
Univerza v Ljubljani

Fakulteta za računalništvo in informatiko

Barry Ridge

Učenje osnovnih funkcionalnih lastnosti
predmetov v robotskem sistemu

DOKTORSKA DISERTACIJA

Mentor: prof. dr. Aleš Leonardis
Somentor: doc. dr. Danijel Skočaj

Ljubljana, 2014

University of Ljubljana

Faculty of Computer and Information Science

Barry Ridge

Learning Basic Object Affordances in a
Robotic System

DOCTORAL DISSERTATION

Supervisor: prof. dr. Aleš Leonardis
Co-supervisor: assist. prof. dr. Danijel Skočaj

Ljubljana, 2014

Dedicated to those who come after me.

Acknowledgements

First and foremost I would like to thank my supervisor prof. dr. Aleš Leonardis
and co-supervisor assist. prof. dr. Danijel Skočaj for giving me the opportunity
to do this research, for making it possible to come and live in the beautiful
country that is Slovenia, and for supporting me time and again when the going
got tough. I am eternally grateful. I would like to thank Radu Hourad, who
headed the VISIONTRAIN project which provided my original fellowship, for
the opportunity to be part of an exceptionally stimulating early research training
programme. I would also like to thank Jeremy Wyatt for having given me the
opportunity to work on the CogX project- a fantastic example of what great
people can do when they put their minds together, even while spread over a
continent. A big thank you must go to Aleš Ude for offering me my current job
at the Jožef Stefan Institute which has allowed me to both finish this Ph.D. and
continue my research.

I would like to thank all of my former colleagues at the ViCoS lab in Ljubljana.
Matej Kristan helped me more times that I can ever remember, often seeming
like an oracle on all matters machine learning and otherwise. Roland Perko, the
master of low-level vision, showed me plenty of tricks and above all, taught me
how to be easy-going. A big thank you to Dušan Omerčević for kick-starting my
YouTube career and all the positive energy and great discussions. Luka Fürst got
me started with Matlab and reminded me that Vim is the one true text editor.
I must thank Matej Artač for providing much of the software and groundwork
that got me started working with stereo cameras and 3-D point clouds. Thank
you to Aleš Štimec for pointing me in the direction of cross-modal learning, for
all of the great help with various pieces of hardware and software, and for many
stimulating discussions. I would like to thank Luka Čehovin, without whom
I probably would not have had a webpage, SVN access, multi-core computing
power, and who knows what else. Thank you to Ondrej Drbohlav for helping me
figure out how to get curvature features from surface fitting. Special thanks must

also go to the ViCoS coffee club for all the vibrant discussions lubricated by one
of life’s finer, darker little luxuries.

I would like to thank my current colleagues at the Humanoid and Cognitive
Robotics Lab, and more generally, the Department for Automation, Biocybernet-
ics and Robotics, at the Jožef Stefan Institute, who have bid me warm welcome
into their midst and continue to provide both buoyant comradery and a vibrant
research environment. Thank you to Bojan Nemec, Anton Ružić, Andrej Gams,
Jan Babič, Igor Mekjavić, Leon Žlajpah and Igor Kovač for overseeing such a
fantastic department. Thank you to my lab-mates Miha Deniša, Robert Bevec,
Tadej Petrič, Rok Vuga, Aljaž Kramberger, Luka Peternel, Denis Forte, Nejc
Likar and Jernej Čamernik, for their help, support, laughs, lunchtime conversa-
tions, and for being such great colleagues. And thank you to Adam McDonnell
for being the very embodiment of home away from home. And finally, thank you
to Tanja Dragojevič and Marija Kavčič for keeping the whole show running so
well.

A very special thank you to my friend Andrej Schulz for the cartoon illustra-
tion in the introduction. Sometimes pictures really can paint a thousand words.
Or perhaps a little more in this case.

I would like to thank all of the great friends I have made over the years during
my time in Ljubljana who have made my passage through here all the lighter.
Many have come and gone during that time, and whether the rest of us stay on
or move on, I’m quite sure the memories will burn on.

I would like to thank my doctors, Ines Glavan Lenassi dr. med. and Draženka
Miličević dr. med., without whose kind and professional care at crucial junctures,
I would certainly not have been capable of completing this work.

Last, but of course, most importantly, I would like to thank my wonderful
family without whose love and support I would never have come this far.

Barry Ridge
Ljubljana
October 2014

iv

Abstract

One of the fundamental enabling mechanisms of human and animal intelli-
gence, and equally, one of the great challenges of modern day autonomous robotics
is the ability to perceive and exploit environmental affordances. To recognise how
you can interact with objects in the world, that is to recognise what they afford
you, is to speak the language of cause and effect, and as with most languages,
practice is one of the most important paths to understanding. This is clear from
early childhood development. Through countless hours of motor babbling, chil-
dren gain a wealth of experience from basic interactions with the world around
them, and from there they are able to learn basic affordances and gradually more
complex ones. Implementing such affordance learning capabilities in a robot,
however, is no trivial matter. This is an inherently multi-disciplinary challenge,
drawing on such fields as autonomous robotics, computer vision, machine learn-
ing, artificial intelligence, psychology, neuroscience, and others.

In this thesis, we attempt to study the problem of affordance learning by
embracing its multi-disciplinary nature. We use a real robotic system to perform
experiments using household objects. Camera systems record images and video
of these interactions from which computer vision algorithms extract interesting
features. These features are used as data for a machine learning algorithm that
was inspired in part by ideas from psychology and neuroscience. The learning
algorithm is perhaps the main focal point of the work presented here. It is a
self-supervised multi-view online learner that dynamically forms categories in
one data view, or sensory modality, that are used to drive supervised learning in
another. While useful in and of itself, the self-supervised learner can potentially
benefit from certain augmentations, particularly over shorter training periods.
To this end, we also propose two novel feature relevance determination methods
that can be applied to the self-supervised learner.

With regard to robotic experiments, we make use of two different robotic
setups, each of which involves a robot arm operating in an experimental envi-
ronment with a flat table surface, with camera systems pointing at the scene.

Objects placed in the environment can be manipulated, generally pushed, by the
arm, and the camera systems can record image and video data of the interaction.
One of the camera systems in one of the setups is a stereo camera, and another in
the other setup is an RGB-D sensor, thus allowing for the extraction of range data
and 3-D point cloud data. In the thesis, we describe computer vision algorithms
for extracting both salient object features from the static images and point cloud
data, and effect features from the video data of the object in motion.

A series of experiments are described that evaluate the proposed feature
relevance algorithms, the self-supervised multi-view learning algorithm, and the
application of these to real-world object push affordance learning problems using
the robotic setups. Some surprising results emerge from these experiments and
as well as those, under the conditions we present, our framework is shown to be
able to autonomously discover object affordance categories in data, predict the
affordance categories of novel objects and determine the most relevant object
properties for discriminating between those categories.

Key words:
affordances; affordance learning; self-supervised learning; multi-view learning;
cross-modal learning; multi-modal learning; feature relevance determination;
online learning; cognitive robotics; developmental robotics

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 What is an Affordance? 3

1.1.2 Cognitive and Developmental Robotics 5

1.2 An Object Affordance Learning Scenario 6

1.3 Contributions . 8

1.4 Thesis Outline . 10

2 A History of Affordances 13

2.1 Affordances in Ecological Psychology 14

2.1.1 Formalising Affordances 15

2.2 Affordances in Studies on Humans and Animals 19

2.2.1 Studies on Humans . 19

2.2.2 Studies on Non-Human Animals 22

2.3 Affordances in Artificial Intelligence 25

2.3.1 The Symbol Grounding Problem 25

2.3.2 Constructivist Learning 26

2.4 Affordances in Vision . 29

2.4.1 Function-Based Object Recognition 29

2.4.2 Object Categorisation . 30

2.5 Affordances in Robotics . 31

vii

viii Contents

2.5.1 Pushing and Pulling Objects 31

2.5.2 Grasping Objects . 34

2.5.3 Other Forms of Affordances in Robotics 35

2.6 Chapter Summary . 37

3 Framing the Object Affordance Learning Problem 39

3.1 Formalising the Problem . 39

3.2 Framing the Problem within Machine Learning 41

3.2.1 Supervised Learning or Unsupervised Learning? 42

3.2.2 Continuous/Online Learning 43

3.3 Requirements for Our Affordance Learner 45

3.4 Chapter Summary . 47

4 Self-Supervised Multi-View Learning 49

4.1 Multi-View Learning . 51

4.1.1 Representing a Data View or Sensory Modality 51

4.1.2 Connecting Data Views 56

4.1.3 Training an Unsupervised Multi-View Learner 60

4.2 Unsupervised Multi-View Discriminative Learning 63

4.2.1 Regression . 64

4.2.2 Classification . 65

4.3 Self-Supervised Multi-View Discriminative Learning 71

4.3.1 Learning Vector Quantization 72

4.3.2 Training LVQ Classifiers with Probabilities instead of Labels 75

4.3.3 Measuring Similarity Between Data Views 77

4.3.4 Self-Supervised Online Multi-View Training Algorithm . . 78

4.4 Chapter Summary . 81

5 Feature Relevance Determination 83

Contents ix

5.1 Relevance Determination for LVQ 84

5.1.1 RLVQ . 85

5.1.2 GRLVQ . 85

5.2 Relevance Determination for LVQ using Fisher Criterion Score . . 86

5.2.1 First Proposed Algorithm: FC1 87

5.2.2 Second Proposed Algorithm: FC2 88

5.3 Applying Relevance Determination to the Self-Supervised Multi-
View Learner . 92

5.3.1 During Training . 92

5.3.2 At Classification Time . 92

5.4 Chapter Summary . 93

6 Robot and Vision Systems 95

6.1 Experimental Platforms . 96

6.1.1 Katana/Camera Setup . 96

6.1.2 KUKA-LWR/Kinect Setup 99

6.2 Visual Feature Extraction . 100

6.2.1 Object Features . 101

6.2.2 Object Effect Features . 108

6.3 Chapter Summary . 115

7 Experimental Results 117

7.1 Experiments on Feature Relevance Determination Algorithms . . 117

7.1.1 Data . 118

7.1.2 Evaluation Procedure . 118

7.1.3 Algorithm Setup . 120

7.1.4 Results . 120

7.1.5 Summary . 124

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms . 126

x Contents

7.2.1 Data . 126

7.2.2 Evaluation Procedure . 128

7.2.3 Experiments . 129

7.2.4 Results: Three-Class Synthetic Dataset 131

7.2.5 Results: Five-Class Synthetic Datasets Follow-up Study . . 141

7.2.6 Summary . 144

7.3 Object Push Affordance Experiments with Katana/Camera Setup 145

7.3.1 Data . 145

7.3.2 Evaluation Procedure . 147

7.3.3 Experiments . 149

7.3.4 Results: 3-D + 2-D Object Features Dataset 151

7.3.5 Results: 3-D + 2-D Object Features Dataset Follow-Up Study157

7.3.6 Results: 3-D Object Features Dataset 160

7.3.7 Summary . 163

7.4 Object Push Affordance Experiments with KUKA-LWR/Kinect
Setup . 163

7.4.1 Data . 164

7.4.2 Staged Feature Relevance Determination 166

7.4.3 Results . 166

7.4.4 Summary . 170

7.5 Chapter Summary . 170

8 Conclusion 173

8.1 Thesis Summary . 173

8.2 Summary of Contributions . 176

8.3 Future Work . 176

References 177

Contents xi

Appendix A 197

Appendix B 199

B.1 Uvod . 199

B.1.1 Motivacija . 199

B.1.2 Scenarij za učenje funkcionalnih lastnosti predmetov . . . 203

B.1.3 Prispevki . 205

B.2 Samo-nadzorovano več-modalno učenje 206

B.3 Določanje ustreznosti značilnic . 209

B.4 Robotski sistem za učenje funkcionalnih lastnosti predmetov . . . 210

B.5 Rezultati poizkusov . 212

B.6 Zaključek . 214

Published Work 217

Declaration 221

xii Contents

List of Tables

3.1 Weng’s comparison of various learning approaches. 44

3.2 Hard online learning requirements. 45

3.3 Self-supervised learning requirements. 46

7.1 Attribute list for datasets in Section 7.1.1. 118

7.2 Evaluation of various supervised feature relevance determination
algorithms. 122

7.3 FC1GLVQ & FC2GLVQ versus SVM. 123

7.4 Summary of dataset from KUKA-LWR/Kinect experiment. 165

xiii

xiv List of Tables

List of Figures

1.1 Cartoon illustration of the affordance learning problem. 2

1.2 Object affordance learning experimental setup. 7

1.3 The main idea behind our affordance learning framework. 8

2.1 Chimpanzees using wooden crates to retreive bananas in the ex-
perimental studies of Wolfgang Köhler [14]. 23

2.2 A small octopus using a nut shell and a clam shell for protection
[17]. 25

3.1 Potential affordance learning models. 40

3.2 Expanding on the main object affordance learning idea. 41

4.1 Vector quantization Voronoi diagram. 52

4.2 Multi-view vector quantization. 57

4.3 Cross-view Hebbian projection. 59

4.4 Unsupervised multi-view training. 61

4.5 Cross-view projection of meta-clusters. 68

4.6 Cross-view classification. 69

4.7 Self-supervised multi-view training. 76

5.1 First proposed feature relevance determination technique. 87

5.2 Fisher criterion score failure over multi-modal distributions. . . . 89

5.3 Second proposed feature relevance determination technique. . . . 90

xv

xvi List of Figures

6.1 Katana/Camera setup system architecture. 96

6.2 Learning environment for the Katana/Camera setup. 98

6.3 Sample rolling versus non-rolling objects. 99

6.4 Learning environment for the KUKA-LWR/Kinect setup. 100

6.5 Object feature extraction pipeline in the Katana/Camera setup. . 101

6.6 Multi-modal object segmentation pipeline in Katana/Camera setup.102

6.7 Object segmentation and surface fitting in Katana/Camera setup. 105

6.8 Dividing 3-D object point cloud into parts in KUKA-LWR/Kinect
setup. 107

6.9 Object tracking in Katana/Camera setup. 110

6.10 Object tracking in KUKA-LWR/Kinect setup. 111

6.11 Object tracking refinement: rolling object. 112

6.12 Object tracking refinement: non-rolling object. 113

7.1 Feature relevance bar plots for fully-supervised learners on various
datasets. 125

7.2 Projections from three-class dual-view synthetic dataset. 127

7.3 Projections from five-class dual-view synthetic dataset. 128

7.4 Online class discovery results for various unsupervised SOM-based
multi-view learners. 132

7.5 Online classification results for various unsupervised multi-view
SOM-based learners. 133

7.6 Fully-supervised versus self-supervised LVQ1-based and GLVQ-
based learners. 135

7.7 Fully-supervised versus self-supervised RLVQ1-based and GRLVQ-
based learners. 136

7.8 Fully-supervised versus self-supervised FC2LVQ1-based and
FC2GLVQ-based learners. 137

7.9 Feature relevance bar plots for learning on a synthetic multi-view
dataset. 138

List of Figures xvii

7.10 Comparison of multiple self-supervised learners for two epochs of
training. 139

7.11 Comparison of multiple self-supervised learners for 100 epochs of
training. 140

7.12 Class discovery results for 10-folds cross validation on the 500 sam-
ple 5-class synthetic dataset (left graph) and for 5-folds cross vali-
dation on the 50000 sample 5-class synthetic dataset (right graph).
. 142

7.13 Class prediction results for 10-folds cross validation on the 500 sam-
ple 5-class synthetic dataset (left graph) and for 5-folds cross vali-
dation on the 50000 sample 5-class synthetic dataset (right graph).
. 143

7.14 Feature relevance determination results for 10-folds cross valida-
tion on the 500 sample 5-class synthetic dataset (left graph) and
for 5-folds cross validation on the 50000 sample 5-class synthetic
dataset (right graph). 143

7.15 Sample rolling versus non-rolling objects. 146

7.16 Projection of Katana/Camera experimental dataset onto two fea-
ture dimensions. 147

7.17 Sample object interactions from Katana/Camera experimental
dataset. 148

7.18 Online affordance class discovery results for unsupervised multi-
view SOM-based learners. 151

7.19 Online object affordance prediction of unsupervised multi-view
SOM-based learners over two training epochs. 152

7.20 Online object affordance prediction of fully-supervised and self-
supervised learners over two training epochs. 153

7.21 The effect of prototype culling on a supervised learner. 154

7.22 The effect of prototype culling on a self-supervised learner. 155

7.23 Comparing unsupervised and self-supervised learners, with and
without feature relevance determination at classification time. . . 155

xviii List of Figures

7.24 Comparing unsupervised and self-supervised learners with proto-
type culling, with and without feature relevance determination at
classification time. 156

7.25 Feature relevance bar plots for fully-supervised learners. 157

7.26 Feature relevance bar plots for learning on the object affordance
dataset. 158

7.27 Class prediction results for Katana/Camera 3-D + 2-D object fea-
tures follow-up study. 159

7.28 Feature relevance results for Katana/Camera 3-D + 2-D object
features follow-up study. 160

7.29 Class prediction results for Katana/Camera 3-D object features
experiment. 162

7.30 Input view feature relevance results for Katana/Camera 3-D object
features experiment. 162

7.31 Segmented 3-D object point clouds from KUKA-LWR/Kinect ex-
periment. 164

7.32 Object trajectories and trajectory convex hulls from KUKA-
LWR/Kinect experiment. 165

7.33 Staged feature relevance determination results from KUKA-
LWR/Kinect experiment. 167

7.34 Class discovery and prediction results for KUKA-LWR/Kinect ex-
periment. 167

7.35 Selected feature relevance determination results from KUKA-
LWR/Kinect experiment. 168

7.36 Specific class discovery and prediction results for KUKA-
LWR/Kinect experiment. 169

B.1 Postavitev sistema za učenje funkcionalnih lastnosti predmetov. . 204

B.2 Glavna ideja našega sistema za učenje funkcionalnih lastnosti pred-
metov. 204

B.3 Več-modalna projekcija meta-gruč 209

List of Figures xix

B.4 Proces segmentacije predmeta. 211

B.5 Sledenje predmetu . 212

B.6 Sprotno napovedovanje funkcionalnih lastnosti predmetov. Pri-
merjava med različnimi tipi samo-nadzorovanega učenja za dve
učni epizodi. 213

xx List of Figures

List of Algorithms

1 Unsupervised Multi-View Learner Training 61
2 Unsupervised Multi-View Learner Online Update 63
3 Cross-View Regression . 64
4 Cross-View Classification . 70
5 Self-Supervised Multi-View Learner Online Update 80
6 Multi-Modal Object Segmentation 103
7 Object Tracking Refinement . 109

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Motivation

If robots are ever going to live up to their potential and permeate our daily lives
in any meaningful sense, they are going to need to be able to learn and to adapt
to their environments autonomously. The reason for this is deceptively simple in
that it boils down to the fact that the world around us is deceptively complex. The
world around us is so complex, in fact, that almost paradoxically, we can end up in
situations where tasks that would be challenging or even impossible for humans
to perform end up being trivial for robots to perform; whereas tasks that are
comparatively simple for humans to perform, turn out to be exceedingly complex
or impossible for robots to replicate. By way of explanation, while at the present
time it is routine to employ robots to perform involved, but well-defined, tasks
in controlled environments such as car factories, it is far less feasible to manually
program robots to account for all of the possible situations they might encounter
in more uncontrolled environments such as modern family homes. Where the
fortunate engineer of a robot tasked with repeatedly soldering the same complex
circuit design into the satellite navigation system of a car might have little to
worry about, since the circuit design does not change very often, the hapless
designer of a multi-functional home robot will more than likely despair when it
fails to find the white television remote control in its new home, having only ever
been programmed to locate black ones.

The answer to this lies in learning, but endowing robots with the ability to
learn is a deep, multi-faceted problem that spans many diverse research fields such
as artificial intelligence, machine learning, computer vision, psychology, neuro-

1

2 Introduction

science and others. One of those facets, that of object affordance learning, forms
the subject of this thesis. As human beings, the ability to learn how objects
in the world around us behave when we manipulate them, that is, the ability to
learn what objects in the world afford us, is fundamental to our broader ability to
learn more complex ideas; it is, in other words, fundamental to the development
of our intelligence. If robots had a similar ability, then it stands to reason that
it would be fundamental to their development of more complex abilities also.
However, just as it is non-obvious precisely how best to approach the general
autonomous robotic learning problem, so too is it unclear how the more specific
object affordance learning problem should be approached. As humans, we are
so accustomed to sub-consciously learning about and exploiting affordances from
an early age with relative ease, that we tend to have little appreciation of the
underlying complexity of the problem, as well as of what a robotic system would
have to be capable of in order to solve it, an idea that is illustrated in cartoon
form in Figure 1.1. Fortunately, there are a number of possible angles of attack,
some of which we explore in this thesis. We begin with an exploration of the
meaning of the word “affordance” itself.

