
recognition system and controllers via ROS [11] middleware.
pipet, aspirate or screw are just few action specific plans.
recognize, move or rotate are other few hardware specific
plans. Action specific plans build on top of hardware specific
plans.

3) Reactive Execution Engine: At execution time the
pipet plan is run as a normal control program. In the first
phase the reactive execution engine queries the object recog-
nition system, detailed in the next section by sending vague
object designators and receiving them enriched with more
details about recognized objects. In the second phase, before
triggering robot’s controllers, the reactive execution engine
asks the geometric reasoning module [12] to check if the
intended manipulations are feasible. The geometric reasoning
module temporal projects the requested manipulations and
analyzes them. If an issue is detected then the plan gets the
chance to fix it. If the geometric reasoning doesn’t return
any issue then in the fourth phase the cartesian controller
is employed to move robot’s arms and perform the motions
requested. For future experiments we plan to employ either
a motion planner either more flexible controllers [13].

4) Spatial Reasoning: At the plan’s runtime within robot’s
specific context, all symbolic location designators must be
converted into numerical values understandable by robot’s
controllers. The geometric reasoning mechanism associates
a three dimensional probability distribution to each loca-
tion designator and draws a sample out of it. For moving
pipette’s tip inside bottle which contains sodium hydroxide,
the geometric reasoning mechanism draws a sample from
the probability distribution describing the volume inside the
bottle. Based on this sample the move plan will parametrize
robot’s arm controllers such that they move pipette’s tip
in the sampled three dimensional value. Besides converting
symbolic descriptions to numerical values the geometric rea-
soning mechanism has other more powerful functionalities
like asserting if the current manipulation of an object will
obstruct future manipulations involving other objects or as-
serting if the current manipulation will leave the environment
into a stable state.

5) Cartesian Controller: We focus our experiments on
observing how robots can perform NL instructions, more
precisely on bridging NL understanding with robot’s control
programs. In order to move robot’s arms, for a moment, we
chose the simplest approach of using a inverse kinematics
on top of a joint controller. For future experiments we are
integrating a more flexible controller which uses defined
constraints over a set of features.

6) Semantic Logging: When running a given plan the
reactive execution engine signals a multitude of execution
context characteristics like: plan’s goals, the relations be-
tween the plan being run and the other sub-plans called by
it or pieces of sensor data which influenced robot’s decisions
[3]. All descriptions are synchronized based on a time stamp.

7) OpenEASE: [14] collects all descriptions generated by
the semantic logging module and makes them available to
other robots [4]. OpenEASE is equiped with inference tools
which allow reasoning on this data and answering queries
regarding to what did the robot see, why, how, did the robot
behaved.

VI. EVALUATION

Our robot took part in Ocean Sampling Day [15] an event
organized with the aim of indexing all DNAs from planetary
ocean. Ideally it should have performed the entire procedure
of DNA extraction on the samples collected within this event,
but we had to limit our experiments to just few of them
due to their big number. For testing the pipeline proposed in
Section II, from DNA Extraction Procedure we selected the
neutralization instruction which according to the amount of
involved substances requires and Adding action or a Pipetting
action. PRAC successfully attached an action role to each
instruction word and inferred that the pipetting plan schema
is the most appropriate to be parametrized with the specific
details coming from instructions’ words. The Prolog-based
reasoning mechanism successfully extracted the symbolic
descriptions for the pipetting action, the containers involved
and the necessarily instrument and inferred that the pipet plan
is the most competent to perform the pipetting action. When
running the reasoning mechanism on the extracted pipetting
action designator only the pipetting plan is identified as
the most appropriate for performing the pipetting action. In
future experiments we want to test whether the reasoning
mechanism is able to infer an ensemble of plans which
combined will should perform given action designator, be it
pipetting. When executing the pipetting plan, object recog-
nition system successfully recognized all objects involved
based only on their symbolic description Figure 5. For
representing the type of knowledge the robot needs in order
to press pipette’s button such that right amount of liquid is
released we use the KnowRob [16] knowledge processing
system for our future experiments. The cartesian controller
behaved well for simple manipulations but we expect it to
be overtaken in our future experiments. When manipulating
the necessary objects, we assumed that the robot doesn’t
have to navigate and each object had a virtual grasping pose
attached to it. Currently we are extending robot’s navigation

plan library and its grasping capabilities by deriving grasps
from objects’ CAD models.

VII. RELATED WORK

The system proposed in [17] probabilistically maps NL
instructions into a set of robot primary actions and obtains
the sequence of manipulations from planning in this set.
The system [18] turns NL commands into a more structured
representation and learns a probabilistic graphical model to
associate the structured representation to a plan inferred
from the set of groundings: objects, locations, actions. For
training the probabilistic model people are shown a task
happening inside a simulator and are asked to state in NL
commands which correspond to task’s requirements. The
system described in [19] obtained very promising results by
building, at learning time, a conditional random field over the
set of NL commands and using it at runtime for minimizing
an energy function over new commands. So far these systems
skipped the problem of understanding NL instructions and
focused more on correctly associating NL instructions to
robotic primitive actions.

This approach is similar to [20] where the two robots read
instructions from web and collaborated in order to perform
them. The current approach tackles activities which require
more accurate manipulations. Pipetting action requires the
robot to use its both arms and perform accurate motions.

Adam the robot scientist is an laboratory automation
system [21] which obtained remarkable results while trying
to prove that the experimentation cycle can be automated.
While Adam requires special deployment and minimizes the
required manipulation, our robot is able to use humans’
equipment and conduct experiments into a normal laboratory.