Figure 1.1: How should robots go about learning the basic rules for manipulating
objects in their environment?1

1With thanks to Andrej Schultz for this original illustration.

1.1 Motivation 3

1.1.1 What is an Affordance?

The term affordance was coined by the psychologist J.J. Gibson [65, 1979 1st

edition] to describe the interactive possibilities offered to an agent by its environ-
ment, e.g., “a ball affords being rolled on the ground” or “a light switch affords
the illumination of a light bulb”. To quote Gibson himself regarding his inception
of the term,

“The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. The verb to afford
is found in the dictionary, but the noun affordance is not. I have made
it up. I mean by it something that refers to both the environment
and the animal in a way that no existing term does. It implies the
complementarity of the animal and the environment.” [66, p. 127,
1986 2nd edition].

This “complementarity of the animal and the environment” turns out to be quite
important. When discussing how a cognitive agent like a robot might learn af-
fordances, a number of important considerations present themselves, namely, the
morphology, or shape, of the agent, the morphology of the environment and the
objects that inhabit it, the environmental context and object contexts, e.g., how
an object is positioned in the environment, as well as the agent context, and the
possible actions that are available to the agent in the present context. Again
quoting Gibson,

“Different layouts afford different behaviours for different animals,
and different mechanical encounters. . . . Knee-high for a child is not
the same as knee-high for an adult, so the affordance is relative to the
size of the individual.” [66, p. 128].

This is why the ability to learn affordances dynamically and developmentally is
fundamental. In human beings, or indeed in any other type of organism, no two
bodies are exactly the same and, moreover, bodies change dramatically during
the lifetime of an individual, thus the necessity to be able to adapt to and learn
affordances continuously. Each and every cognitive organism in the natural world
has co-evolved with its environment over the course of evolutionary history and
co-developed with its environment over the course of its own lifespan such that

4 Introduction

its perceptual systems and actuators are uniquely built for it, and it alone, to
recognise and use the environmental affordances it will need to exploit in order to
survive and replicate. To paraphrase a common proverb, what’s good for Peter
may not be good for Paul: what one type of organism perceives as an affordance
it can exploit, another type of organism may not be able to exploit at all, or even
perceive at all. This is because their particular blends of sensors and actuators
may differ substantially from one another.

The natural world abounds with examples of this. A dog will never be able to
learn grasping affordances of objects when using one of its paws, because its paws
do not have opposable thumbs. A cow might see a patch of grass and recognize
that it affords being eaten, whereas an ant crawling around near the cow’s feet
might see a single blade of grass in the same patch and recognize that it affords
being crawled upon. The cow will never see a blade of grass as an object that
can support its weight and the ant will never consider digesting a whole patch of
grass. A recent study of the drosophila fly [16] provided a striking illustration of
how the lack of ability to perceive the current environmental context and what it
affords, can mean the difference between life and death. The visually mediated
motor planning mechanisms of the drosophila fly usually afford it escape from
an incoming threat. When a person attempts to swat a fly with a newspaper,
the visual mechanisms of the fly sense the newspaper approaching at speed and
before the fly leaps to safety, it first calculates the location of the newspaper, then
adjusts the position of its body and its wings to a “take-off” position, before flying
in the opposite direction. However, if the person were to sneak up on the fly by
moving the newspaper slowly towards it, the fly would not take these pre-flight
measures because its visual mechanisms are not nearly as adept at perceiving
slow incoming movements than they are at perceiving fast movements, and so
the person would stand a much better chance of swatting the fly successfully.

Why is this important when attempting to design a robot that is capable of
affordance learning? The point being made here is that there is a strong depen-
dency between what a system is capable of either perceiving, using or learning in
terms of affordances, and the sensors, actuators and cognitive mechanisms avail-
able to it. Moreover, even very small changes in setup or differences between
separate systems can have a dramatic impact. For example, obtaining good 3-D
point cloud data of small objects using a stereo camera depends on a number of
variables including the baseline of the camera, object texture, lighting conditions,

1.1 Motivation 5

the camera’s distance from the objects, etc. This can mean the difference between
perceiving the object as being curvy or flat, bumpy or smooth, or in extreme cir-
cumstances, present or non-present. The lesson here is that we should be mindful
of these factors and others when constructing such a system. Moreover, although
it is essential to have the right sensor and actuation systems in place, we would
probably also be well advised to try to make the learning mechanism as general
and plastic as possible so that it can adapt itself to changes in the underlying sen-
sor and actuation systems or other unforeseen circumstances without requiring
re-programming.

1.1.2 Cognitive and Developmental Robotics

As indicated in the title of this thesis, we are chiefly concerned with how a robot
might discover and learn to exploit basic affordances of objects in its environment.
By using its sensors to observe objects, both statically and while in motion, and by
using its actuators to interact with them, a robot may infer relationships between
the morphologies of objects, the different actions used to interact with them and
the way they behave during interaction. If the information that is used to infer
such relationships is rich enough and these relationships are learned effectively,
then it should be possible to generalize over the relationships and aid the robot in
making predictions in novel situations by applying such generalized knowledge.
In other words, the robot would perform an action, e.g. “push the centre of the
object”, on similar objects, e.g. a football and a tennis ball, and observe what
happens afterwards- in the case of our example, the objects would roll away from
the effector because they are round. When the system subsequently encounters
an orange, it should be able to infer that it will also roll away when pushed in its
centre, based on what it observed in the previous situations pushing similar round
objects. Equally, if the system were to perform the same centre-pushing action
on cereal boxes and books and saw that they slide forward slightly, it should be
able to predict, perhaps, that packs of playing cards will move similarly when
pushed the same way because they are shaped similarly.

Recent years have seen a surge of activity in the area of developmental robotics
[105], a trend that can be seen to underscore the desire to move away from task-
specific robotic systems and towards more robust, adaptable platforms and archi-
tectures. Desirable traits of such systems include the capacity to construct new
concepts from previously learned or known ones, the ability to actively learn via

6 Introduction

interaction with a tutor or another knowledgeable entity, and indeed via interac-
tion with the environment and objects in the environment, etc. Naturally, these
are difficult problems that are unlikely to be amenable to wholesale solutions, but
many interesting, more tractable sub-problems can be identified, one of which is
the issue of affordance learning.

Another important issue for developmental robotics is that of continuous or
on-line learning. A continuous learning system, rather than deriving its world
knowledge from a single batch training procedure, iteratively updates its knowl-
edge representations throughout the course of its lifespan. Given the nature of a
developmental robotic system operating in a real world environment, where new
situations are being encountered perpetually, it stands to reason that the system
will not necessarily have access to data from past situations at any given moment.
This scenario would seem to preclude the use of batch learning, which assumes
that all training data are available at the same time, and favour the use of a
continuous learning mechanism.

It would therefore appear to make sense, when designing a developmental
robotic system that is capable of learning object affordances, to try to design
it so that it can learn in a continuous manner. Later in Chapter 3 we provide
a discussion of how we developed our research on affordance learning with this
consideration in mind. In the following section, in order to ground the concepts
discussed above with a practical example, we provide a brief overview of our par-
ticular object affordance learning scenario before expanding on the core research
themes in detail later in the thesis.

1.2 An Object Affordance Learning Scenario

Naturally, different researchers place the emphasis on different aspects of the
affordance learning problem depending on the particular problems they are trying
to solve and the equipment available to them. In our particular case, we have
primarily made use of the setup depicted in Figure 1.2. It consists of a robotic
arm attached to a table surface with various types of cameras observing the scene
from fixed positions. This setup is described in more detail in Chapter 6. Objects
may be placed on the work surface, the robotic arm can interact with them, and
the cameras can record visual data of the interaction.

1.2 An Object Affordance Learning Scenario 7

Figure 1.2: Object affordance learning experimental setup.

Our priority was to focus on the core problem of object affordance learning
while attempting to avoid some of the more purist related issues stemming from
computer vision and autonomous robotics that might serve to complicate matters.
Thus, using such a setup, as opposed to a mobile robot for instance, allowed us
to place certain constraints on the nature of the interactions that aided the data
acquisition process. One of our main interests was in tracking objects on the
work surface when they are pushed, grasped, or otherwise interacted with by the
robotic arm. Therefore, from a computer vision perspective, having statically
positioned cameras reduced the number of potential issues that could interfere
with tracking the objects such as motion blur, occlusion and scale invariance.
Having the arm statically positioned in the workspace also helped circumvent
camera and environment localization issues. Static, controlled light sources were
a further consideration that aided in both object tracking and segmentation.
Even the work surface itself, it being a flat wood-textured surface, was helpful in
this regard. Having a flat table table surface present in the 3-D point cloud data
acquired from a stereo camera actually facilitated the background subtraction
process for object segmentation, since it is easy to isolate using surface fitting.
Again, the above matters are explored in more detail in Chapter 6.

This setup allowed us to implement and explore the main idea behind our
approach to object affordance learning, which is visualized in Figure 1.3. When
an object is placed in the workspace we may gather visual data, such as an image
of the object and its 3-D point cloud from stereo, and extract salient object
features from the data. The arm may then interact with the object and video

8 Introduction

Arm
Action

Object
Image

Object Range
Data

Result Video of Object in
Motion

Object Features Effect Features

Figure 1.3: The main idea behind our affordance learning framework.

is recorded of the interaction while the object is in motion. Effect features may
be extracted from tracking the object in the video. Our main objective was to
form some type of model and learning algorithm for this scenario such that the
robotic system, when presented with objects, would be able to gradually learn
how they behave from experience interacting with them. When presented with a
new object, it should be able to predict how that object will behave in terms of
possible effects of actions grounded in effects features, either as a class prediction
or as effect feature predictions or otherwise, based on its model and object feature
observations. Ideally, given feature data from such interactions, we wanted the
system to be able to form its own affordance models from a naive starting point
developmentally, at least to some extent. The next section provides an overview
of the main contributions that emerged from our research based on these ideas.

1.3 Contributions

The primary academic contributions of this work are as follows:

• A self-supervised multi-view learning algorithm is proposed that
dynamically identifies classes in one data view while using them
to drive online supervised learning in another data view.2 The
approach is based on vector quantization using codebooks of prototypes to
represent different sensory modalities (or data views) cross-view connected
via a Hebbian mapping. The algorithm performs online clustering in each
of the separate modalities while the Hebbian mapping records data co-
occurrences between them, allowing for cross-view projections that form the
driving force behind the self-supervisory aspect of the algorithm. The self-

1.3 Contributions 9

supervision is based on the learning vector quantization (LVQ) paradigm
and training can proceed without the need for class labels, relying instead
on cross-view class probabilities.

• Two novel feature relevance determination algorithms for learning
vector quantization are proposed to augment the self-supervised
learning algorithm.2 Each of these is based on the application of the
Fisher criterion score in individual feature dimensions, with one of them
taking estimates of the score based on the global positioning of codebook
prototypes and the other taking estimates based on the local positioning
of nearest-neighbour prototypes. Both of these may be applied to a broad
range of LVQ-based algorithms. We also demonstrate how the local method
may be applied during online training of the self-supervised learner when
only class probabilities as opposed to class labels are available.

• A robotic system with appropriate actuation and visual feature
extraction mechanisms has been developed, used to perform real-
world experiments on object affordance learning and to test our
learning algorithms on the resulting data. Building on existing com-
puter vision techniques, we developed algorithms to aid both object shape
feature extraction from static images and object effect feature extraction
from video. In the former case, this involved the development of a multi-
modal feature segmentation technique that segmented objects both from
image data and 3-D point cloud data. In the latter case, objects were
tracked in video data using a particle filter, and the results were refined
and stabilized using colour histogram back-projection such that local ob-
ject appearance changes could be analysed.

• Experimental results demonstrating how, when comparing fully-
supervised and self-supervised LVQ-based learning under cer-
tain conditions, the additional information provided by self-
supervision from a separate data view or sensory modality can
provide better performance than fully-supervised learning with
ground truth labels. The conditions referred to here are hard online
learning constraints discussed later in Chapter 3 of this thesis. The results

2Source code has been released under the GNU/GPL license at https://github.com/
barryridge/SSLVQ.

https://github.com/barryridge/SSLVQ
https://github.com/barryridge/SSLVQ

10 Introduction

manifest themselves over short-term training periods where, under the hard
online learning constraints, the proposed multi-view self-supervised learning
algorithm holds the advantage of dynamic prototype labelling over fully-
supervised learning which, lacking prior information, must label prototypes
arbitrarily. This is discussed further in the experimental results of Chapter
7.

1.4 Thesis Outline

Chapter 2 discusses the history and related work on affordances from the perspec-
tives of various research fields such as ecological psychology, autonomous robotics,
artificial intelligence, machine learning and computer vision.

Chapter 3 describes our particular basis for approaching the affordance learn-
ing problem including how we chose to formalize an affordance, what our func-
tional requirements for an affordance learning algorithm were, and how we set
about fulfilling them from a machine learning perspective. Key to our exposition
are the concepts of multi-view and self-supervised learning. Thus, this chapter
includes a high-level discussion on self-supervised learning and how we distin-
guish it from both unsupervised and supervised forms of learning, as well as how
a multi-view or multi-modal perspective on the problem can help achieve such
self-supervision.

Chapter 4 focuses on the development of our proposed self-supervised multi-
view learning algorithm that we employ for online learning of object affordances.
It is broken into three main sections. In the first section, we discuss how sen-
sory modalities may be represented via vector quantization using codebooks of
prototypes, we show how these codebooks may be cross-view connected with a
Hebbian co-occurrence mapping, and we describe an general algorithm for train-
ing such a structure online. A key concept that the multi-view learning hinges
upon, known as Hebbian projection, is also described here. In the second section,
we show how Hebbian projection may be used to implement both unsupervised
regression and unsupervised classification within the general framework. We fo-
cus more attention on unsupervised classification, which involves meta-clustering
prototypes in an output data view into class clusters, which are mapped back to
prototypes in an input data view to be used as class labels. In the third section,
we describe how the learning vector quantization paradigm can be used to enact

1.4 Thesis Outline 11

self-supervision in the input data view and show how update rules may be derived
for that purpose using class probabilities as opposed to actual class labels, which
facilitates efficiency during training.

Chapter 5 addresses our proposed feature relevance determination techniques
and how we employed them for use in the self-supervised learning algorithm
from Chapter 4. In the first part of this chapter, we review two popular feature
relevance determination methods for learning vector quantization. In the second,
we describe why the Fisher criterion score is a useful metric for feature relevance
determination, and go on to introduce our two proposed algorithms on that basis.

Chapter 6 describes the robotic and vision systems used as a basis for our
affordance learning experiments, as well as the various algorithms that were used
in their implementation. We made use of two different setups, the first of which
consisted of a 5-DOF robotic arm, an RGB monocular camera, and a greyscale
stereo camera, and the second of which consisted of a 7-DOF robotic arm and an
RGB-D depth sensor. Much of Chapter 6 is devoted to outlining the visual feature
extraction techniques that provided both object features and effect features in
each of these setups. Generating object features involved segmenting objects
from both image data and 3-D point cloud data and extracting shape features
from the segmentations, whereas, when generating effects features, particle filter
trackers were employed to track object motion in video, and features describing
both global object workspace motion and local object appearance changes were
extracted from the resulting data.

Chapter 7 details experimental results divided into four sections. In the first
section we describe experiments on the feature relevance determination algo-
rithms from Chapter 5 in a fully-supervised setting, using both synthetic data
and well-known datasets, such that they can be evaluated independently of the
self-supervised algorithm. In the second section we evaluate the self-supervised
algorithm from Chapter 4 using synthetic data under various different conditions
and using various different combinations of feature relevance determination and
base learning rules. The third and fourth sections describe object push affor-
dance learning experiments that were performed using each of the robotic setups
described in Chapter 6 respectively, and describe the results of applying our self-
supervised learning framework in that context.

Chapter 8 provides concluding thoughts and details potential future research
directions.

12 Introduction

Chapter 2

A History of Affordances

In this chapter we set about reviewing the history of affordances broadly from the
perspectives of ecological psychology, artificial intelligence, vision, and robotics.
Ecological psychology, the field from which the term emerged, is important to us
not simply out of historical interest, but because much work has been done therein
on formalising affordances and providing suitable definitions on what affordances
actually are. Studying this will help us to settle on a suitable formalisation
for affordances that will both expand our understanding of the nature of the
affordance learning problem and subsequently aid us in attempting to solve it, or
partially solve it, within the contexts of more applicative domains.

Artificial intelligence is a field in which affordance ideas are often used im-
plicitly as atomic concepts in higher-level reasoning where action-based ideas like
“pick up the ball” are dealt with symbolically. Naturally, the question of how
these symbols are ascertained in the first place presents itself. This question, im-
mortalized as the symbol-grounding problem, may find its solution in autonomous
robotics where robotic systems can go out into the real world and learn such ba-
sic affordance symbols through experience interacting in the environment. Other
fields such as machine learning, computer vision and neuroscience, for example,
are also highly important in attempting to realise such goals and solve the as-
sociated problems, and we will refer to them as necessary in the discussion that
follows in this chapter before returning to some of them in more detail later in
the thesis.

13

14 A History of Affordances

2.1 Affordances in Ecological Psychology

Ecological psychology, broadly speaking, attempts to deal with the relationship
between the knower and the known, or more practically speaking, the organism
and the environment. The term, though associated with a number of different
branches of the broader field of psychology, derives primarily from two main
strands therein, those are the works of James J. Gibson [65, 66] and Roger G.
Barker [4]. We focus here on the Gibsonian interpretation and the studies which
stemmed from there, as that is the primary point of inception of the affordance
concept. The affordance concept itself indeed became a topic of central impor-
tance to ecological psychology, an idea that had the potential to tie together
otherwise disparate fields. Reed [142], for example, took the primary point of
ecological psychology to be the linkage between affordances and natural selec-
tion:

“The fundamental hypothesis of ecological psychology . . . is that
affordances and only the relative availability (or non-availability) of
affordances create selection pressure on animals; hence behaviour is
regulated with respect to the affordances of the environment for a
given animal” [142, p. 18]

J.J. Gibson, for his part, opines here on the link between affordances and niches
in the natural world:

“Ecologists have the concept of a niche. A species of animal is
said to utilize or occupy a certain niche in the environment. This is
not quite the same as the habitat of the species; a niche refers more
to how an animal lives than to where it lives. I suggest that a niche
is a set of affordances.” [66, p. 128]

and on the relationship between the physical and mental worlds:

“...an affordance is neither an objective property nor a subjective
property; or both if you like. An affordance cuts across the dichotomy
of subjective-objective and helps us to understand its inadequacy. It
is equally a fact of the environment and a fact of behaviour. It is both
physical and psychical, yet neither. An affordance points both ways,
to the environment and to the observer.” [66, p. 129]

2.1 Affordances in Ecological Psychology 15

Gibson, however, rejected ideas of indirect perception, information processing
and cognitivist views of human behaviour in favour of what he believed to be
direct perception envisaged by his conception of affordances:

“The perceiving of an affordance is not a process of perceiving
a value-free physical object to which meaning is somehow added in
a way that no one has been able to agree upon; it is a process of
perceiving a value-rich ecological object.” [66, p. 140]

Given what we know today, this is a difficult position to defend. Having said
that, as we shall see from the various formalisations of affordances that came
to follow later, Gibson’s original interpretation is not entirely irreconcilable with
more practical modern approaches. We begin here by taking a look at the main
theoretical formalisations of affordances before moving on to reviewing the ex-
perimental studies in ecological psychology and related disciplines.

2.1.1 Formalising Affordances

If we are to have any hope of designing and realizing a robotic system that
can autonomously learn about affordances, we need to be able to define what
affordances actually are and to model them well enough such that we can work
with them algorithmically. There have been a number of attempts made in the
literature at arriving at a suitable formalisation of affordances [26, 68, 117, 156,
157, 167, 170, 182, 195]. Chief amongst them are those of Turvey [182], Stoffregen
[170], Chemero [26], and more recently, Şahin et al. [156].

2.1.1.1 As Dispositions of Things

In his 1992 paper, Turvey [182] set out to seek an understanding of affordances
given their importance as a fundamental aspect of prospective control in animal
activity. He proposed an interpretation of affordances as dispositions, or proper-
ties, of things that are potentials or possibilities. Moreover, he considered such
dispositions as having natural complements such that the dispositions become
actualized when combined with their complements. Thus, Turvey’s informal def-
inition of an affordance was

16 A History of Affordances

“An affordance is a particular kind of disposition, one whose com-
plement is a dispositional property.” [182]

an example of which might be

“The disposition p of salt to be soluble rests with the fact that it is
a lattice of electrically charged ions bound by an electrical attraction
between opposite charges that can be eliminated by a liquid with a
high dielectric constant.” [182]

Here, the high dielectric constant of the liquid acts as a complement to the dis-
position of the salt to be soluble when combined with the liquid.

He also provided a more formalised definition as follows:

Definition. Let Wpq (e.g. a person-climbing-stairs system) = j(Xp, Zq) be com-
posed of different things Z (person) and X (stairs). Let p be a property of X
and let q be a property of Z. Then p is said to be an affordance of X and q the
effectivity of Z (i.e., the complement of p), if and only if there is a third property
r such that

(i) Wpq = j(Xp, Zq) possesses r

(ii) Wpq = j(Xp, Zq) possesses neither p nor q

(iii) Neither Z nor X possesses r.

Note here that p is defined to be a property of the stairs that assumes the
form of an affordance under certain conditions.

2.1.1.2 As Properties of the Animal-Environment System

A common criticism of Turvey’s formalisation is that it places too much emphasis
on the environment in its definition of an affordance. Stoffregen [170] sought to
address this by re-framing affordances as properties of the animal-environment
system:

“Affordances are properties of the animal-environment system,
that is, that they are emergent properties that do not inhere in either
the environment or the animal.” [170]

2.1 Affordances in Ecological Psychology 17

Stoffregen’s formal definition for this was as follows:

Definition. Let Wpq (e.g. a person-climbing-stairs system) = (Xp, Zq) be com-
posed of different things Z (e.g. person) and X (e.g. stairs). Let p be a property
of X and q be a property of Z. The relation between p and q, p/q, defines a higher
order property (i.e., a property of the animal-environment system), h. Then h is
said to be an affordance of Wpq if and only if

(i) Wpq = (Xp, Zq) possesses h

(ii) Neither Z nor X possesses h.

Here, Stoffregen explicitly defines an affordance as a relation h between a
property of the stairs and a property of the person. The idea is that the dynamics
of animal locomotion are influenced by the dynamics of the environment and vice
versa:

“The result is that there are dynamics that are unique to ‘this
animal if it climbed these stairs’ or ‘this animal when climbing these
stairs,’ but that do not inhere in either the animal or the stair.” [170]

2.1.1.3 As Relations between Organism and Environment

In Chemero’s [26] critique of previous attempts at formalisation of affordances,
including those of Turvey [182] and Stoffregen [170], he cited that where those
authors agreed that affordances are animal-relative properties of the environ-
ment, their main disagreements were over two issues: what kind of animal-relative
properties of the environment affordances are, and what it is about animals that
affordances are relative to.

Chemero argued three main points:

1. Affordances are not properties (or at least not always).

2. Affordances are not in the environment.

3. Affordances are in fact relations.

To this end, he provided the following initial definition:

18 A History of Affordances

Definition.

Affords-φ(environment, organism),where φ is a behaviour.

before arguing that this interpretation was incomplete due to confusion over
which aspects of the environment related to which aspects of the organism. He
points out that taking the obvious interpretation of the experimental work of
Warren [194] to be expressions of affordances as ratios between body scale and
some bit of the environment measured in the same units, for example:

affords-climbing(my leg length, riser height),

carries with it the flaw that body scale is just an easily quantifiable stand-in for
ability. Thereafter he referred to subsequent experimental work by Cesari et al.
[18] as evidence that

“...people perceive stair climbing and descending affordances not
as the ratio between leg length and riser height (as Warren 1984
[194] held), but rather as a relation between stepping ability and riser
height.” [26]

and thus later refined the definition to:

Definition.
Affords-φ(feature, ability),

thereby explicitly defining affordances to be relations between abilities of or-
ganisms and features of the environment.

2.1.1.4 As a Three-Way Relationship

A more contemporary formalisation, borne out of autonomous robotics but
grounded in the language of ecological psychology, is that of Şahin et al. [156].
Basing their definition on that of Chemero, which they argued was too generic
to be useful in an autonomous robotics context, they extended it to explicitly
account for the environmental effect generated by an agent with a given ability
acting on a given feature of the environment [45, 76, 156]. Their formal definition
was therefore as follows:

2.2 Affordances in Studies on Humans and Animals 19

Definition. An affordance is an acquired relation between a certain effect and
an (entity, behaviour) tuple such that when the agent applies the behaviour on
the entity, the effect is generated. This may be formalised as

(effect, (entity, behaviour)).

They used the term entity to denote the environmental relata of the affordance
rather than the term features as used by Chemero or object as used elsewhere
since, in their view, it is a less restrictive term. They also argued that the agent’s
relata should represent the part of the agent that is generating the interaction
with the environment that is producing the affordance and is best encapsulated by
the term behaviour. They emphasize that all three components in the definition
are assumed to be sensed through the proprioception of the agent, i.e. through
perception-action routines for behaviour, through the perceptual representation
of the entity and through the perceptual detection of a change in the environment
of the effect. Taking all of this together, an example of an affordance defined under
the interpretation of Şahin et al. might be

(lifted, (black-can, lift-with-right-hand))

where the term black-can is short-hand for the perceptual representation of the
black can by the agent, like, for instance, a feature vector derived from cameras
observing the can. The labels lifted and lift-with-right-hand would also be short
hand for similar perceptual and proprioceptive representations.

2.2 Affordances in Studies on Humans and Animals

2.2.1 Studies on Humans

Extensive experiments have been reported in the ecological psychology literature
and elsewhere aiming to analyse human perception of affordances. Most of these
experiments involve analysing ratios between bodily measurements of humans
and environmental measurements and finding correlations between such ratios
and the ability of the human subjects to perceive certain affordances. Various
such experiments have been trialled on both human adults [25, 193, 194] and
human infants [64, 113, 129], as well as on different types of affordances, including
environmental ‘traversability’ [25, 64, 81, 128, 194, 194], object ‘graspability’
[71, 113, 124, 129, 180, 181], and even ‘sit-ability’ [110].

20 A History of Affordances

It was in Warren’s classic study [194] of stair climbing affordances that the
paradigm of using ratios between both bodily measurements and environmental
measurements as a basis for measuring affordances was introduced. By analysing
the variations in such measurement ratios, specifically the ratio between leg length
and stair riser height, Warren was able to demonstrate that there are critical
points, corresponding to phase transitions in behaviour, and optimal points, cor-
responding to stable, preferred regions of minimum energy expenditure. Two
groups of short and tall men respectively were studied in three experiments ex-
amining visual perception of critical riser height, energetics of optimal riser height,
and visual perception of optimal riser height, respectively. The perceptual cat-
egory boundary between "climbable" and "unclimbable" stairs was predicted by
a biomechanical model, and visually preferred riser height was predicted from
measurements of minimum energy expenditure during climbing. Through these
experiments, Warren was able to show that perception for the control of action
reflects the underlying dynamics of the animal-environment system, at least in
the context of human stair-climbing. Subsequently, Warren and Whang [193]
extended Warren’s original analysis to the visual guidance of walking through
apertures. Groups of large and small human subjects were videotaped walking
through apertures of different widths to determine the critical ratio between the
aperture width and shoulder width that would marks the transition from frontal
walking to body rotation. By using an Ames room setup, they were also able
to study the relationship between the perception of the “passability” affordance
and perceived eye height of the human subjects by adjusting the floor height of
the aperture setup. They found that raising the floor height resulted in a cor-
responding change in affordance perception such that narrower aperture widths
were judged to be passable.

Further to the original experimental paradigm developed byWarren et al., E.J.
Gibson et al. [64] expanded beyond visual perception of affordances by including
a haptic aspect to their experiments with infants traversing surfaces. The infants
in their study were presented with two surfaces in succession: a standard surface
that both looked and felt rigid and a deforming surface that both looked and
felt nonrigid. By studying latency in locomotion of the infants when presented
with various different configurations of the surfaces, they were able to conclude
that the infants perceived the traversability of surfaces in relation to the mode of
locomotion, i.e. either crawling or walking, characteristic of their developmental

2.2 Affordances in Studies on Humans and Animals 21

stage and that they did this by actively exploring the properties of the surfaces
both visually and haptically. For example, when confronted with a nonrigid sur-
face, walkers tended to either hesitate for longer than crawlers, choose a rigid,
patterned route as an alternative when a choice was offered, engage in more ex-
ploratory activity or divert their attention away from the nonrigid surface more.
Kinsella-Shaw et al. [81] also brought a multi-modal approach to bear on a study
of the traversability of sloped surfaces, using two experiments: one designed to
test the optical perception of a slope in adult humans and the other designed
to test the geographical perception of a slope by measuring the foot inclination
of participants using suitable apparatus. In other studies of traversability affor-
dances involving more dynamic contexts, Oudejans et al. [128] looked at how
people cross streets safely in the presence of traffic, while Chemero et al. [25]
used a moving platform to examine how changes in the layout of affordances
affect perception of them.

With regard to the study of “graspability” affordances, one early example is
that of Newell et al. [124] where both preschool children and adults participated
in experiments grasping cubes of various sizes. Their study indicated a rela-
tionship between task constraints and the bodily constraints of the participants
when it came to selecting the grasp pattern to be utilized. However, when the
objects were scaled to the hand size of the participants, they found common di-
mensionless ratios between body and object measurements across all age groups,
suggesting that body scale plays a significant role in the development of coordi-
nation. Tucker and Ellis [180] utilized a stimulus-response compatibility (SRC)
behavioural paradigm to study the response times of adult human subjects who,
when presented with images of common graspable household items, were asked
to judge whether they were upright or inverted by pressing buttons with ei-
ther their left or right hands. The objects were oriented horizontally such that
grasping them would be more naturally suited either to a left-handed grasp or a
right-handed grasp depending on the particular view in a given image. Amongst
other results, they demonstrated that the left-right orientation of the objects had
a significant effect on the speed with which a particular hand made a simple
push-button response, thus suggesting that seen objects automatically potentiate
aspects of the actions they afford without there necessarily being an intention to
act on the part of the subject. McCarty et al. [113] looked at the role of vision
in grasping experiments involving infants reaching for horizontally and vertically

22 A History of Affordances

oriented rods under different lighting conditions, They demonstrated that hand
orientations of the infants remained consistent regardless of lighting conditions or
whether or not they could observe the objects throughout the reach, indicating
that the infants may use the initial sight of object orientation, or the memory of
it, to plan a grasp.

2.2.2 Studies on Non-Human Animals

Experimental studies on human affordances go part of the way toward elucidating
the biological basis of such phenomena, but humans are not the only organisms
that make use of environmental affordances, and thus experimental studies on
animals are likely to prove to be just as important. A variety of different species
have been observed exploiting affordances, to the extent that some species have
been known to go beyond what might be accounted for purely by genetic encoding
as exemplified by their engagement in certain interesting forms of tool-use. Such
species include primates [12, 85, 139, 191], cetaceans [96], birds [21, 80, 177, 178],
cephalopods [52] and rodents [114, 115], and we endeavour to briefly review some
of those examples in the following.

A book by Wolfgang Köhler entitled “The Mentality of Apes” [85], first pub-
lished in 1925, was one of the earliest published studies detailing the use of tool
affordances by animals, specifically chimpanzees. Köhler observed chimpanzees
in captivity on the island of Tenerife and performed experiments to study their
behaviour and problem-solving skills. The animals were tested in a number of
ways. In one experiment, they were placed in a cage where food was positioned
just out of reach outside the cage. The chimps used sticks as reaching tools and
were able to obtain the food. In another experiment, illustrated in Figure 2.1,
food was placed in an area that was too high for the chimps to reach and they
solved the problem by stacking wooden boxes and climbing up to reach the food.
As a result of such experiments, Köhler concluded that the chimps exhibited some
level of insight over and above what might be attributed to simple trial-and-error
experiments: they appeared to realise the solutions to the problems in advance
and set about implementing them through deliberate planning. A more recent
study [139] has shown that chimpanzees are capable of hunting with tools. Other
recent studies have exposed various forms of tool use in other primates. Breuer
et al. [12] have reported the first two known observations of tool use in wild go-
rillas where one female gorilla was sighted using a stick to test water depth prior

2.2 Affordances in Studies on Humans and Animals 23

Figure 2.1: Chimpanzees using wooden crates to retreive bananas in the experi-
mental studies of Wolfgang Köhler [14].

to crossing a pool of water, while a second was spotted manipulating a shrub
trunk to be used as both a stabilizer during food and as an improvised bridge
for crossing a deep patch of swamp. Meanwhile, wild bearded capuchin monkeys
have been observed carefully selecting appropriate hammer-like stones and using
them to crack open nuts [191].

Experiments performed by Mechner et al. [114, 115] in the 1950’s and 60’s
demonstrated that caged rats could learn to press various levers in a certain
sequence in order to obtain a food reward. In Mechner’s original work [115], the
rats were deprived of food for a certain amount of time before being placed in
their cages which contained two different levers. Pressing one of the levers would
deliver the food reward, but only after the other lever had been pressed a certain
number of times (usually a small number, e.g. four times). If the rat were to
press the second lever the wrong number of times or not at all, or press the levers
in the wrong sequence, it would be punished. According to the results, the rats
were able to learn to press the levers in the correct sequence in order to obtain
the reward. In their subsequent work [114], Mechner et al. demonstrated that

24 A History of Affordances

the rats were learning to associate the truly relevant parameter, i.e. the number
of lever presses, to the reward delivery, as opposed to the duration of the lever
pressing sequence. They achieved this by showing that their results were invariant
to the degree of deprivation of the rats. Thus, even though some of the rats were
extremely hungry and pressed the levers much more quickly to get the reward,
they still learned to press the first lever the correct number of times.

Studies on tool use in various species of bird have garnered much attention
in recent times. Egyptian vultures have been observed throwing stones to break
into ostrich eggs both in the wild and in captivity where they were reared from
birth under circumstances where the possibility of cultural transmission for stone-
throwing by copying experienced birds was ruled out [178]. New Caledonian
Crows (Corvus moneduloides) have been shown to exhibit extraordinary tool
manipulation abilities. Studies by Kenward et al. [79, 80] have shown how such
crows not only make use of tools to retrieve food, but are capable of spontaneously
manufacturing and utilizing their own tools from twigs and other raw materials
without any contact with adults of their species or any prior demonstration by a
human. Taylor et al. [177] showed that the abilities of such crows also extend to
metatool use such that they may, for example, use a short tool from one location
to extract a longer tool from another location which is in turn used to extract a
piece of meat from a third location that would be otherwise unreachable using
the shorter tool.

Tool use is not solely limited to land-based organisms. A variety of ocean-
dwelling creatures have also been observed exploiting tool affordances on the
seabed. In an interesting example of how a tool affordance can be discovered
and subsequently communicated amongst a population for widespread benefit,
bottlenose dolphins have been observed using pieces of sponge to protect their
noses while foraging for fish, a skill that is believed to have been discovered
by one dolphin before being passed along to her offspring [96]. Octopuses, long
considered to be one of the more intelligent underwater species, have recently been
observed carrying around coconut shells before climbing into them and employing
them as a protective exoskeleton when necessary [52], similarly to the octupus
depicted in Figure [17].

2.3 Affordances in Artificial Intelligence 25

Figure 2.2: A small octopus using a nut shell and a clam shell for protection [17].

2.3 Affordances in Artificial Intelligence

2.3.1 The Symbol Grounding Problem

The ideas discussed above naturally confer a particular importance on linking ac-
tion and perception, which can be regarded as an example of the symbol ground-
ing problem (SGP) as introduced by Harnad in 1990 [72]. The symbol grounding
problem can perhaps best be characterised as addressing the issue of how symbols
get their meaning and what that meaning really is, or what that meaning relates
to. It seems clear that this problem is highly related to the concept of affordances
if we consider that linking different modalities in an embodied cognitive system
implies that internal representations are grounded in world experience and that
these representations are in turn, linked together in some meaningful way. Not
all would agree with the purist interpretation of symbol grounding [13] where the
symbols employed are pre-specified or indivisible, and it seems that some sort of
crossover between symbol grounding and connectionist or more generalised learn-
ing mechanisms could be the appropriate way forward. Since the introduction
of the symbol grounding problem, [72], a plethora of papers have been published
aiming to address it [2, 24, 35, 62, 152, 153, 169, 192] Harnad proposed a hybrid
model [72] as a means of solving the SGP that would mix the useful elements of
both symbolic and connectionist systems by connecting the symbols manipulated
by an autonomous agent to the perceptual data they denote. This formed the
basis of further analyses by Mayo [112] and Sun [173] in a similar vein. Subse-
quently, a number of authors re-analysed the problem [147, 192] and attempted
to extend the hybrid model in various directions. In particular, Davidson’s 1993
study of symbol grounding [35] emphasises the importance of incremental learn-

26 A History of Affordances

ing for concept formation and grounding of concepts, a point we shall return to
when discussing our requirements for our affordance learner later in Chapter 3.

Symbol grounding problems have often been addressed by researchers from
various fields, from psychology, to computational linguistics, artificial intelligence,
and computer as well as cognitive vision. Some of our previous work [164, 165] on
developing a cognitive vision framework focused on learning qualitative linguistic
descriptions of visual object properties and scene descriptions. This was closely
related to the work of Roy [150–155] where, for instance in [150], his system was
designed to learn word forms and visual attributes from speech and video record-
ings, work that was subsequently extended for generating spoken descriptions of
scenes [152]. The work of Chella et al. [2, 24] contained further attempts at devel-
oping cognitive learning frameworks involving symbol grounding. Their work was
based on Gärdenfors’ paradigm of three levels of inductive inference [62] and their
implementation of this paradigm in [2] involved grounding linguistic symbols in
superquadric representations of scenes using neural networks.

2.3.2 Constructivist Learning

Constructivist learning is a theory of learning that was championed by Swiss de-
velopmental psychologist Jean Piaget [136] during the mid-twentieth century, the
main tenet of which being that, during development, children form new ideas or
representations by constructing them from known or previously learned ones. Af-
fordance learning is closely related to constructivist learning for two main reasons.
Firstly, before a cognitive agent can learn any complex, constructivist concepts
in its environment, it must be aware of what the environment and the contents of
the environment affords it. In most existing constructivist learning systems, these
basic affordances are atomic and assumed to be known in advance. Secondly, al-
though basic object affordance ideas such as “I can afford to push the ball to
the left” can be learned using traditional learning algorithms, it takes something
more akin to hierarchical, constructivist learning to acquire an equally valid, but
recursive affordance concept such as “I can afford to push the ball around the
obstacle by pushing it right, then pushing it up, then pulling it right”. Developing
this idea is crucial to realizing the full potential of affordance learning. With our
work, we aim chiefly to contribute to the former aspect, whereby our proposed
work would aid in deriving basic affordance concepts which could then be used
to form more high-level constructivist concepts.

2.3 Affordances in Artificial Intelligence 27

There have been a number of attempts to develop constructivist learning sys-
tems [20, 23, 46, 122, 123, 135], notably Gary Drescher’s work, as presented in
his 1991 book “Made-Up Minds: A Constructivist Approach to Artificial In-
telligence” [46], which discussed the design of a cognitive-developmental learn-
ing system called the schema mechanism in an artificial learning environment.
The schema mechanism started with a set of primitive items and primitive ac-
tions. Items were binary variables that represented environmental states, e.g.
+GripperOpen or -GripperOpen, while actions allowed the environment to be
manipulated, e.g. CloseGripper. Associations were formed between items
and actions through the use of schemas, expressions that took the form of
<Context/Action/Result> where Context and Result represented sets of known
item states. Context item states refer to the initial state of the environment be-
fore the Action is taken, whereas Result item states refer to the predicted state of
the environment as a result of taking that action, given that particular context.
An example schema might be <+GripperOpen/CloseGripper/-GripperOpen>.
It is worth noting here the similarity between such schemas and the tuples in the
affordance formalisms discussed previously. Without going into detail, during an
exploratory learning process that started out with bare schemas for every action,
the schema mechanism used a mechanism called marginal attribution to record
statistics on item state changes when actions are performed, monitor them over
time, and “spin off” new schemas when certain thresholds were breached. This,
along with the help of some other machinery, implemented a form of constructivist
learning.

Although Drescher’s work was highly influential, it was also highly computa-
tionally inefficient. Moreover, the items and actions of the schema mechanism
were discretised, making it ideal for deterministic AI applications, but less ob-
viously suitable for scenarios involving real data, e.g. developmental robotics,
computer vision. If, however, a system could be devised that took the overall
constructivist flavour of the schema mechanism, applied it to real-world data and
made it efficient enough to function on-line, it would become a powerful tool
for learning in developmental cognitive systems. A number of authors have at-
tempted to tackle the inefficiency issue [22, 23, 30, 141], notably Chaput [22, 23].
Chaput’s system, dubbed the Constructivist Learning Architecture Schema Mech-
anism (CLASM), stemmed the inefficiency issue by using self-organizing maps

28 A History of Affordances

(SOMs) [86] to create a hierarchical structure by using the output of low-level
SOMs as input to higher-level SOMs.