We believe that autonomous mobile robots are able to ben-
efit of Chemical Semantic Web, access experiments recorded
by Electronic Laboratory Notebooks [22] and perform and
record their new results.

VIII. CONCLUSIONS

In this paper we present the control system of an intelligent
autonomous robot which is able to understand NL instruc-
tions and infer and run the most competent control program
for performing them. For each instruction the PRAC system
successfully inferred the implicit knowledge and assembled
a reach instruction representation. From this representation
the reasoning mechanism extracted symbolic descriptions for
action, objects, locations and the most competent control
program to coordinate robot’s required motions. When the
inferred control program was run, the robot’s reactive exe-
cution engine competently coordinated the object recognition
system, the geometric reasoning system and the robot’s
controllers in order to accurately recognize the necessary
objects and competently manipulating them. The control
programs contained in the plan library proved to be very
flexible and highly parametrizable. Overall the entire pro-
posed control architecture turned out to be very scalable.
The used symbolic mechanism is compatible with newly
developed semantic web tools for chemistry. The results

of our future experiments will report how the chemistry
semantic web can be made available to intelligent robots. The
semantic logging mechanism recorded all robot experiences
and openEASE, the web-based knowledge base for robots
makes them available to other robots.

ACKNOWLEDGEMENTS

This work is supported by the EU FP7 Projects RoboHow
(grant number 288533) and ACAT (grant number 600578).

REFERENCES

[1] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al., “Gen-
erating typed dependency parses from phrase structure parses,” in
Proceedings of LREC, vol. 6, 2006, pp. 449–454.

[2] “WordNet,” 2008, wordnet.princeton.edu.
[3] J. Winkler, M. Tenorth, A. K. Bozcuoglu, and M. Beetz, “CRAMm

– memories for robots performing everyday manipulation activities,”
Advances in Cognitive Systems, vol. 3, pp. 47–66, 2014.

[4] M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE – a knowledge
processing service for robots and robotics/ai researchers,” in ICRA,
Seattle, Washington, USA, 2015.

[5] D. Nyga and M. Beetz, “Everything robots always wanted to know
about housework (but were afraid to ask),” in IROS, Vilamoura,
Portugal, 2012.

[6] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine
Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[7] D. Nyga and M. Beetz, “Cloud-based Probabilistic Knowledge Ser-
vices for Instruction Interpretation,” in ISRR, Genoa, Italy, 2015,
accepted for publication.

[8] M. Beetz, F. Balint-Benczedi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Marton, “RoboSherlock: Unstructured Information Process-
ing for Robot Perception,” in ICRA, Seattle, Washington, USA, 2015.

[9] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM – A Cogni-
tive Robot Abstract Machine for Everyday Manipulation in Human
Environments,” in IROS, Taipei, Taiwan, 2010, pp. 1012–1017.

[10] D. McDermott, “A Reactive Plan Language,” Yale University,” Re-
search Report YALEU/DCS/RR-864, 1991.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in ICRA, Kobe, Japan, 2009.

[12] L. Mösenlechner and M. Beetz, “Fast temporal projection using
accurate physics-based geometric reasoning,” in ICRA, Karlsruhe,
Germany, 2013, pp. 1821–1827.

[13] G. Bartels, I. Kresse, and M. Beetz, “Constraint-based movement
representation grounded in geometric features,” in ICHR, Atlanta,
Georgia, USA, 2013.

[14] M. Tenorth, J. Winkler, D. Beßler, and M. Beetz, “Open-ease –
a cloud-based knowledge service for autonomous learning,” KI –
Künstliche Intelligenz, 2015, accepted for publication.

[15] Micro B3. (2014) Ocean sampling day. [Online]. Available:
www.microb3.eu/osd

[16] M. Tenorth and M. Beetz, “KnowRob – A Knowledge Processing
Infrastructure for Cognition-enabled Robots,” International Journal of
Robotics Research (IJRR), vol. 32, no. 5, pp. 566 – 590, April 2013.

[17] Mario Bollini, Jennifer Barry, and Daniela Rus, “BakeBot: Baking
Cookies with the PR2,” in The PR2 Workshop, from International
Conference on Intelligent Robots and Systems (IROS), 2011.

[18] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation.” in AAAI, 2011.

[19] Dipendra K Misra, Jaeyong Sung, Kevin Lee, Ashutosh Saxena, “Tell
Me Dave: Context-Sensitive Grounding of Natural Language to Mobile
Manipulation Instructions,” in RSS, 2014.

[20] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
D. Pangercic, T. Rühr, and M. Tenorth, “Robotic Roommates Making
Pancakes,” in ICHR, Bled, Slovenia, 2011.

[21] R. D. King, “The automation of science,” Science, vol. 324, no. 5923,
pp. 85–89, April 3, 2009.

[22] C. L. Bird, C. Willoughby, and J. G. Frey, “Laboratory notebooks in
the digital era: the role of elns in record keeping for chemistry and
other sciences,” Chem. Soc. Rev., vol. 42, pp. 8157–8175, 2013.

	Executive Summary
	Introduction
	Action Execution in the IASSES scenario
	Translation of the Pick skill
	Translation of the Place skill
	Execution of Complex Actions

	Action Execution in the ChemLab Scenario
	The inference of the Neutralization ADT symbolic parameters
	The simulation-based execution of the Neutralization ADT
	The experience of Neutralization ADT as episodic memory available online to other robots

	Action Execution in the UGOE system
	Conclusions
	References
	Attached papers