In his Ph.D. thesis [23], Chaput described an experiment where the CLASM
system was used in conjunction with reinforcement learning to enable a simulated
Pioneer 2-DX mobile robot to learn how to navigate in a simulated environment
and acquire specimen objects with an associated reward. A gripper on the front
of the robot housed a laser trigger that indicated when an object is within the
grippers. A camera system on the robot provided a 60 ◦ viewing angle that was
split into five segments: s1, s2, s3, s4, s5. In the experiment, the robot started off
with six possible primitive actions: forward, backward, turn left, turn right,
turnaround and grip, as well as seven primitive items: s1, s2, s3, s4, s5 that
indicated when an object was present in the respective view segment, ingrip that
indicated when an object was in between the grippers and bump that indicated
when bump sensors on the robot were activated by the robot hitting a wall in the
environment. By offering a reward for activating the ingrip item and diminished
rewards for any schemas that bring the robot closer to activating the ingrip item,
CLASM was able to develop a schema policy to target and acquire an object
specimen. Examples of learned schemas included <+s1/turn left/+s2> which
describes how turning left might move a specimen from one part of the visual field
to another, and <+s3/forward/+s3> which indicates that moving forward while
a specimen is in front of the robot will leave the specimen in front. This, in effect,
is an implementation of a form of constructivist affordance learning. Particular
actions afford particular results given particular contexts; these relationships are
learned as schemas and these schemas may be combined to form more complex
affordance schemas.

There is ample scope to develop this idea in a real robotic system, and al-
though a fully fledged implementation will be beyond the scope of this work, we
aim to contribute to an important aspect of it that is of fundamental importance
in systems that have to operate in the real world. In the above simulated sys-
tem by Chaput, although the robot operated in continuous sensor and actuator
spaces, the spaces were discretised and the discretisation, e.g. s1, s2, s3, s4,
s5, is specified in advance. Mugan et al. [122, 123] provided an example of a
system with a robot arm operating in simulation that automatically discretised
its feature spaces and learned the affordances of its environment and subsequent
planning strategies through exploration and observation of contingencies. We aim

2.4 Affordances in Vision 29

to create a real-world system that can automatically discretise its feature space(s)
in an unsupervised manner through interactions in its environment and that can
thereby learn basic object affordances by observing similar contingencies.

2.4 Affordances in Vision

In the history of the study of vision, which itself arguably dates back as far
as Aristotle, there have been many paradigm shifts in thinking over the years
and sometimes significant ideological differences. One such troublesome divide of
particular relevance to the affordance learning problem, which indeed this thesis
attempts to address in part, stems from the dichotomy between the perspectives of
Gibson, who saw vision as a “bottom-up” direct process, in which visual percepts
already exist out in the world and are in some sense parsed from it, and that
of neuroscientist David Marr [111] and the earlier Gestalt psychologists such as
Max Wertheimer [201], who saw vision as a “top-down” indirect process, in which
hypotheses of visual percepts are inferred from sensory information. Outside of
that broader ongoing debate, while much of the recent work done in the area
of computer vision has tended to focus on specific sub-topics in sub-domains
such as recognition, categorisation, tracking and so on, even if these efforts have
not always been directly targeted at solving more general or multi-disciplinary
problems like affordance learning, they can certainly be said to have helped to
establish a basis for doing so.

2.4.1 Function-Based Object Recognition

A closely related area of computer vision to affordance learning is that of function-
based object recognition [202, 204]. Works in this area tend to be similar to
affordance-learning, in that they attempt to recognize and learn about the func-
tionality afforded by various objects, but they tend to assume that the object
models are known and tend not involve actual physical interaction with the ob-
jects. For example, in [202], Woods et al. present a system that uses labelled 3-D
training models of chairs and cups to learn fuzzy membership functions. These
fuzzy membership functions are used to provide evaluation measures which deter-
mine how well a shape model fits the functional description of an object category.
This functional description is a category definition tree built from functional prop-

30 A History of Affordances

erties such as “Provides sittable surface” and “Provides arm support”, which in
turn are built from measurable primitives such as “relative orientation” (angle
between normals for two surfaces) and “stability” (checks that a given shape is
stable when placed on a flat supporting plane). Of course, one of the main differ-
ences between this and the above works on affordance learning in robotics, is that
the 3D object models are provided a priori. As the authors note, it is conceivable
that such a system could be used in conjunction with range imaging to identify
functionally important parts of real objects, but this was not implemented in their
work. This was subsequently addressed in [204] where Wünstel et al. used 21

2D
laser range data to recognize basic objects like chairs or tables within an office
environment. Their approach split the range data into three separate layers by
training a Bayes classifier on sample data. Morphological operations were used on
each of the layers to extract object segments and from there, object classification
could take place using a similar classification tree to [202] and relations such as
“isLower”, “isHigher”, “minDistCenter” and “maxDistCenter” between the ob-
ject segments in the various layers. More recently, Grabner et al. [67] proposed a
method for learning an affordance detector that identifies locations in a 3-D space
that support particular functions. They assumed a 3-D model of a scene as well
as a 3-D model of an actor, then tried to match the actor model in appropriate
poses to parts of the scene in order to find areas where the “sittability” affordance
was realised.

2.4.2 Object Categorisation

Much has been accomplished in recent times in the area of object categorisation, a
sub-topic that aids in the affordance learning process a great deal since objects are
often categorised on the basis of common features, shape, or compositions of parts,
all of which are useful ingredients when approaching object affordance learning.
A number of authors have used various combinations of low-level features and
compositions of parts in combination with probabilistic generative modelling for
object categorisation [49–51, 99]. Such generative approaches can incorporate
prior knowledge into their representations as a probability density function on
the parameters of their models, using information from previously learnt object
categories, before generating posterior models for subsequent categories using just
a small number of training samples and Bayes’ theorem [49, 50]. A parallel can be
drawn between such approaches, where competing model hypotheses are matched

2.5 Affordances in Robotics 31

to low-level sensory information, and Marr’s [111] top-down approach to vision.
Others have taken the approach of discriminative modelling, that is, rather than
modelling joint probability distributions over training samples and categories as
in the generative case, modelling the mapping from training samples to categories
directly, either estimating the posterior class probabilities or a decision function
[83, 125, 190]. While these types of approaches provide much in the way of visual
feature representation and machine learning techniques, that by themselves can
indeed be used to address the affordance learning problem in some sense, e.g.
learning from affordance-labelled images, they are found lacking in an aspect
most crucial to the problem — action. Here, we turn to the robotics literature,
where action is, naturally, a more central concern.

2.5 Affordances in Robotics

2.5.1 Pushing and Pulling Objects

Perhaps the most closely related work in the literature on affordance learning to
our proposed work is by Fitzpatrick et al. [55–57, 116]. The authors trained the
Cog robot to recognize “rolling” affordances of four household objects (a plastic
bottle, a toy car, a toy cube and a toy ball) using a fixed set of four actions
to poke the objects in different directions as well as simple visual descriptors
for object recognition. During training, the robot would localise objects viewed
by its camera system using colour histogram back-projection [175], gather shape
features, poke the object from a certain direction using one of four pre-defined
actions, and track the object for a dozen frames afterwards. Over many trials,
histograms were created for each of the four actions and each of the four objects.
For the action histograms, statistics were gathered over all the object types to
measure the likelihood of each action causing the objects to move in a particular
direction. From this, the robot learned that objects, generally, are likely to move
to the right when pushed using an action that pokes from left to right. Similar
lessons were learned for the other three poking actions. For the object histograms,
statistics were gathered during trials of the likelihood of each of the different ob-
jects moving in a particular direction with respect to their principle axis, which
was found using the shape features gathered after localisation. From this, the
robot learned that the bottle is likely to roll at right angles to its principle axis,

32 A History of Affordances

the car is likely to roll along its principle axis, and both the cube and the ball
have no particular direction of movement. While the learning scenario described
is quite similar to our proposal, there are a number of key differences in how we
intend to have our system learn object affordances. Firstly, the feature associated
with the rolling direction affordance is pre-determined, both in case of the ac-
tion histograms, where it is the angle of movement in degrees, and in the case of
the object histograms, where it is the difference between the angle of movement
and the principle axis of the object. What we intend to do differently, is pro-
vide our system with a number of different result features and have it determine
for itself which ones are important for identifying different affordances based on
variance between trials with different objects. Secondly, in the case of the action
histograms the system of Fitzpatrick et al. learned rolling direction affordances
for all types of objects presented, whereas in the case of the object histograms,
it learned a rolling direction affordance for each individual object (in the testing
phase, the particular object was recognised using histogram back-projection, and
its rolling direction was determined based on its individual identity). We intend
to have our system determine the affordance class of objects (grounded in result
features) based, not on their individual identity, but on their class with respect
to a broad set of object property (e.g. shape) features.

Stoytchev examined an interesting extension of the general affordances idea
in [171, 172] by enabling a robotic arm to learn tool affordances, i.e. action
possibilities that different tools afford the system when used to interact with an
object. He distinguished between two sub-classes of tool affordances: binding
affordances, that describe how tools afford being grasped by the arm, and output
affordances that describe the effect that the various tools afford during interaction
with the environment. Like Fitzpatrick et al. in [171], he used a small set of pre-
defined exploratory actions and, by allowing the arm to explore these actions
with different T-hook tools acting on a hockey puck, enabled the robot to build
a tool output affordance table. The T-hook tools were colour-coded to facilitate
recognition and affordances were learned with respect to individual tools rather
than classes of tools. It is also worth noting that the features used to learn
these tool output affordances were pre-selected and explicitly associated with
these particular affordances based on prior knowledge of the experimenters. In
[172], Stoytchev examined tool binding affordances, though in a simulated robotic
system.

2.5 Affordances in Robotics 33

An architecture for action (mimicking) and program (gesture) level visual
imitation in a robotic platform is presented in [103], where object affordance
contexts are used to focus the attention of a gesture recognition system and reduce
ambiguities. Gesture recognition in the motor space is performed using a Bayesian
framework that relies on prior knowledge from object affordance contexts, which
are provided. In [121], the authors used a humanoid robot to push objects on a
table and used a Bayesian network to form associations between actions, objects
and effects. Though quite similar to our approach, their learning method may
not be as amenable to full online learning, as they have to gather a certain
amount of data initially to form categories within the various modalities before
the network can be trained. In the work of Omrčen et al. [127], the robot first
observes how an object moves when pushed in a certain direction. The collected
data are used as input to a neural network which learns to predict the motion of
pushed objects. Kopicki et al. [88–91] used a probabilistic framework to address
prediction of rigid body transformations in an object pushing scenario both in
simulation and using a real robotic system. Their work was similar to ours here
in that it explicitly addressed the representation of object parts as well as the
combination of knowledge from multiple models. However, their visual system
relied on the use of prior object models for object localisation, something we
explicitly avoid in this work.

There have been some recent examples of works in robotics where pushing
objects has been used to achieve some goal other than direct affordance learning,
while still being strongly linked to affordance learning. Katz et al. [77, 78] used
pushes to enable a robot to autonomously acquire manipulation expertise with
articulated objects, e.g. scissors and shears, by modelling their kinematic struc-
ture with a relational state representation and applying reinforcement learning.
Ude et al. used pushing as a means of developing early concepts of objects that a
robot sees for the first time [184]. By probing hypothetical objects in a scene with
pushes from a humanoid robot arm, visual features on the objects were caused to
move, something that enabled the robot to either confirm or reject the initial ob-
ject hypothesis. Thus, the robot would consider as objects those physical entities
that are comprised of features which move consistently when acted upon. This
also enabled figure-ground segmentation of the object hypotheses, something that
is, in turn, very useful for later potential affordance learning.

34 A History of Affordances

2.5.2 Grasping Objects

One approach to the grasping problem is to compute grasps directly from visual
observations. This may be done by, for example, identifying graspable parts of
objects, then fitting a grasp to one of those parts. Miller et al. [119] accomplished
this by modelling objects as sets of shape primitives such as spheres, cylinders,
cones and boxes, and using rules to generate a set of grasp starting positions and
shapes. However, there approach required that the objects be decomposed to
primitives by hand. This was improved upon in a subsequent paper [75] where the
object parts decomposition was achieved by fitting the shape primitives to object
point clouds. Each of the above methods have shortcomings in that they require
pre-definition of many primitive shapes and grasps. More recently, Popović et al.
[137], rather than making use of any specific prior knowledge of objects or object
models, used an early cognitive vision system to extract co-planar, co-colour pairs
of edges of objects for grasping.

Rather than engineering a mapping from visual information to grasp param-
eters as in the above approaches, another approach is to learn to compute grasps
from visual observations, that is to learn such a mapping from the data. Sax-
ena et al. [159–162] provided an interesting blend of ideas from function-based
object recognition and affordance learning when constructing a robotic system
for grasping novel objects. Their robot uses the same robotic arm used in our
work (cf. Chapter 6) that has a webcam mounted on the end-effector. In [159]
they trained a probabilistic model on features extracted from ray-traced images
of synthetically generated household objects with labelled grasp points. After
training, the system was tested on attempts to grasp real objects that it had not
encountered in the training set by finding a potential grasping point and choos-
ing between one of two possible types of grasping actions. Although synthetic
object models are used for training, their work differs from function-based object
recognition in that the synthetic models are purely used to generate images for
view-based learning. From an affordance learning perspective, the fact that this
system recognizes parts of novel objects that are graspable is impressive, how-
ever, similarly to some of the other approaches mentioned thus far, the actual
affordance concept that is learned is binary and specified in advance: graspable
or non-graspable.

2.5 Affordances in Robotics 35

Later, Detry et al. [44] tackled a similar problem and, rather than train-
ing their learning algorithm on synthetically generated objects, they enabled an
autonomous robotic arm to grasp objects in an exploratory manner, trained on
these interactions with real objects. They described a method for learning object
grasp affordance densities, i.e., continuous probabilistic models of object grasp
success over object-relative grasp poses. In both of these works the two possi-
ble affordances were specified in advance: graspable or non-graspable. Ugur et
al. [187], on the other hand, developed a system generated its own affordance
classes through interaction with objects. They worked with a robotic system
consisting of a range scanner and a robotic arm that learned affordances of ob-
jects in a table-top setting using an unsupervised two-step approach of effect
class discovery and discriminative learning for class prediction. They also ap-
plied similar techniques to a scenario involving self-discovery of motor primitives
and learning grasp affordances [188]. The system presented in this dissertation,
by comparison, also attempts to learn via class discovery and prediction, but in a
self-supervised multi-view online setting. More recently, Ugur et al. [189] have ex-
panded upon this work to develop a system whereby complex affordance learning
is bootstrapped via pre-learned basic affordances, an idea that is commensurate
with the constructivist learning approach discussed previously.

Montesano et al. [120], expanding upon their prior work in [121], proposed an
algorithm for learning grasp affordances by mapping local features to the prob-
ability of success for specific grasping actions. Their method was able to select
the most relevant features amongst a set of general low level visual descriptors
for successful grasping by automatically adjusting kernel bandwidths in a proba-
bilistic model based on robot experience. Sweeney and Grupen [176] recalled the
idea of decomposing objects into parts, but with a visual learning approach.

2.5.3 Other Forms of Affordances in Robotics

MacDorman [107] used the concept of affordances to develop a mobile robotic
system named Ψro that must survive in a maze-like environment by intercepting
‘tasty’ robots and avoiding ‘poisonous’ robots. The architecture used to cap-
ture the affordance concept in this work was essentially three-tiered. The body
tier provided sensor feedback and actuator possibilities, the motivation system
tier tracked the internal state and well-being of the robot (e.g. battery level),
and the internal model tier developed sensorimotor mappings between the body

36 A History of Affordances

tier and the motivational tier based on the robot’s experiences and its learning
mechanisms. Partition nets [106], an on-line learning algorithm developed by
the author, were used to learn the sensorimotor mappings. Affordance categories
were formed as Ψro tracked invariant features over image signatures, however,
these categories were not related to the actions that exploit the affordance, but
to the internal indicators present in the motivational system.

Cos-Aguilera et al. [33] employed a similar idea to MacDorman’s motivational
system in their 2004 paper “Using a SOFM to Learn Object Affordances”. They
used a self-organizing map (SOM) [86] with a Hebbian learning mechanism called
a Growing When Required (GWR) network to aid a simulated Khepera robot in
learning affordances of objects with survival values such as nutrition and stamina
so that it could prosper over time in its environment. The GWR network was
used to cluster sensor data in the input space. Whenever the robot encountered
a particular situation or object, the closest matching node in the network was
found and weights were assigned to the node for each action the robot attempted
to use in that situation based on the success of the action. Their prior work in
[32] used a more simplified model to estimate the likelihood that a particular
object, perceived as a set of features, affords the robot a particular action from
its behavioural repertoire. While we also propose to make use of SOMs in our
learning algorithm, we will be using them in a different way to Cos-Aguilera et al.
Rather than using individual SOM nodes as exemplars, we intend to use SOMs to
vector quantize feature space and cluster over the SOM nodes to form affordance
classes.

Paletta et al. [60, 130–132] developed a mobile robotic platform called Kurt2
that is equipped with a crane featuring a magnetic end-effector which it uses to
pick up metallic objects in its surroundings. Their affordance learning system uses
reinforcement learning of predictive features (SIFT descriptors) to distinguish
between two affordance classes of liftable and non-liftable metallic objects.

In some of their earlier work [185, 186], Ugur et al. developed a mobile robotic
system equipped with a 3-D laser scanner that learned to perceive the so-called
“traversability affordance” properties of various objects, such as spheres, cylinders
and boxes in a room. Objects that the robot can easily move, e.g., spheres and
cylinders that are lying on their curved edge, are considered traversable, whereas
boxes and upright cylinders are considered non-traversable. In [186], the robot
was provided with a set of seven possible actions (one to move forward and six

2.6 Chapter Summary 37

possible rotations) and used its range scanner to gather over 30,000 angle and
distance features aggregated over a grid-division of the range image. It then
learned mappings between environmental situations and the results of its actions
by first selecting relevant features from the full set, then using support vector
machines to classify the relevant features into affordance categories. Though
good results were achieved, the affordance categories were pre-defined and binary:
traversable or non-traversable.

2.6 Chapter Summary

In this chapter we reviewed the literature and related works that have informed
our research on object affordance learning. This review traversed a number of
different fields including ecological psychology, experimental psychology, artifi-
cial intelligence, computer vision and autonomous robotics. Ecological psychol-
ogy, being the area where the term ‘affordance’ originated from, provides a core
insight into what affordances actually are, how they have been approached his-
torically, and how they might be formally defined. Experimental studies on both
humans and animals are also quite valuable, as they provide clues as to how a
robot might approach the affordance learning problem. Affordances appear in
the field of artificial intelligence in a number of different contexts, but two prob-
lems therein that were of particular interest with respect to our research were the
symbol grounding problem and constructivist learning, and we discussed their
relationship to the affordance learning problem in this chapter. Computer vision
is an important area when addressing the affordance learning problem in robotics,
thus we reviewed some of the work done there in this chapter, particularly with
regard to functional object recognition. We discuss computer vision methods
as applied to affordance learning further in Chapter 6. Finally, we provided a
broad-ranging review of how the affordance learning problem has been tackled
in the autonomous robotics domain, looking at various different approaches to
the problem, including pushing and pulling objects, grasping, and others. In
the following chapter, we discuss our own approach to the affordance learning
problem and how we set about enabling our robotic system to learn basic object
affordances in a self-supervised manner.

38 A History of Affordances

Chapter 3

Framing the Object Affordance Learning
Problem

In order to approach the problem of learning object affordances in a robotic
system we need a number of things. First of all, we, of course, need a robotic
system or platform of some kind, such that the objects may be perceived and
manipulated, and such that data may be acquired. We will also need to settle
on a formalism of how the affordances should be represented. Given the diver-
sity of affordance learning approaches in autonomous robotics and elsewhere, as
highlighted in the literature review of the previous chapter, it would also be pru-
dent to outline precisely what the requirements are for our affordance learner.
The formalism and requirements will help to guide us in designing an appropri-
ate affordance model and, in turn, an appropriate machine learning approach.
The goal of this chapter is to address these issues at a high level and thus lay
the foundations for the remainder of the thesis where concrete solutions will be
proposed.

3.1 Formalising the Problem

As a starting point to modelling the scenario detailed above, we first present a
modified form of the affordance formalisation of Şahin et al. in Section 2.1.1.4.

Definition. An object affordance is an acquired relation between a certain object-
related effect and an (object, action) tuple such that when the agent applies the
action on the object, the effect is generated. This may be formalised as

(effect, (object, action)).

39

40 Framing the Object Affordance Learning Problem

(a) (b) (c)

Figure 3.1: Three potential models for representing affordances as defined by the
formalism in Section 3.1. In (a) effects are conditional on objects and actions,
which are independent. In (b) effects are conditional on objects and actions,
which are concatenated together. In (c) effects are conditional on objects alone
and N such models are considered for N-many discretised action types.

While the above definition is quite abstract, as is the case with many of the
formal affordance definitions presented in the literature review of the previous
chapter, it serves as a good basis for developing a more complex model. For sim-
plicity in describing our particular affordance learning scenario, we have replaced
the terms entity and behaviour in the original definition of Şahin et al. with
object and action respectively. This ties in closely with the idea of object-action
complexes, or OACs [95, 203], which have been proposed in the literature as basic
building blocks for cognitive system architectures with a similar formalisation,
where an action applied to an object forms a state transition function.

Without necessarily committing to a particular type of machine learning so-
lution, it is convenient to interpret the above definition in the cause-and-effect
diagrammatic language of directed graphical models [133] as in Figure 3.1. Fig-
ure 3.1(a) casts the affordance relation as an effect that is caused by (or condi-
tional on) both an object and an action. Such an interpretation would involve
parametrising both objects and actions and modelling them independently. A
simpler alternative might be to concatenate objects and actions and set the effects
to be conditional on such a joint model as in Figure 3.1(b). A further potentially
even simpler alternative in the case where it is convenient to discretize the action
space into a finite number of N well-defined actions is that shown in Figure 3.1(c),
where N -many models are created where effects are conditional upon objects for
a given action. This is the type of model we shall adopt for much of the remainder
of this thesis. We will assume that the actions of the robotic arm are well-defined
and consistently repeatable, allowing us to concentrate specifically on modelling

3.2 Framing the Problem within Machine Learning 41

the relationships between objects and the effects they undergo when those actions
are performed.

Arm
Action

Object
Image

Object Range
Data

Result Video of Object in
Motion

Co-occurence

Input View Space Output View Space

Object Features Effect Features

Figure 3.2: Expanding on the main object affordance learning idea.

Two distinct sets of features are therefore being considered here, object fea-
tures and effect features, and as data are gathered over the course of many in-
teractions, they naturally form two feature spaces which we variously term the
object feature space or input view space and effect feature space or output view
space respectively. We shall return to the idea of separate data views, or sensory
modalities, a little later in Chapter 4. For now, it is worth noting that given
that data co-occurs across these different feature spaces, as illustrated in Figure
3.2, it should be possible to find interesting percepts within one feature space
and map them to corresponding percepts in the other feature space using the
co-occurrence information. For example, significant clusters of data might be
identified in the object effect space, forming affordance classes, which might then
be mapped back to data in the object property space, thereby making it possi-
ble to predict affordance classes in the effect space using object property feature
vectors.

3.2 Framing the Problem within Machine Learning

So what kind of learning problem is this? A regression problem or a classification
problem? Does it call for supervised learning or unsupervised learning? There
are no empirical categories or classes in the world and nature does not label its

42 Framing the Object Affordance Learning Problem

data, at least not without giving rise to intelligent agents acting within the world.
Yet, the ability to classify data is clearly an important facet of cognition [72, 98].
So if the data is not accompanied by class labels, it begs the question, how are
classes formed in the first place? In this section, we elaborate on some of the
ideas posed such questions and how they might be addressed.

3.2.1 Supervised Learning or Unsupervised Learning?

What is affordance learning really about from a machine learning perspective?
Is it a supervised learning problem? Not quite it would seem. Certainly when
children are at the early stages of their development, when they are motor bab-
bling to ascertain basic affordances in their environments by flailing their arms at
objects arbitrarily and subsequently grabbing objects and placing them in their
mouths, they are unlikely to be making use of supervisory signals, at least not
in the traditional sense. Lacking the language skills to communicate with their
care-givers in those early stages, they are not yet interpreting complex linguistic
notions such as “push the ball” or “pick up the doll”. Nevertheless, there do
appear to be qualitative differences inherent in many common affordances in and
of themselves. Objects are either graspable or non-graspable, light switches can
be either on or off, balloons can be bounced or burst or inflated, sand can be
shovelled into a bucket or spilt out of it, etc. Is it perhaps then better formulated
as an unsupervised learning problem? Clustering or density estimation of some
kind might be used to find such qualitative structure in the affordance data. For
example, visual data could be gathered on what bouncing a ball looks like versus
what throwing a ball looks like, interesting features could be extracted from the
visual data, and then the data could be clustered within this feature space to
find a “bouncing” cluster and a “throwing” cluster. Yet this is not the whole
story either. Such clusters would clearly be formed within the effect domain of
the (effect, (object, action)) tuple from our affordance formalism. Yet, when these
clusters, and indeed the qualitative categorical labels they come to represent, do
not exist at the outset of learning, what is there to be predicted from performing
an action on an object? Regression could be performed, e.g. from the object space
to the effect space, but when or where do the classes come into play? It would
seem that there is an inherently developmental nature to the learning problem in
this context. Perhaps in the early stages of learning, the classes do not exist but

3.2 Framing the Problem within Machine Learning 43

are gradually formed over time. This implies a form of continuous developmental
learning, and we explore that idea further next.

3.2.2 Continuous/Online Learning

Continuous or online learning implies a life-long adaptive capacity characteristic
of the type of learning exhibited in humans and many animals. Most machine
learning algorithms tend to involve a one-off training phase where learning is per-
formed by cross-comparing many training samples. This is referred to as batch
learning since such algorithms are trained using a single batch of training sam-
ples. While such algorithms can be quite robust at recognising or categorising
data samples, they fail to accommodate the novel information contained in data
samples that were not encountered during the training phase, which could po-
tentially be advantageous when recognising or classifying future samples. To this
end, researchers have strived to design algorithms that continuously accommo-
date the salient aspects of novel data into their representations incrementally as
new data is presented to the algorithms over time. This is especially important
in the case of autonomous robotic systems, as they are often involved in learning
scenarios where they may not have access to data that they previously encoun-
tered at any given moment, so it is important that they can accommodate the
important aspects of novel data into their representations as and when they have
access to the data.

A fair amount of work exists on the subject of online learning in developmental
systems, e.g., [3, 82, 83, 168], particularly with regard to object recognition, e.g.
[82] where the authors have developed a biologically motivated feature hierarchy-
based method that combines notions of short-term and long-term memory to
achieve online learning of objects. The authors of [168] developed an online
learning system for the AIBO robot that uses a similar dialogue setting for tutor
interaction to one that was developed during the course of our own research
[163–165].

Some work of particular note comes from Weng et al. [74, 196–200, 206, 207]
in the area of developmental robotics. Arguing that robots should develop their
minds automatically and learn to deal with novel situations and environments
without having to be re-programmed, Weng’s team developed the SAIL and Dav
developmental robots, as well as some interesting developmental and incremental

44 Framing the Object Affordance Learning Problem

learning algorithms to try to achieve these goals. In [198] Weng et al. offered
the comparison between automatic development and other approaches shown in
Table 3.1.

Approach Species World System Task
architecture knowledge behaviour specific

Knowledge-based programmingmanual modelling manual modelling Yes
Behaviour-based programming avoid modelling manual modelling Yes
Learning-based programming treatment varies special-purpose learning Yes
Evolutionary genetic search treatment varies genetic search Yes
Developmental programming avoid modelling general-purpose learning No

Table 3.1: Weng’s comparison of various learning approaches.

Their suggestion that developmental learning should avoid pre-modelled world
knowledge and system behaviour appears to make sense and is commensurate
with the developmental principles we sought to address when initially broaching
the research for this thesis, but precisely how to go about achieving that is another
question. In addressing this issue, the authors define AA-learning (automated,
animal-like learning) as a type of state machine where a robot’s brain state is
updated at every time step based on the previous brain state and sensor readings.
A new action is also generated at each time step based on the current brain state
and an action generation function. A mapping h : X 7→ Y must be formed
from input space X to output space Y using training samples {(xi, yi) | xi ∈
X , yi ∈ Y , i = 1, 2, . . . , n} that arrive one at a time, where yi may or may
not be provided by tutor intervention (a tutor may choose to teach the robot
to do something by directly driving its motors). The robotic systems of Weng
et al. require real-valued outputs in the Y space rather than class labels, as
these outputs are distributed directly to the motor systems of the robots. This
would amount to a regression problem, were it not for the fact that Weng et al.
also require superior generalization in the Y space. To this end, they developed
an incremental learning mechanism called Incremental Hierarchical Discriminant
Regression (IHDR) [196] that is capable of forming clusters in both the X and Y
spaces.

We place particular emphasis on mentioning this here since a similar issue
exists in affordance learning as we have framed it here. In our scenario, we

3.3 Requirements for Our Affordance Learner 45

have an object property space as well as an object effect feature space. Clusters
must be formed in these spaces for generalization purposes and relationship map-
pings must be formed between the clusters, while regression is also important so
that our agent may make feature predictions with real feature values as output.
This idea of clustering in separate feature spaces will be developed further in
the following chapter when we describe our proposed self-supervised multi-view
learning algorithm. For now however, we turn to what our requirements for this
self-supervised learner were as we were developing it, as informed by some of the
ideas in the above discussion.

3.3 Requirements for Our Affordance Learner

In our proposed research, given the setup previously described, we sought to cre-
ate an affordance learning methodology that matched the ideals of developmental
robotic systems as closely as possible. To that end, our main requirements were
the hard online learning requirements detailed in Table 3.2.

1. The learning algorithm should be capable of continuous
or online learning.

2. We should avoid the explicit design of task-specific ob-
ject models in favour of providing the system with a
sufficiently rich sensory feature set from which it might
derive its own models.

3. We should ensure that the learning method employed
to derive relationships between object types and the ef-
fects they undergo through robot interaction is general-
purpose and unsupervised or self-supervised.

4. The algorithm should be able to commence learning
from scratch without access to an initial batch of train-
ing data, previously observed or otherwise.

Table 3.2: Hard online learning requirements.

46 Framing the Object Affordance Learning Problem

The motivation for the first requirement, which was summarized previously in
Section 1.1.2 of the introduction, is primarily that developmental robotic systems
should be capable of continuous learning because the learning scenarios they are
involved in often preclude the possibility for batch learning by their very nature:
such systems may not have access to previously encountered data at any given
moment. The second requirement is important because the system designer may
not know in advance what types of objects the system will encounter, how they
will behave when the robot interacts with them, or how best to model these
things so that the robot can learn effectively. Far better to provide the robot
with sensory systems and mechanisms that derive features from those sensory
systems from which it may derive its own models. This brings us to the third
requirement. As the robotic system gains experience by encountering different
objects, acting upon them, and observing the effects, its learning mechanism
should do the three things listed in Table 3.3.

1. Automatically derive affordance classes grounded in ef-
fect features, e.g. motion features observed both during
and after object interaction, based on qualitative differ-
ences between data clusters.

2. Automatically identify the object features, e.g. shape
features observed prior to interaction, that are most rel-
evant for affordance class prediction.

3. Automatically model cross-view relationships between
affordance classes and the predictive features.

Table 3.3: Self-supervised learning requirements.

A learning algorithm that is designed in this way would be much more robust
to changes in the underlying sensor and actuator systems, or changes in the
learning scenario. For example, the robotic system might go from one learning
scenario where it is using poking or pushing actions to move objects, to another
scenario where it is attempting to pick the objects up using grasping actions.

The end goal of such a learning procedure will be to produce an object af-
fordance classifier, so that when the robotic system encounters a novel object,

3.4 Chapter Summary 47

it may observe its object property features, input them into the classifier, and
derive its affordance class grounded in the result feature set.

The actions that are used to interact with the objects will be pre-defined and
be treated separately from each other within the learning framework. That is,
independent classifiers will be formed for each individual action. This is a sensible
approach because since the robotic system controls its own actions, it will always
have prior knowledge of which action is in use during a given interaction and will
thus be able to invoke or update the appropriate classifier.

Ideally, a developmental robotic system should also be capable of construc-
tivist learning. By this we mean that the system should not only progressively
refine its recognition or classification abilities as it encounters new data, but also
that it should have the ability to construct novel concepts by building on previ-
ously learned and/or innately specified ones. While we will not be implementing
a full-fledged constructivist learning robotic system in this work, we do aim to
provide enabling technology for an important aspect of such a system.

3.4 Chapter Summary

In this chapter we explored some the ideas that lead to the research that is
developed in the remainder of this thesis. We formalised the affordance learning
problem from the perspective of our approach to it, given our robotic setup, our
particular object affordance learning problem, and the learning issues we sought
to address. We elaborated on those learning issues from a machine learning
and developmental robotics perspective with the goal of addressing continuous
learning, at least in part. From there we outlined a set of requirements for our
affordance learning algorithm that were broken into a set of hard online learning
requirements and self-supervised learning requirements. In the following chapter,
we describe the self-supervised multi-view learning framework we developed to
address those requirements.

48 Framing the Object Affordance Learning Problem

Chapter 4

Self-Supervised Multi-View Learning

This chapter is devoted to the development of a self-supervised multi-view learner
that we will use to enable autonomous online learning of basic object affordance
concepts. The learner will be multi-view in the sense that it will form represen-
tations of data views, or sensory modalities, by clustering data in each of their
respective feature spaces and will connect them together via data co-occurrence
mappings. It will be self-supervised in the sense that the data distribution in
one data view coupled with the co-occurrence information, will be used to form
an error signal for supervised learning in another data view. This will work on
the basis that, as online training progresses, assuming an appropriate underlying
data distribution, natural clusters should emerge in the driving view that can be
treated as classes for discriminative learning.

Multi-view learning [174], sometimes also referred to using the somewhat less
general terms cross-modal learning, multi-modal learning or co-clustering1 [5, 7,
27, 39, 40] is an area of machine learning where, rather than having learning
algorithms operate on data in a single feature space, learning is performed over
multiple separate feature spaces, otherwise known as data views or modalities, in
which data co-occur. Given that common theme, the learning goal may otherwise
differ depending on the particular context [174]. A popular current application
involves using web page text as one view and links to the web page as another

1The terms “cross-modal” and “multi-modal” are perhaps the most well-known of the ones
listed here, but since the “modal” in their construction refers to “sensory modality”, we prefer
the terms “cross-view” or “multi-view” and the corresponding “data view” here, which can be
applied somewhat more generally. A sensory modality could be considered to be a specific
type of data view, whereas the reverse ought not be true. That said, we tend to use the terms
interchangeably throughout the thesis and any ambiguities should be resolved via context.

49

50 Self-Supervised Multi-View Learning

view [5, 43, 102, 183]. Another common application in the literature is to attempt
to relate co-occurring visual and audio data of utterances from human speakers
[38, 126, 149]. Our particular interest stems from the domain of autonomous
robotics and the problem of object affordance learning in particular [144].

In our affordance learning scenario, object properties such as shape can be
considered as the basis for one data view, whereas object effects under interaction
can be considered as the basis for another. The effects view ought to drive learning
in the shape view, e.g. through the formation of effect classes which are mapped
back to the shape view such that discriminative learning might be performed
and object shape information used to predict object effects. This leads us to the
idea of self-supervised multi-view learning which is a difficult problem to address,
particularly if it is being considered as an online learning problem, which is often
the case in the autonomous robotics domain and is how we will be considering it
here.

Much of what is accomplished in this chapter could be regarded as being in-
spired by, as well as being a combination of, different ideas proposed primarily
by three main authors. Miikkulainen [118] provided a model that cross-modally
linked codebooks of labelled prototype vectors via Hebbian co-occurrence asso-
ciative mappings in order to simulate lexical development. Each codebook repre-
sented different feature maps for three separate lexical modalities, orthographic,
phonological and semantic respectively, and the codebooks were trained in an
unsupervised manner using the self-organizing map (SOM) [86] algorithm while
the Hebbian mappings interconnecting the codebooks were trained via Hebbian
learning. By labelling the prototype vectors in each modality, it was possible
to, for example, map associations between phonological concepts and semantic
concepts. The structure of the learning network developed in this chapter is more-
or-less identical to that of Miikulainen, but the manner in which it is trained is
different. We forgo explicit supervised labelling in favour of deriving class labels
in an unsupervised manner.

de Sa [37, 38, 40–42] developed an unsupervised neural network algorithm that
learned separate visual and audio speech classifiers using co-occurring patterns of
lip motion and sound signals from a human speaker. The basis for training this
network was to minimize disagreement between modalities using unsupervised
prototype labelling and learning vector quantization to optimize the positions of
prototypes around decision borders. We also employ a modified form of learn-

4.1 Multi-View Learning 51

ing vector quantization in this chapter, though the topological structure of our
network and the nature of the training differ from that of de Sa et al.

More recently, Coen [27–29] proposed an algorithm for cross-modal clustering
with a network structured similarly to that of Miikkulainen, though without
the SOM training mechanism. Coen instead focused on finding meta-clusters
of the prototype vectors in each modality by using the co-occurrence mappings
to project probabilistic weights from one modality’s prototypes onto another’s in
order to form a cross-modal distance metric to be used for the meta-clustering. In
contrast with Coen, we are less interested in unsupervised co-clustering between
modalities and more interested in finding class clusters in an unsupervised way in
one driving modality that would be mapped back to one or more other modalities
to be used for supervised learning.

4.1 Multi-View Learning

4.1.1 Representing a Data View or Sensory Modality

Given that data views as we present them here are essentially feature spaces con-
taining data distributions in which we wish to perform unsupervised learning,
there are a number of different ways in which they could be represented. There
are two main strategies for unsupervised learning popular in the machine learn-
ing literature. Clustering involves grouping together similar samples within the
data, usually based on some distance criteria. Generative modelling, on the other
hand, usually involves attempting to form either parametric or non-parametric
probabilistic models of the underlying data distribution from which the samples
emerged. We will, for now however, find it instructive to develop a simpler model
based on the concepts of clustering, vector quantization and competitive learning.

4.1.1.1 Clustering, Vector Quantization and Competitive Learning

Vector quantization can be viewed as a form of clustering, and indeed, that is one
of our primary motivations for employing it in the following. Similarly to Coen
[27–29], given a feature space, we seek to hyper-cluster the data distribution in
the feature space such that we have a codebook of clusters which can subsequently
be meta-clustered to find significant modes in the data distribution, which would

52 Self-Supervised Multi-View Learning

represent significant sensory percepts. Here, hyper-clustering refers to the idea
of forming an abundance of clusters, perhaps more clusters than are necessary
to encode the significant modes of the data distribution, whereas meta-clustering
refers to the idea of forming clusters of those clusters. In the specific case of
multi-view affordance learning, these meta-clusters might correspond to signifi-
cant perceptual events in the various data views/sensory modalities. In Coen’s
work, codebooks of hyper-clusters were used to facilitate co-clustering between
separate sensory modalities via cross-modal Hebbian co-occurrence mappings. In
our work, while we also make use of this cross-modal structure in a similar way
to Coen, we are, by contrast, also concerned with employing the codebooks of
hyper-clusters to facilitate online learning. Vector quantization lends itself to on-
line learning owing to a number of well-established algorithms, both supervised
and unsupervised, that use it as a basis. In the following, we provide a brief
overview of vector quantization and show how it can be used for online com-
petitive learning, before moving on to develop the multi-view structure of our
algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: A Voronoi diagram showing a simple 2-D Gaussian data distribution
quantized by 10 prototype vectors randomly selected from the distribution.

Given a dataset
X =

{
xi ∈ Rn | i = 1, . . . , N

}
, (4.1)

vector quantization [61, 86, 100] involves finding a set of prototype vectors collec-
tively referred to as a codebook,

W =
{
wi ∈ Rn | i = 1, . . . ,M

}
, (4.2)

4.1 Multi-View Learning 53

that forms a coarse, compressed representation of the probability distribution
that the dataset is sampled from. The prototype vectors partition the space
into Voronoi regions or receptive fields such that each prototype vector represents
those data vectors for which it is the nearest neighbour and that thus fall within
its receptive field as dictated by some distance metric, usually the Euclidean
distance or squared Euclidean distance,

d2(x,w) =
n∑
i=1

λi(xi − wi)2, (4.3)

in which case the definition of the receptive field for prototype wi would be

Rwi =
{
x ∈ X | ∀wj ∈ W : d2(x,wi) ≤ d2(x,wj)

}
. (4.4)

In Equation (4.3) above, the λi are weighting factors for each dimension which
allows for the possibility of an adaptive metric for the purposes of feature relevance
determination as discussed later in Chapter 5.

Usually, the goal of vector quantization is to minimize an error function such
that the prototypes are positioned within the feature space in a way that optimizes
their representation of the data distribution. This error function is often the
expected quantization (or distortion) error, the continuous version of which is
defined as

E =
∑
i∈W

∫
Rc
d2(x,wi)p(x)dx (4.5)

where p(x) is the probability of the density function of x. Minimization of the
error function is usually achieved via competitive learning, where the prototype
vectors wi ∈ W compete in a winner-take-all manner to represent the data points
xi ∈ X based on their proximity to each other. In particular, given a data sample
x, the prototype wc with the minimal distance to the sample,

wc = arg min
wi∈W

d2(x,wi), (4.6)

may be variously termed as the winning prototype, best-matching unit (BMU)
[86] or nearest neighbour to the sample, and we will use such terminology inter-
changeably in the remainder.

The classical minimization method is the Linde-Buzo-Gray (or generalized
Lloyd) (LBG) algorithm [100, 101], which is guaranteed to decrease the distortion
error, or at least leave it unchanged. It is, however, a batch method that requires

54 Self-Supervised Multi-View Learning

access to the entire dataset at once, and as noted previously, we are interested
in an online method that can update sample-by-sample. Another well-known
method for data clustering, which is quite similar to the LBG algorithm, is the
k-means algorithm [108]. k-means functions by planting k prototype vectors in
the input space, associating each of the data vectors with a prototype vector,
adjusting the prototype vectors to the mean of its associated data vectors, and
then repeating this process until convergence. Though the above methods are
amenable to online updating, we do not employ them for that purpose here,
though we shall return to k-means later in this chapter in a different context. For
now we turn our attention to self-organizing maps, which also allow for online
vector quantization, as well as providing some other interesting properties that
will prove useful for the development of our algorithm.

4.1.1.2 Self-Organizing Maps

The self-organizing map (SOM) (or self-organizing feature map) algorithm, de-
veloped by Kohonen [86], extends the idea of vector quantization by imposing a
neighbourhood function on the prototype vectors in order to preserve the topo-
logical properties of the input space. Moreover, they can be trained in an online
manner, such that given a data sample, the closest prototype as well as its topo-
logical neighbours get updated. This can be a useful property if we are hyper-
clustering the data space, i.e. we have a large number of prototypes, and we wish
to update many of them at once at each training step.

Given dataset X and codebook W , the update rule for prototypes at each
training step of the SOM algorithm is

wj
t+1 = wj

t + αWt hwc

t (wj) (x−wj
t), (4.7)

where ht is the neighbourhood function for the winning prototype c, that is, the
closest prototype to data sample x at time t, and αWt is the learning rate at
time t. The topology and neighbourhood function may in principle be defined
almost arbitrarily, but often follow de facto definitions in the literature [86]. The
topology, for instance, might be defined such that the prototypes are arranged in
a rectangular sheet-shaped lattice such that, given prototype wj, it would have
an associated location vector rj ∈ R2 governing its position within the lattice.

4.1 Multi-View Learning 55

The neighbourhood kernel function is often a Gaussian function, such as

hwc

t (wj) = exp
(
−d(rc, rj)

2σ2
t

)
(4.8)

where the vectors rc ∈ R2 and rj ∈ R2 define 2-D lattice locations of the winning
prototype wc and prototype wj respectively, and the parameter σt specifies the
width of the kernel at time t. An alternative, simpler formulation would be

hwc

t (wj) =

 1 if rj ∈ Bσt(rc)
0 otherwise,

(4.9)

where Bσt(rc) defines a ball with a centre at rc and radius σt. This yields a
neighbourhood set of prototypes

Nwc

t =
{
wi ∈ W |hwc

t (wi) 6= 0
}

(4.10)

around the winning prototype wc at time t.

The SOM algorithm has its drawbacks. It does not have a well-defined error
function and is not guaranteed to converge. In its original form, it also has a
fixed network topology with a pre-specified, finite number of prototypes, which .
Nevertheless, it serves as a useful basis for developing the self-supervised multi-
view learner that can be trained online that we aim to develop in this chapter.
In particular, we can use the fixed network topology to our advantage, in that
it simplifies the mechanics of connecting two separate data view codebook layers
together, as we shall see in the following subsection. In recent years, the general
SOM approach has been placed on more principled footing where, for example, the
prototypes are altered to become Gaussian kernels and the overall map represents
a mixture of Gaussians [205]. A review of a number of such approaches can be
found in [104].

4.1.1.3 Codebook Activations

An important consideration in the following is how the codebook relates to data
samples in terms of an activation function. Such an activation function should
show how closely each of the prototypes in the codebook match the data sample
at a given time-step, thus allowing for an activation distribution over the entire
codebook. Given that we will be using SOM training, we can exploit the SOM
neighbourhood function and topological properties for this purpose. There are a

56 Self-Supervised Multi-View Learning

few different potential approaches to this, one of which was provided by Miikku-
lainen [118] where, using the neighbourhood definitions in Equations (4.9) and
(4.9), the activation function is defined as

at(wj) =

 1− d(x,wj)−dmin
dmax−dmin

if wj ∈ Nt,
0 otherwise,

(4.11)

which gives the activation of prototype wj at time t, where dmin is the smallest and
dmax is the largest distance of data sample x to a prototype in the neighbourhood
set Nt. In the case of the Gaussian neighbourhood function from Equation (4.8),
one option is to measure the distances between the distances between the data
sample and the prototypes directly [1] with the following function

at(wj) = 1
1 + d(x,wj) , (4.12)

but this can produce a rather coarse activation response from the codebook de-
pending on far training has progressed. Another option is to use the Gaussian
neighbourhood function itself as the activation function:

at(wj) = exp
(
−d(rc, rj)

2σ2
t

)
. (4.13)

For any of the above activation function definitions, we can take a probabilistic
interpretation of the activation distribution over the entire codebook. We may
define

P (wj|x) = at(wj)∑MW
i at(wi)

(4.14)

to be the conditional probability of the activation of prototype wj ∈ W given
data sample x, and

AW(x) =
{
P (w1|x), P (w2|x), . . . , P (wMW |x)

}
(4.15)

to be the discrete spatial probability distribution function of the activation of
codebook W given x.

4.1.2 Connecting Data Views

In this subsection, we discuss how to connect separate data views, as represented
by codebooks of prototypes, together in such a way that the connections represent

4.1 Multi-View Learning 57

Figure 4.2: This figure shows two Gaussian data distributions similar to that
in Figure 4.1 divided into two separate data views which are hyper-clustered by
self-organizing maps (SOMs) with full cross-view connections between the SOM
prototypes. Voronoi tessellation is also illustrated for the prototypes in each view.

the co-occurrences between data in each view. Why would we want to segregate
data views and connect them together in this way, when it seems more obvious to
collate the data from all views and form a unified representation? Firstly, if we
wish to use the naturally occurring classes, i.e. prominent clusters, in one view,
to drive supervised learning in another view, then it makes sense to separate
them. It is not so obvious how to achieve this over such a joint data distribution,
particularly if online learning is a requirement. Secondly, as was demonstrated
by de Sa [42], collation of data from separate data views can serve to hinder
self-supervised cross-modal learning.

4.1.2.1 Hebbian Co-Occurrence Mapping

Assuming we have two different data views, each of them might yield two datasets
of co-occurring data, X and Y respectively, defined as

X =
{
xi ∈ Rnx | i = 1, . . . , N

}
, (4.16)

58 Self-Supervised Multi-View Learning

Y =
{
yi ∈ Rny | i = 1, . . . , N

}
, (4.17)

and we could represent each of the views with codebooks W and V as follows:

W =
{
wi ∈ Rnw | i = 1, . . . ,MW

}
, (4.18)

V =
{
vi ∈ Rnv | i = 1, . . . ,MV

}
. (4.19)

In the following, we may sometimes refer to W as the input view codebook and
to V as the output view codebook without loss of generality. We adopt the same
structural approach taken by both Coen [27–29] and Miikulainen [118] in that we
define full network connectivity between the two codebooks with what we will
term as a Hebbian co-occurrence mapping as follows:

H(W ,V) =
{
γwi vj ∈ R

∣∣∣wi ∈ W ,vj ∈ V ,∀i, j
}
, (4.20)

where the γwi vj are weights that are used to record the co-occurrence of winning
prototypes between each of the data view codebooks. An example of two code-
books fully connected in such a manner is shown in Figure 4.2. For explanatory
purposes, in Figure 4.2 and the remaining figures in this chapter, we will assume
that the lower codebook is the input view codebook W and the upper codebook
is output view codebook V .

Working under the assumption that each of the codebooks are trained simul-
taneously in an online manner, using the SOM algorithm for example, then γwi vj

can simply be the number of times wi was selected as the winning prototype in
input codebook W at the same time-step that vj was selected as the winning
prototype in output codebook V . This is essentially classical Hebbian learning
[73] in that the weights between active prototypes increase proportional to their
level of activity over time. Coen [27–29] uses this approach, though without the
online training.

However, given a small training set, the above approach may result in a sparse
weight matrix. Miikkulainen [118] provides a method of exploiting the topological
structure of the SOM such that, not only are the Hebbian weights between the
winning prototypes in each view updated, but also those weights between the
neighbours of the winning prototypes. Such an update would make use of the
neighbourhood activations from Equations (4.11), (4.12) or (4.13) by applying
the following update [73, 118] to all weights in H(W ,V) at each training step:

γwi vj

t+1 = γwi vj

t + αHt at(wi) at(vj), (4.21)

4.1 Multi-View Learning 59

where αHt refers to a learning rate for the co-occurrence mapping which may be
specified differently from the learning rates for the individual codebooks.

4.1.2.2 Hebbian Projections

Figure 4.3: An example of Hebbian projection from a prototype in a codebook
for one data view onto the codebook for another view. The data consists of two
Gaussian clusters mirrored sequentially in each view. After the codebooks are
trained, along with the Hebbian co-occurrence mapping between the codebooks
(cf. Section 4.1.3), the weights of the mapping from a prototype in the lower code-
book are projected onto the prototypes of the upper codebook, as illustrated by
the blue shading in the figure. The resulting distribution in the upper codebook
is most strongly concentrated around the cluster corresponding via co-occurrence
to the cluster in the lower data view that the projected prototype partially quan-
tizes.

The Hebbian co-occurrence mapping can be used to map the relationship
between the prototypes in the different data views and one way to achieve this is
through the use of Hebbian projections [27–29]. A Hebbian projection is a spatial
probability distribution over a codebook and is the result of selecting a prototype
in one codebook and normalising the Hebbian co-occurrence weights that map

60 Self-Supervised Multi-View Learning

from it onto another codebook. This is a useful, intuitive tool that allows us to
measure how one data view looks from the perspective of another in terms of past
co-occurrences of data.

Taking our two data view codebooks W and V as before, given prototype
wi ∈ W we define

P (vj|wi) = γwi vj∑MV
j γwi vj

(4.22)

to be the conditional probability of data co-occurring in the receptive field of
prototype vj ∈ V given data occurring in the receptive field of prototype wi ∈ W .
We may now define a Hebbian projection from prototype wi in codebook W to
codebook V as

~HVW(wi) =
{
P (v1|wi), P (v2|wi), . . . , P (vMV |wi)

}
. (4.23)

An example of Hebbian projection is visualized in Figure 4.3. It is worth noting
the similarity between this definition and the activation distribution function of
Equation (4.15). in Section 4.1.1.3, and indeed, the relationship between acti-
vation distribution functions and Hebbian projections forms a core part of the
proposed self-supervised multi-view learning algorithm discussed further below
in Section 4.3.3.

4.1.3 Training an Unsupervised Multi-View Learner

In the previous sub-sections we established a way of representing the separate
data views using codebooks of prototype vectors, as well as the co-occurrence
of data between the data views using the Hebbian co-occurrence mapping. We
now put those ideas together to describe the main training algorithm for our
unsupervised multi-view learner, as well as a means performing online updates.
The main idea that forms the basis of the unsupervised training is illustrated in
Figure 4.4.

4.1.3.1 Main Training Algorithm

The main unsupervised training algorithm is detailed in Algorithm 1, which
in turn makes use of Algorithm 2. Prior to the main loop, the training data for
both the input view and output view are normalized in some way, usually such
that each dimension is bound in the range [0, 1]. The respective codebooks in

4.1 Multi-View Learning 61

Input BMUInput BMU

Output BMUOutput BMU

SampleSample

SampleSample

Figure 4.4: Unsupervised multi-view training (cf. Algorithms 1 and 2): given
co-occurring training samples for both an input view codebook (bottom) and an
output view codebook (top), regular SOM training is performed in each view to
the effect that the BMU prototypes as well as their neighbours are moved closer to
the training samples in each view. The connections in the Hebbian co-occurrence
mapping are also updated such that the weights between the BMUs and their
neighbours are strengthened.

Algorithm 1 Unsupervised Multi-View Learner Training
Input: Input view codebookW , output view codebook V , Hebbian co-occurrence

mapping H(W ,V), training sets Xtrain and Ytrain, the number of training
epochs E.

Output: Trained input view codebook W ′, trained output view codebook V ′,
trained Hebbian co-occurrence mapping H′(W ,V).

1: Normalize Xtrain and Ytrain.
2: Initialize W and V .
3: for e = 1, . . . , E do
4: for t = 1, . . . , N do
5: Call Algorithm 2 or Algorithm 5 with inputsW , V , H(W ,V), xt ∈ Xtrain

and yt ∈ Ytrain.
6: end for
7: end for

each view are then initialized. This can be done in a number of different ways
that can potentially affect the performance of the algorithms detailed here, par-
ticularly in the early stages of training. Each data dimension of each prototype

62 Self-Supervised Multi-View Learning

might be randomly initialized within the normalization range, for instance. Al-
ternatively, prototypes could be randomly sampled from the training data, or if
information is available in advance about the ground truth classes in the data, the
prototypes could be divided into class groups and initialized either by randomly
sampling from the class training data, or taking the mean class values. Some of
the experimental results of Section 7.1 in Chapter 7 demonstrate the effects of
some of these different prototype initialization techniques. After normalization of
the training data and initialization of the codebooks, learning commences for a
certain number of training epochs by iteratively updating the output view code-
book, the input view codebook and the Hebbian co-occurrence mapping. The
number of training epochs can be an important consideration for many compet-
itive learning algorithms such as SOM and others listed later in this chapter,
depending on the size and dimensionality of the dataset. Training over an epoch
implies training sample-by-sample for one run through the dataset, a process that
may be repeated over several epochs. This type of training is used in order to
simulate the existence of large datasets in the absence of them, or to simulate
extended training durations, or both. This is discussed further in Section 7.1.2
of the experimental results chapter.

4.1.3.2 Online Updating

The unsupervised training procedure in Algorithm 1 makes iterative calls to
an online update procedure described in Algorithm 2 Given training samples, this
procedure updates both the input view codebook and the output view codebook,
as well as the Hebbian co-occurrence mapping that connects them using the up-
date equations from Sections 4.1.1 and 4.1.2. Prior to the updates the training
samples must, of course, be normalized. Given novel data samples, this can be
performed by scaling the novel samples within the range of previously observed
and normalized training data, e.g. the training set referred to in Algorithm 1.
Alternatively, though this has not been implemented in the research presented
in this thesis, if fully-fledged online learning is required, online estimates of the
scaling of the data in each dimension could be be obtained by maintaining mul-
tivariate Gaussian estimates of the incoming training data [6, pp. 94-97] [94].

4.2 Unsupervised Multi-View Discriminative Learning 63

Algorithm 2 Unsupervised Multi-View Learner Online Update
Input: Input view codebookW , output view codebook V , Hebbian co-occurrence

mapping H(W ,V), training samples x and y.
Output: Updated input view codebook W ′, updated output view codebook V ′,

updated Hebbian co-occurrence mapping H′(W ,V).
1: Given y, find output view nearest-neighbour (BMU) vct and its neighbours
N vc

t using Equations (4.6) and (4.10).
2: for i = 1, . . . ,MV do
3: Update vit+1 using Equation (4.7).
4: end for
5: Given x, find input view BMU wc

t and its neighbours Nwc

t using Equations
(4.6) and (4.10).

6: for i = 1, . . . ,MW do
7: Update wi

t+1 using Equation (4.7).
8: end for
9: for i = 1, . . . ,MW do
10: for j = 1, . . . ,MV do
11: Get prototype activations at(wi) and at(vj) using Equation (4.11),

(4.12), or (4.13).
12: Update γwivj

t+1 ∈ H(W ,V) using Equation (4.21).
13: end for
14: end for

4.2 Unsupervised Multi-View Discriminative Learning

Using the concepts developed above, we are now in a position to develop some ba-
sic multi-view predictive capabilities. We can simultaneously train the codebooks
in each view and the multi-view co-occurrence mapping online, sample-by-sample
using Algorithms 1 and 2. The structure of the network also means that we can
project co-occurrence information from the codebook in one view onto the code-
book in the other as demonstrated in Section 4.1.2.2. This gives us a stepping
stone to performing both unsupervised regression and classification from one data
view to another and that is the subject of this section. In the case of regression,
we would like to form a mapping f : Rnx → V that maps input view samples to
output view prototypes, whereas in the case of classification, we would require
a mapping g : Rnx → L(V) that maps input view samples to class labels, where

64 Self-Supervised Multi-View Learning

L() is some labelling function. The general approach in both cases is similar.
Given an input view sample x, the nearest neighbour wc is found in the input
view codebook and is mapped to either an output view prototype or cluster of
prototypes via the Hebbian co-occurrence mapping. These ideas are explained in
more detail in the following.

4.2.1 Regression

Algorithm 3 Cross-View Regression
Input: Input view Codebook W , output view codebook V , Hebbian co-

occurrence mapping H(W ,V), test set Xtest =
{
x1, . . . ,xNt

}
.

Output: Predictions Y ′ =
{
y′1, . . . ,y′Nt

}
.

1: if Xtest is not normalized then
2: Normalize Xtest.
3: end if
4: for i = 1, . . . , Nt do
5: Given test sample xi ∈ Xtest, find input view nearest neighbour (BMU) wc

using Equation (4.6).
6: Perform Hebbian projection ~HVW(wc) to find posterior probabilities

{P (vj|wc) |vj ∈ V} using Equation (4.23).
7: Assign y′i := arg max

vj∈V
P (vj|wc).

8: end for

Given the structure we already have in place, it is a relatively small matter
to apply a crude form of regression. An algorithm for this purpose is detailed
in Algorithm 3. Given an input view test sample x, after finding its nearest
neighbour wc in the input view codebook via Equation (4.6), a Hebbian projection
may be performed from wc to the output view codebook to find the posterior
probabilities of the output view prototypes given wc and a target prediction
y′ may be assigned to the output view prototype with the maximum posterior
probability. While this is potentially quite useful, our primary interest as outlined
in Chapter 3 is in dynamically finding class clusters in the output view and
associating them with percepts in the input view, a topic we turn to in the
following sub-section.

4.2 Unsupervised Multi-View Discriminative Learning 65

4.2.2 Classification

As was motivated at the beginning of this chapter, after hyper-clustering the data
in the data views with codebook prototypes we seek to form meta-clusters over
the prototypes themselves. These meta-clusters would represent the naturally
occurring classes in the data as quantized by the hyper-clustering of the prototype
vectors. Our interest is in finding these classes in one driving data view which
would be used to train a classifier in a separate data view. The means of mapping
the class clusters from the driving view codebook to the classifying view codebook
is provided by Hebbian projection, and the class cluster projection process is
detailed in Section 4.2.2.2 below. Prior to that however, we must decide how to
perform the class meta-clustering in the first place, and that is the subject of the
next sub-section. In the specific case of object affordance learning as formulated in
Chapter 3, the driving data view would be the effects view, representing the post-
action motion of objects, whereas the classifying data view would be the object
features view, representing the shapes of objects significant to their action-induced
behaviour. The idea in that particular setting would be to form class clusters in
the driving effects view and to map them back to the classifying object features
view, which would then be able to form effect-class predictions from object feature
vectors.

4.2.2.1 Meta-Clustering within a Data view

In order to find the meta-clusters of prototypes, we treat the prototype vectors
as data points and employ traditional unsupervised clustering, specifically, the
k-means algorithm discussed previously in Section 4.1.1.1. One issue with the
regular k-means clustering algorithm is that k must be selected in advance. It
is possible, however, to augment the algorithm such that k is selected automati-
cally. We achieve this by running k-means for multiple different values of k, then
evaluating each of the clusterings using multiple different cluster validity indices,
and finally selecting the k-value which is most consistently selected as the best
value by these.

Thus, given some set X we define a collection CX of K possible k-clusterings
or k-partitions of the elements of X as follows

CX =
{
CXk =

k⋃
i=1
{Xi}

∣∣∣∣∣ Xi ⊆ X , k = 1, . . . , K
}

(4.24)

66 Self-Supervised Multi-View Learning

where the Xi sets are the individual clusters of elements in each CXk clustering.
The validity indices we use to evaluate a given k-clustering CXk are the following:

• Davies-Bouldin [9, 36], which aims at identifying sets of clusters that are
compact and well separated. It is defined as

DB(CXk) = 1
k

k∑
i=1

max
i 6=j

{
∆(Xi) + ∆(Xj)

δ(Xi, Xj)

}
(4.25)

where δ(Xi, Xj) defines inter-cluster distance between clusters Xi and Xj

and ∆(Xi) represents the intra-cluster distance of cluster Xi.

• Dunn [9, 48], which has a similar aim to the Davies-Bouldin index and is
defined as

DU(CXk) = min
1≤i≤k

 min
1≤j≤k
j 6=i

 δ(Xi, Xj)
max
1≤l≤k

{∆(Xl)}

 (4.26)

where δ, ∆, Xi and Xj are defined as before.

• Calinski-Harabasz [15, 47], where for each number of clusters k ≥ 2, the
index is defined as

CH(CXk) = trBk/(k − 1)
trWk/(k − 1) (4.27)

where Bk and Wk are the matrices of between and within k-clusters sums
of squares and cross-products and tr denotes the trace of a matrix.

• Krzanowski-Lai [47, 97], defined as

KL(CXk) = |diff(k)|
|diff(k + 1)| (4.28)

where
diff(k) = (k − 1)

2
p trWk−1 − k

2
p trWk. (4.29)

• The silhouette index [9, 148], which assigns a quality measure

s(xi) = b(xi)− a(xi)
max {a(xi), b(xi)}

(4.30)

called the silhouette width to the ith sample of a given cluster Xj =
{x1, . . . , xm} where a(xi) is the average distance between the ith sample

4.2 Unsupervised Multi-View Discriminative Learning 67

and all of the samples in Xj and b(xi) is the minimum average distance be-
tween the ith sample and all of the samples in {Xl | ∀l 6= j}. The silhouette
index may then be defined as

SI(CXk) = 1
k

k∑
j=1

{
1
m

m∑
i=1
{s(xi) |xi ∈ Xj}

}
. (4.31)

Taking the output view codebook V , we may then select a k∗-clustering from
a given set of clusterings CV that is optimal under the above validity indices as
follows

k∗ = arg max
k

5∑
i=1

1fi(CV)(k) (4.32)

where 1A(x) is the indicator function, and the fi are functions such that
fi : P(V) → N, with f1(CV) = arg mink DB(CVk), f2(CV) = arg maxk DU(CVk),
f3(CV) = arg maxk CH(CVk), f4(CV) = arg maxkKL(CVk), and f5(CV) =
arg maxk SI(CVk).

4.2.2.2 Projecting Class Clusters Between Data views

The CVk∗ clusters found by meta-clustering the output view codebook V define
the classes to be used for classifying data within input view codebook W . Given
an input view test sample x to be classified, the winning prototype (cf. Equation
(4.6) wi in the input view layer is found and its Hebbian weight links are mapped
to the output view layer meta-clusters via Hebbian projection as follows where,
given cluster V l ∈ CVk∗ , the projection is

~HV l

W (wi) =
{
P (vj|wi) ∈ ~HVW(wi)

∣∣∣ ∀j : vj ∈ V l
}
. (4.33)

4.2.2.3 Assigning Class Cluster Labels and Probabilities to Proto-
types

By summing the posterior probabilities P (vj|wi) provided by such a projection,
we can determine the likelihood of class cluster V l in output view codebook V
given prototype wi in input view codebook W as follows

P (V l|wi) =
∫
RV l

P (V l|wi)P (wi)dv (4.34)

=
∑

vj∈V l

P (vj|wi)P (wi) (4.35)

68 Self-Supervised Multi-View Learning

Figure 4.5: Projecting meta-clusters from one data view codebook onto another
for cross-view clustering. After both the codebooks and co-occurrence mapping
are trained (cf. Sections 4.1.1 and 4.1.2, Figure 4.2), the upper codebook is meta-
clustered using the k-means algorithm (cf. Section 4.2.2.1) to form class labels.
These class labels are then projected onto the prototypes in the lower codebook
using the Hebbian co-occurrence weights to determine the appropriate labels (cf.
Section 4.2.2.2).

where RV l = ⋃
vj∈V l Rvj is the receptive field for class cluster V l.

This allows us to assign an output view class cluster label to each of the
prototypes in the input view by maximising the class cluster posterior probability
for each of them. Thus, given wi, we define a labelling function

L(wi) = arg max
l=1,...,k∗

P (V l|wi) (4.36)

that labels the input view prototypes on that basis.

4.2.2.4 Culling Unreliable Prototypes

Using the above labelling technique, we can assign labels to each of the input view
prototypes using the output view class cluster posterior probabilities. However,

4.2 Unsupervised Multi-View Discriminative Learning 69

on that basis alone, not all of the prototypes in the input view will be reliable for
classification. In particular, if the class cluster posterior probabilities for a given
input view prototype are more or less the same, it may be a mistake to assign a
class label to it at all. It might make more sense to cull that prototype from the
classification process altogether. By applying this idea to all of the prototypes
in the input view codebook, it would therefore be left to the remaining, more
reliable, labelled prototypes to classify input samples. This would have the effect
of broadening the hypothesis margins [34] between the remaining prototypes, thus
potentially increasing classification accuracy. To accommodate this prototype
culling idea, we may modify the prototype labelling function from Equation (4.36)
as follows

L(wi) =

arg max
l=1,...,k∗

P (V l|wi) if P (V l|wi) > ε,

0 otherwise,
(4.37)

where ε is some threshold, which in practice we have taken to be the mean class
cluster posterior probability

4.2.2.5 Unsupervised Classification

Clustering of output view codebook prototypes

Figure 4.6: Cross-view classification: output nodes are meta-clustered and the
cluster with the strongest weighted connections to the input nearest neighbour
(BMU) wins.

The techniques outlined above lead us to the classification procedure depicted
in Figure 4.6 and formulated in Algorithm 4. In this algorithm, by employing
cross-view Hebbian projection, input view test samples may be classified in terms

70 Self-Supervised Multi-View Learning

Algorithm 4 Cross-View Classification
Input: Input view Codebook W , output view codebook V , Hebbian co-

occurrence mapping H(W ,V), test set Xtest.
Output: Class cluster labels Y ′labels and class cluster posterior probabilities
Y ′probs.

1: if Xtest is not normalized then
2: Normalize Xtest.
3: end if
4: Find optimal k-clustering CVk∗ by meta-clustering output view codebook V

using the algorithm described in Section 4.2.2.1.
5: for i = 1, . . . , N do
6: Given test sample xi ∈ Xtest, find input view nearest neighbour (BMU) wc

(cf. Equation (4.6)).
7: Perform Hebbian projection ~HVW(wi) to find posterior probabilities

{P (vj|wc) |vj ∈ V} using Equation (4.23).
8: for k = 1, . . . , k∗ do
9: Record Y ′probs(i, k) = P (V k|wc), the posterior probability for class clus-

ter V k ∈ CVk∗ .
10: end for
11: Find the optimal class cluster label for wc using Equation (4.36) or (4.37)

and record as Y ′labels(i), the output class label for sample xi.
12: end for

of the class clusters found in the output view via unsupervised meta-clustering of
the output view prototypes. Moreover, class cluster posterior probabilities may
also be associated with the test samples. It should also be noted that the clas-
sification procedure can be employed at any given point during training. The
meta-clustering of the output view prototypes would give the best current esti-
mate of the class clusters at a given training step t, and those would be used
as the current class labels at time t when classifying. At this juncture, it would
seem that some of the main requirements for our multi-view learner have been
met. However, while the combination of the multi-view training and classifica-
tion machinery outlined thus far might well work for unsupervised learning and
classification, it would not be entirely appropriate to refer to it as self-supervised
yet. It would perhaps be more apt to refer to it as a type of unsupervised clas-
sification since, while class clusters are indeed discovered in the output view and

4.3 Self-Supervised Multi-View Discriminative Learning 71

cross-view associated with the prototypes in the input view, the input view code-
book is not being explicitly trained as a classifier. There is no supervisory signal
during training, decision boundaries between prototypes are not being properly
accounted for (aside from the prototype culling procedure in Section 4.2.2.4, and
the input view is not generally being optimized for classification purposes. In the
following section, we address this deficiency.

4.3 Self-Supervised Multi-View Discriminative Learning

So far, Algorithm 4 gives us a means of associating prototypes in the input data
view with class clusters of prototypes in the output data view, but there is no
guarantee that the input view prototypes are appropriately positioned in the in-
put space for this purpose. Given an input view sample, the nearest neighbour
rule of Equation (4.6) will find the nearest neighbour prototype in the input
view based on the distance between the sample and the prototypes, but since
the positions of the prototypes are not optimized to be discriminative with re-
spect to the output view class clusters, the sample may be misclassified. Using
the nearest-neighbour rule and labelled prototypes in this way for the purposes
of classification essentially interprets the labelled prototypes as piecewise-linear
classifiers with linear decision borders between them. By re-positioning the pro-
totypes in the input space, it is therefore possible to adjust such decision borders
to improve discriminative capabilities.

In the usual case of fully-supervised learning, where labelled samples are
present, there are a number of different potential classifiers that could be em-
ployed, such as the Naive Bayes classifier, support vector machines (SVMs), lo-
gistic regression, amongst many others [6]. One particular breed of classifiers,
however, that of learning vector quantization (LVQ) [86], fits rather naturally
with our learning framework. LVQ-based classifiers take labelled prototype vec-
tors as piecewise-linear classifiers and, given a training set of labelled input sam-
ples, optimize the decision borders by repositioning the prototypes with respect
to the input samples depending on whether they were correctly or incorrectly
classified using the nearest-neighbour rule. We describe LVQ-based classifiers in
more detail in Section 4.3.1. Since our multi-view training data is unlabelled and
we form class-cluster labels via unsupervised clustering in the output view, we
could opt for something akin to the following procedure:

72 Self-Supervised Multi-View Learning

1. Dynamically generate class clusters in the output view codebook at each
training step,

2. Match the output view sample to one of the class clusters, thus providing
a label for the co-occurring input view sample.

3. Map the class cluster labels back to the input view codebook via Hebbian
projection, thus labelling the input view prototypes.

4. Proceed with LVQ-based training using the labelled prototypes and input
samples.

However, the first step of meta-clustering the output view prototypes at each
training step could prove to be quite computationally expensive and, as we shall
see in the following sub-sections, is unnecessary. Rather than using fully-fledged
class labels, we could instead construct an error signal that determines whether
or not a given input view prototype is an appropriate classifier for a given input
sample based on its co-occurrence Hebbian projection to the output view, as
well as the activation of the output view codebook given the co-occurring output
sample. Before broaching that subject in earnest, we must first describe how
learning vector quantization works.

4.3.1 Learning Vector Quantization

Learning vector quantization (LVQ) [86] provides an intuitive, and often highly
effective, means for discriminative learning where prototype vectors are used to
quantize the input feature space and given labels to form piecewise-linear clas-
sifiers using the nearest neighbour rule. The basis of LVQ learning rules hinges
on a simple idea. Given a training sample, if the label of the nearest neighbour
prototype matches the class of the sample, then the prototype is moved closer to
the sample, whereas if the label does not match, the prototype is moved further
away from the sample. The resultant effect of this is that the local piecewise-
linear decision borders between prototypes are adjusted relative to the training
data.

Since their introduction, LVQ algorithms have undergone various analyses and
seen various improvements to their design. The original formulations (LVQ1,
LVQ2, LVQ3) [86] have been shown to be divergent, inspiring the generalized

4.3 Self-Supervised Multi-View Discriminative Learning 73

learning vector quantization (GLVQ) algorithm [158] where the prototypes are
updated such that a stochastic gradient descent [146] is performed over an error
function. LVQ algorithms have also been shown to be a family of maximum
margin classifiers [34], thus providing excellent generalization for novel data with
high-dimensional inputs.

In order to formulate the LVQ algorithms, we begin by modifying our original
dataset definition in Equation (4.1) to include class labels:

X =
{

(xi, yi) ⊂ Rn × {1, . . . , C} | i = 1, . . . , N
}
. (4.38)

Similarly, we alter the original codebook definition in Equation (4.2) such that
the prototypes also have labels:

W =
{

(wi, ci) ⊂ Rn × {1, . . . , C} | i = 1, . . . ,M
}
. (4.39)

Given a sample (x, y) ∈ X, we denote by g(x) a function that is negative if
x is classified correctly, i.e. x ∈ Ri with ci = y, and is positive if x is classified
incorrectly, i.e. x ∈ Ri with ci 6= y. We also let f : R→ R be some monotonically
increasing function.

The goal of the GLVQ algorithm [158] is to minimize

E =
m∑
i=1

f(g(xi)) (4.40)

via stochastic gradient descent. The update rules for GLVQ as well as many other
LVQ algorithms can be expressed using the above notation. In the following sub-
sections, the LVQ1 [86] and GLVQ [158] algorithms are reviewed before demon-
strating in Section 4.3.2 how such algorithms can be trained using error signals
other than explicit class labels. In Chapter 5 we review the RLVQ [8] and GR-
LVQ [69] algorithms, which include feature relevance determination mechanisms,
before introducing novel LVQ algorithms with feature relevance mechanisms of
our own creation.

4.3.1.1 LVQ1

Given a training sample (x, y) ∈ X, by letting f(x) = x and g(x) = ηdj where
dj = d2(x,wj) with wj being the closest prototype to x and {λi = 1}mi=1 (i.e. equal
weights for regular Euclidean distance), with η = 1 if x is classified correctly (i.e.

74 Self-Supervised Multi-View Learning

cj = y) and η = −1 if x is classified incorrectly (i.e. cj 6= y), the following
stochastic gradient descent update rule may be derived for LVQ1 [86]:

wj
t+1 =

 wj
t + α(x−wj

t), if cj = y

wj
t − α(x−wj

t), otherwise,
(4.41)

where α is the learning rate and the t subscripts denote prototype states at
different training steps. However, it should be noted that the error function as
defined here is highly discontinuous, and thus can lead to instabilities in the
algorithm. GLVQ, discussed next, was designed to resolve this issue.

4.3.1.2 GLVQ

Here, dj = d2(x,wj) is defined where wj is the closest prototype to x with label
cj = y and dk = d2(x,wk) where wk is the closest prototype to x with some other
label. By letting

g(x) = dj − dk
dj + dk

(4.42)

and
ft(g(x)) = 1

1 + exp−g(x)t , (4.43)

which is a sigmoidal function that redefines the error function in Equation (4.40)
such that it is continuous over borders between the receptive fields for wj and
wk. When minimized, the error function yields the following update rules for wj

and wk [158]:

wj
t+1 := wj

t + α
∂f

∂g

dk
(dj + dk)2 (x−wj

t) (4.44)

wk
t+1 := wk

t + α
∂f

∂g

dj
(dj + dk)2 (x−wk

t) (4.45)

where
∂f

∂g
= ft(g(x))(1− ft(g(x)). (4.46)

GLVQ, unlike LVQ1 or the rest of Kohonen’s original LVQ formulations, has been
shown to be convergent [69, 158], although it is quite sensitive to the initialization
of the prototype vectors, a fact that is demonstrated in the experimental results
of Chapter 7.

4.3 Self-Supervised Multi-View Discriminative Learning 75

4.3.2 Training LVQ Classifiers with Probabilities instead of Labels

By making simple modifications to the LVQ1 update of Equation (4.41) and the
GLVQ updates of Equations (4.44) and (4.45) it is possible to provide update
equations that rely on error signals as opposed to explicit class labels. If, for
example, we were to have a function 0 ≤ φ(wj) ≤ 1 indicating the probability of
prototype wj correctly classifying the current sample x, then the LVQ1 update
might be modified to:

wj
t+1 :=

 wj
t + α(x−wj

t), if φ(wj
t) ≥ ε

wj
t − α(x−wj

t), otherwise,
(4.47)

where wj is the nearest-neighbour prototype as before and ε is some decision
threshold, or

wj
t+1 :=

wj
t + α(x−wj

t), if φ(wj
t) ≥ ε+ δ

wj
t − α(x−wj

t), if φ(wj
t) ≤ ε− δ

wj
t otherwise,

(4.48)

if we wished to allow a window of uncertainty ±δ around ε.

In the case of GLVQ, we would first have to decide on appropriate choices for
both wj, the nearest neighbour prototype of matching class to sample x, and wk,
the nearest neighbour prototype of a non-matching class. Using the φ probability
function, as opposed to class labels, we could use the following definitions:

wj = arg min
wl

{
d2(x,wl)

∣∣∣ ∀l : wl ∈
{
wi ∈ W |∀i : φ(wi) ≥ ε+ δ

}}
, (4.49)

wk = arg min
wl

{
d2(x,wl)

∣∣∣ ∀l : wl ∈
{
wi ∈ W |∀i : φ(wi) < ε− δ

}}
, (4.50)

where ε is once again a threshold value with window δ. Then by modifying
g(x) in Equation (4.42) to reflect the uncertainty about the class membership of
prototypes wj and wk, we may derive the following update rules:

wj
t+1 := wj

t + α
∂f

∂g

dk(φ(wj
t) + φ(wk

t) + 1)
(dj + dk)2 (x−wj

t), (4.51)

wk
t+1 := wk

t + α
∂f

∂g

dj(φ(wj
t) + φ(wk

t) + 1)
(dj + dk)2 (x−wk

t), (4.52)

where
∂f

∂g
= ft(g(x))(1− ft(g(x)) (4.53)

76 Self-Supervised Multi-View Learning

as before. The specification of the g(x) function in this case, as well as the
derivation of the above update rules by stochastic gradient descent are included
in Appendix A.

(a) A close similarity between the output
view codebook activation and the Hebbian
projection from the nearest neighbour in
the input view codebook indicates that the
input sample is correctly matched.

(b) A large difference between the output
view codebook activation and the Hebbian
projection from the nearest neighbour in
the input view codebook indicates that the
input sample is incorrectly matched.

Figure 4.7: Constructing a cross-view error signal within our network topology.
As co-occurring samples arrive online in each data view, nearest neighbour proto-
types are found and the output view codebook activation distribution (cf. Section
4.1.1.3) may be compared with the Hebbian projection (cf. Section 4.1.2.2) from
the nearest-neighbour prototype in the input view codebook to the output view
codebook. By measuring the distance between these two distributions, an er-
ror signal may be formed that indicates whether or not the input sample is being
matched correctly. Figure 4.7(a) illustrates the case for correct matching, whereas
Figure 4.7(b) illustrates the case for incorrect matching. Note that by exploiting
the multi-view information, class labels are not required for the formation of such
an error signal.

Although we have now shown how LVQ classifiers may be trained using prob-
abilities or an error function of some kind instead of class labels, we have yet
to specify what that error function would be within our learning framework. In
approaching the specification of this error signal, a key observation at this point
is to note that the co-occurrence Hebbian mapping as defined in Section 4.1.2.1
provides a temporal record of cross-view codebook activation. At a given time-

4.3 Self-Supervised Multi-View Discriminative Learning 77

step, given a prototype in the input view for example, it is possible to obtain a
Hebbian projection that indicates how the output view codebook was activated
on average by output samples over the training time leading up to that time-step
as viewed from the perspective of the input view prototype which matched the
co-occurring input samples. Thus, at any given point during training, given co-
occurring samples, we may observe the activation of the output view codebook
given the output sample (cf. Section 4.1.1.3), as well as the Hebbian projection
from the prototype in the input view that best matches the input sample (cf.
Section 4.1.2.2), and compare them. If these two activation distributions are
quite similar, we might conclude that the selected input view prototype is indeed
a good match for the input view sample in terms of potentially discriminating
between output view meta-clusters, whereas if the two distributions are quite dif-
ferent, we might conclude that the prototype is a poor match for such purposes.
This concept is perhaps best illustrated visually as in Figure 4.7. In the next
section, we describe how the distance between the activation distributions may
be measured.

4.3.3 Measuring Similarity Between Data Views

To measure the distance between two distributions, in particular the codebook
activation distribution and cross-view Hebbian projection as discussed previously,
we require a suitable distance metric, and in our case we employ the Hellinger
distance for this purpose. Using the definition from [63], given any measurable
space Ω, if f , g are densities of the measures µ, ν with respect to a dominating
measure λ,

dH(µ, ν) :=
[∫

Ω
(
√
f −√g)2 dλ

] 1
2

(4.54)

which is independent of the choice of dominating measure λ. For a countable
state space Ω,

dH(µ, ν) :=
∑
ω∈Ω

(√
µ(ω)−

√
ν(ω)

)2
 1

2

. (4.55)

The Hellinger distance takes values in the bounded interval [0,
√

2], making
it amenable to statistical analysis, e.g. calculating mean distance. Given input
view node k, we define

fk(t) = {hkl(t) : ∀l in the output view layer} , (4.56)

78 Self-Supervised Multi-View Learning

or all the Hebbian link weights that connect node k in the input view layer to
the nodes in the output view layer at time t. We define

g(t) = {al(t) : ∀l in the output view layer} , (4.57)

or all the node activations in the output view layer at time t.

The discrete set fk can be thought of as a distribution of the Hebbian map
activity from node k in the input layer projected onto the output layer. Loosely
put, this gives us a picture of what the output map looks like from the perspective
of node k in the input map based on previous training experience. The set g, on
the other hand, gives us a distribution of the output map activity with respect
to the current training sample. Thus, when given a training sample for the input
view, if we employ the metric dH(fk(t), g(t)), we can get an impression of how
well its best matching unit node in the input view layer predicts the activity of
the output view layer given its co-occurring training sample. This heuristic can of
course be used in the opposite direction, from the output view layer to the input
view layer, but for the algorithm we present in this paper it is employed strictly in
the above way to augment the training of the input view layer. This is primarily
because in the case of the object affordance learning problem as we defined it in
the previous chapter, we wish to focus on clustering classes as well as possible in
the output object effects data view while driving discriminative learning in the
input object features data view. Now that we have the necessary tools in place,
we may proceed to present our fully-fledged self-supervised multi-view algorithm.

4.3.4 Self-Supervised Online Multi-View Training Algorithm

To achieve self-supervision, we retain the training framework of Algorithm 1, but
modify and replace Algorithm 2 to accommodate the learning rules described in
Section 4.3.2. This self-supervised updater is described in Algorithm 5. Here
we introduce the notion of learning in phases, the idea being that self-supervised
learning should proceed developmentally with an initial phase of unsupervised
learning as in Algorithm 1 in order to settle the prototypes with respect to the
data distributions in each data view and to build a sufficiently detailed cross-
view Hebbian co-occurrence mapping, before progressing to a subsequent phase
of self-supervised learning using selected update rules from Section 4.3.2.

The algorithm may be broadly summarized as follows, where the steps in
parentheses refer to steps in Algorithm 5:

4.3 Self-Supervised Multi-View Discriminative Learning 79

1. Calculate the output view codebook activation distribution (Step 3).

2. Update the output view codebook (Step 4).

3. Calculate the input view codebook activation distribution (Step 8).

4. Calculate φ(wc) (Step 15), or φ(wi)∀i if GLVQ-based (Step 19), as the
Hellinger distance between the Hebbian projection from the input view
nearest-neighbour wc and the output view codebook activation distribution.

5. Update the input view codebook using either unsupervised learning (Step
12) or self-supervised learning (Step 16 or Step 22) depending on the learn-
ing phase.

6. Update the cross-view Hebbian co-occurrence mapping using the codebook
activation distributions from each data view (Step 26).

The key to enabling the self-supervised learning updates lies in the fourth entry
on the above list in the calculation of the φ probabilities which are required by
the self-supervised update equations. Naturally, we assume here that both the
Hebbian projection from the input view and the output view codebook activation
distribution are normalized as probability distributions, and that the Hellinger
distance is normalized between [0, 1]. We have found it convenient in our ex-
periments to calculate a running mean of φ(wc) during training and set the ε
threshold in the self-supervised updates to be that number, while setting the δ
window value to be the running standard deviation of same. The running mean
and standard deviation were calculated using an algorithm by Knuth [84] and are
detailed in a different context in Section 5.2.2 of the following chapter. It should
be noted that the self-supervised GLVQ-based update rules of Equations (4.51)
and (4.52) are less efficient than their LVQ1-based counterparts of Equations
(4.47) or (4.48), involving a complexity of O(MW) with respect to the calculation
of the φ(wi) as opposed to O(1) for the LVQ1-based updates, where MW is the
number of prototypes in the input view. Nevertheless, though we do not provide
analytical proof of convergence here, the self-supervised GLVQ-based updates,
being based on a provably convergent underlying fully-supervised algorithm, do
appear to perform with slightly more stability over longer training periods, as
shall be shown in the experimental results of Chapter 7.

80 Self-Supervised Multi-View Learning

Algorithm 5 Self-Supervised Multi-View Learner Online Update
Input: Input view codebookW , output view codebook V , Hebbian co-occurrence

mapping H(W ,V), training samples x and y.
Output: Updated input view codebook W ′, updated output view codebook V ′,

updated Hebbian co-occurrence mapping H′(W ,V).
1: Given y, find output view nearest-neighbour (BMU) vct and its neighbours
N vc

t using Equations (4.6) and (4.10).
2: for i = 1, . . . ,MV do
3: Get prototype activations at(vi) using Equation (4.11), (4.12), or (4.13).
4: Update vit+1 using Equation (4.7).
5: end for
6: Given x, find input view nearest-neighbour (BMU) wc

t and its neighbours
Nwc

t using Equations (4.6) and (4.10).
7: for i = 1, . . . ,MW do
8: Get prototype activations at(wi) using Equation (4.11), (4.12), or (4.13).
9: end for

10: if current learning phase is SOM-based then
11: for i = 1, . . . ,MW do
12: Update wi

t+1 using Equation (4.7).
13: end for
14: else if current learning phase is LVQ1-based then
15: Calculate φ(wc) = dH

(
~HVW(wc), AW(x)

)
, the Hellinger distance between

the Hebbian projection of wc and the activation distribution for x in the
output view codebook.

16: Update wc
t+1 using Equation (4.47) or (4.48).

17: else if current learning phase is GLVQ-based then
18: for i = 1, . . . ,MW do
19: Calculate φ(wi) = dH

(
~HVW(wi), AW(x)

)
.

20: end for
21: Find wj

t and wk
t using Equations (4.49) and (4.50).

22: Update wj
t+1 and wk

t+1 using Equations (4.51) or (4.52).
23: end if
24: for i = 1, . . . ,MW do
25: for j = 1, . . . ,MV do
26: Update γwivj

t+1 ∈ H(W ,V) using Equation (4.21).
27: end for
28: end for

4.4 Chapter Summary 81

4.4 Chapter Summary

In this chapter we proposed a self-supervised multi-view learning algorithm built
on a theoretical foundation of unsupervised clustering, Hebbian learning and
learning vector quantization. Codebook layers of prototypes are used to represent
separate data views, or sensory modalities, and may be trained online using
competitive learning in a process we term hyper-clustering. Class clusters used
for cross-view classification may be formed in a data view through a process of
meta-clustering the prototypes in that data view. The separate data views are
connected together via a cross-view Hebbian mapping that itself may be trained
online using the co-occurrence of data between the separate layers. This cross-
view mapping is used to project percepts from one data view onto another through
a process known as Hebbian projection that allows us to measure how the data
in each view correspond to each other. We have shown how, given the multi-view
structure of the codebook layers of prototypes, we may derive learning rules based
on both Hebbian projection and the learning vector quantization paradigm that
can employ class probabilities instead of actual class labels during training, thus
allowing us to bootstrap the self-supervised learning process in an online manner
even when the classes are not yet fully known. This is an important consideration
at the lower-level of a cognitive system like an autonomous robot where lower-
order feature data co-occur in an online manner across multiple data views and
higher-level concepts ought to be formed dynamically [166].

It is important to re-emphasize that class labels are not employed in the self-
supervised training procedure. Such labels are generated dynamically at classi-
fication time during calls to Algorithm 4. There is an interesting observation to
be made here with regard to such dynamic cross-view prototype labelling within
the context of online learning. If we are to assume the hard online developmental
learning constraints of Table 3.2 in Chapter 3, where learning commences from
a starting state without access to a batch of training data previously observed
or otherwise, then fully-supervised learners, at least of the LVQ variety, must
arbitrarily label prototypes which themselves may be randomly initialized. A
consequence of this is that it may take many update iterations, or perhaps many
epochs of training, for the labelled prototypes to move to appropriate positions
within the input space before being able to correctly classify samples. As we shall
demonstrate in the experimental results of Chapter 7, this issue can actually be

82 Self-Supervised Multi-View Learning

circumvented by the dynamic labelling of the multi-view self-supervised learning
described in this chapter. Prototypes that are already appropriately positioned in
the input view with respect to certain modes of the distribution may be dynam-
ically assigned class labels that are most suited to them by the driving output
view.

Though the self-supervised algorithm presented in this chapter is self-
contained and operates as expected, as shall be seen in the experimental results of
Chapter 7, its performance, particularly in the case of short training periods, can
be boosted significantly by considering the relevance of individual feature dimen-
sions. Thus, in the following chapter, we present two novel algorithms designed
for that purpose.

Chapter 5

Feature Relevance Determination

In the previous chapter learning proceeded by moving prototypes around to clus-
ter within data views, labelling the prototypes using dynamically formed classes
and culling prototypes according to their relevance in terms of predictive accu-
racy. Something that was not considered however, is how relevant the individual
feature dimensions are in supervised class prediction and how such relevancies
might be determined. A standard approach to this issue is to pre-process the
data using some form of feature selection or dimensionality reduction, but this
might not be be feasible in many scenarios, particularly when hard online learn-
ing constraints such as those detailed in Chapter 3 are considered. In the case of
learning vector quantization, feature relevance determination can be performed
in an online manner, and in this chapter we review some methods for achiev-
ing that. Two new algorithms for LVQ-based relevance determination are also
presented. Both methods exploit the positioning of the prototype vectors in the
input feature space to inform estimates of the Fisher criterion score along the
input dimensions, which are then used to form online estimates of the relevance
of the input dimensions with respect to the classifier output. Both methods pro-
vide online updates that may be used alongside regular LVQ updates and neither
method requires the specification of a learning rate, as in stochastic gradient de-
scent. At the end of this chapter, we also describe how the proposed methods
may be applied to the multi-view self-supervised learner of the previous chapter,
both during training and at classification time.

83

84 Feature Relevance Determination

5.1 Relevance Determination for LVQ

Much attention has been paid in recent years to the role that the distance metric
plays in the effectiveness of LVQ methods. LVQ ordinarily relies on the Euclidean
metric to measure the distance between data points, which provides equal weight-
ing to all input dimensions. Many of the input dimensions, however, may have
little relevance when considering the desired output function and may even have
a detrimental effect on the output if considered with equal weighting in the met-
ric to the more important dimensions. Various reformulations of LVQ have been
proposed that can adjust the metric during training such that the impact of the
individual input dimensions are dynamically re-weighted during training in ac-
cordance with the data under consideration. This can make a crucial difference,
both during training for more efficient adjustment of the prototypes, and when
classifying test samples where the undue consideration of irrelevant dimensions
can mean the difference between a correct and incorrect classification.

One early adaptation of LVQ3 known as distinction sensitive learning vector
quantization (DSLVQ) [138] achieves this by using a heuristic to adjust weights
along each of the input dimensions to modify the Euclidean metric. An adap-
tation of LVQ1 known as relevance learning vector quantization (RLVQ) [8] uses
Hebbian learning to do similar, by adjusting weights for each of the input dimen-
sions at every training step depending on the degree to which each dimension
contributed to the correct or incorrect classification of a training sample. RLVQ
was subsequently adapted for use with GLVQ producing a method known as
generalized relevance learning vector quantization (GRLVQ) [69] such that the
feature dimension weight updates also adhere to gradient descent dynamics in a
similar way to the prototype updates. Another modified version of GLVQ [179]
uses Fisher’s discriminant analysis to create an alternative metric to the weighted
Euclidean distance that employs a matrix transformation to reduce the feature
space dimensionality. More recently, an adaptive metric was used in combination
with training data selection for LVQ [134].

The following two sub-sections review both RLVQ and GRLVQ, perhaps two
of the more well-known feature relevance LVQ-based methods, in more detail. The
new algorithms are described in Section 5.2 and experimental results comparing
our algorithms to both RLVQ and GRLVQ are provided in Chapter 7.

5.1 Relevance Determination for LVQ 85

5.1.1 RLVQ

By allowing the λi weights in Equation (4.3) to be altered, the LVQ prototype up-
date equations can be accompanied by updates that also alter the metric weights
dynamically during training, hence allowing for an adaptive Euclidean metric.
In RLVQ [8], LVQ1 training is adjusted such that the following weighting factor
update rule is applied alongside Equation (4.41):

λl :=

 λl − β(xl − wjl)2 if cj = y

λl + β(xl − wjl)2 otherwise,
(5.1)

for each l-th dimension where β ∈ (0, 1) is a learning rate for the weighting factor
adjustments. The weights are normalized at each update such that ∑n

i=1 λi =
1. The motivation for the above update is derived from Hebbian learning, the
idea being that when wj classifies the sample x correctly, the weights for the
dimensions that contributed to the classification the most are increased, whereas
the weights of the dimensions that contributed the least are decreased. When
wj incorrectly classifies x, the weights for dimensions that contributed most are
decreased, whereas the weights for dimensions that contributed the least are
increased.

5.1.2 GRLVQ

GRLVQ is an application of the above idea to GLVQ, such that the updates
for the weights for the metric also follow a stochastic gradient descent on the
error function defined by GLVQ. The prototype updates in Equation (4.44) and
Equation (4.45) are thus accompanied by the following metric weight update [69]:

λl := λl − βf ′
(

dk
(dj + dk)2

(
xl − wjl

)2
− (5.2)

dj
(dj + dk)2

(
xl − wkl

)2
)
, (5.3)

for each l-th dimension, where β is once again the learning rate, and the weights
are once again normalized after each update.

One disadvantage of both RLVQ and GRLVQ is that they require the spec-
ification of an additional learning rate, β, which can be difficult to specify ap-
propriately with respect to its α counterpart in the prototype updates. Another

86 Feature Relevance Determination

disadvantage is that they fail to take into consideration the additional statistical
information provided by the remaining prototypes other than the ones currently
being updated at a given training step when making relevance estimates. These
issues are addressed with the following two proposed LVQ relevance determina-
tion algorithms.

5.2 Relevance Determination for LVQ using Fisher Crite-
rion Score

The Fisher criterion, while ordinarily associated with Fisher’s discriminant anal-
ysis [54], can also serve as an effective means for feature relevance determination
when applied across individual data dimensions. Letting xA = 1

N

∑
xi∈A x

i be the
mean of a set of points A with cardinality N , the Fisher criterion score for a given
individual dimension l is defined as

F (l) = SB(l)
SW (l) , (5.4)

where

SB(l) =
C∑
c=1

N c
(
xX

c

l − xXl
)2

(5.5)

is the between-class variance and

SW (l) =
C∑
c=1

∑
x∈Xc

(
xl − xX

c

l

)
(5.6)

is the within-class variance over the l-th dimension.

With regard to relevance determination for LVQ, F (l) could be calculated
for each dimension over the entire training set X in advance of LVQ training
and applied to the weighting factors in Equation (4.3) by setting λl = F (l)
for all l to form a weighted metric. However, for many applications it is more
desirable to have an online feature relevance training mechanism that is not reliant
on having access to the entire training set at once. In the following, two such
online algorithms are presented where estimation of the Fisher criterion score is
integrated into the training scheme for LVQ.

5.2 Relevance Determination for LVQ using Fisher Criterion Score 87

Within-Class
Variance

Between-Class Variance

Weighted
Class
Prototypes

Within-Class
Variance

Figure 5.1: Visualisation of the first proposed feature relevance determination
technique. The Fisher criterion score is calculated over weighted class prototypes
as opposed to actual data.

5.2.1 First Proposed Algorithm: FC1

With the first algorithm, rather than calculating F (l) over the data in X, at a
given time-step t the score is estimated over the values of the prototype vectors
in W . This is plausible since the distribution of the prototype vectors should
approximate the distribution of the data over time. During training, certain
prototypes will quantize more significant modes of the distribution than others,
thus to account for this, weighted means and variances are calculated for each
class based on the classification accuracy of each of the prototypes of that class,
then the Fisher criterion score is calculated over the weighted means and variances
for all classes. Firstly, the definition of W is altered to

W = { (wi, ci, pi) ∈ Rn × {1, . . . , C} × R (5.7)
| i = 1, . . . ,M } (5.8)

where, given random variable (x, y), pi = p(x ∈ Ri|y = ci) is the conditional
probability of x lying in receptive field Ri of prototype wi given that wi correctly
classifies x. The pi form probability distributions over class prototypes such that∑
pi∈Wc pi = 1 for each class c. A definition of the estimated Fisher criterion score

88 Feature Relevance Determination

may now be formed as

F (l) ' F̂ (l) = ŜB(l)
ŜW (l)

, (5.9)

where
SB(l) ' ŜB(l) =

C∑
c=1

N c

N

(
ŵW

c

l − ŵWl
)2

(5.10)

is the estimated between-class variance over the l-th dimension,

SW (l) ' ŜW (l) =
C∑
c=1

N c

N

∑
(wi,ci,pi)∈Wc

pi
(
wl − ŵW

c

l

)
(5.11)

is the estimated within-class variance over the l-th dimension, and

ŵW
c

l =
∑

(wi,ci,pi)∈Wc

piwil (5.12)

is a weighted mean over the l-th dimension of prototypes in a given setWc ⊆ W .

The λm relevance factors may then be updated at each time-step by taking a
running mean of the normalized estimated Fisher criterion score:

λl,t+1 := λl,t +
F̂ (l)∑n

l=1 F̂ (l) − λl,t
t+ 1 . (5.13)

While the Fisher criterion score is suitable for feature relevance determination in
many cases, its main drawback is that it does not cope well with multi-modal
feature distributions. An example of this is shown in Figure 5.2. This problem
remains in the estimation proposed above, since Equation (5.10) and Equation
(5.11) are calculated over all class prototypes. The second proposed algorithm
was designed to account for this issue.

5.2.2 Second Proposed Algorithm: FC2

The second proposed algorithm is based on the idea of calculating the Fisher
criterion score between single prototype vectors of opposing classes, where the
assumption is made that each class prototype vector may be quantizing different
modes of the underlying class distribution. During training, Gaussian kernels are
used to maintain estimates of the accuracies of each of the prototypes over the
parts the data distribution accounted for by each of their receptive fields. At
a given training step, the nearest single prototypes of each class to the training

5.2 Relevance Determination for LVQ using Fisher Criterion Score 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fisher criterion score for X−dimension = 61.8958

F
is

he
r

cr
ite

rio
n

sc
or

e
fo

r
Y

−
di

m
en

si
on

 =
 0

.0
00

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fisher criterion score for X−dimension = 0.1295

F
is

he
r

cr
ite

rio
n

sc
or

e
fo

r
Y

−
di

m
en

si
on

 =
 0

.0
00

2

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fisher criterion score for X−dimension = 0.1247

F
is

he
r

cr
ite

rio
n

sc
or

e
fo

r
Y

−
di

m
en

si
on

 =
 0

.0
00

0

 A
1

 B
1

F(x) over A
1
 & B

1
 = 10.0196, F(x) over A

2
 & B

2
 = 10.1081

F(y) over A
1
 & B

1
 = 0.0001, F(y) over A

2
 & B

2
 = 0.0000

 A
2 B

2

(c)

Figure 5.2: A simple 2-dimensional, 2-class example of how the Fisher crite-
rion score (see Equation (5.4)) can fail as a feature relevance metric over multi-
modal data distributions. (a) shows uni-modal class data distributions, linearly
separable in the x-dimension, but with large overlap in the y-dimension. The
score reflects the relevance of each dimension to class discrimination (F (x) '
61.9, F (y) ' 0). (b) by comparison, shows the same number of data points, but
with a multi-modal distribution (yet still linearly separable in x). The score is
significantly lower for the x-dimension in this case (F (x) ' 0.1, F (y) ' 0). (c)
shows the improvement provided by calculating the score between pairs of clusters
with centres at points A1, B1, A2 and B2, (F (x) ' 10 over A1 & B1, F (x) ' 10
over A2 & B2). See Section 5.2 for more details.

sample are found, and their Gaussian kernels are used to calculate an estimate
of the Fisher criterion score for that local portion of the distribution, which is
subsequently averaged over the entire training period.

90 Feature Relevance Determination

Sample

Closest correct
prototype

Closest incorrect
prototype

Figure 5.3: Visualisation of the second proposed feature relevance determina-
tion technique. Prototypes have associated Gaussian kernels used to maintain
estimates of their individual classification accuracies. At a given training step,
the Fisher criterion score is calculated locally between the closest prototypes of
opposing classes to the current training sample. A running average of this lo-
cally calculated score is maintained as training progresses. This technique helps
counter the problem illustrated in Figure 5.2.

The definition of W is this time altered to accommodate a Gaussian estimate
of the accurate portion of the receptive field for each prototype, such that

W = {
(
wi, ci,N (x;µi,Σi)

)
∈ Rn × {1, . . . , C}× (5.14)

(Rn × Rn×n) | i = 1, . . . ,M } , (5.15)

where N approximates R̃i = {x ∈ Ri|y = c} with mean µi and covariance matrix
Σi = diag([si1, . . . , sin]) where the {sil}

n
l=1 are variances along each l-th dimension.

During LVQ training, given a random sample (x, y) ∈ X at training step t, if the
closest prototype wj classifies x correctly, i.e. cj = y, then µjl and s

j
l are updated

in each l-th dimension as follows [84]:

µjl,t := µjl,t−1 +
xl − µjl,t−1

t
(5.16)

ŝjl,t := ŝjl,t−1 + (xl − µjl,t−1)(xl − µjl,t) (5.17)

5.2 Relevance Determination for LVQ using Fisher Criterion Score 91

where µjl,t is the running mean estimate and sjl,t = ŝj
l,t

t−1 is the running variance
estimate for the l-th dimension at training step t. If cj 6= y, then the above
updates are not performed. Assuming a sufficient number of updates have been
performed on the relevant prototypes up until step t, a Fisher criterion score
estimate may be calculated between

W ′ = { ωk =
(
wk, ck,N (x;µk,Σk)

)
∈ W (5.18)

| ∀wi, ci = ck, d(x,wk) ≤ d(x,wi) } , (5.19)

the closest prototypes of different classes (including wj), as follows:

F (l) ' F̃ (l) = S̃B(l)
S̃W (l)

, (5.20)

where

SB(l) ' S̃B(l) = 1
C

C∑
c=1

(µcl − µl)
2 (5.21)

is the between-class variance estimate in the l-th dimension with

µl = 1
C

∑
ωk∈W ′

µkl , (5.22)

and
SW (l) ' S̃W (l) =

∑
ωk∈W ′

skl (5.23)

is the within-class variance estimate in the l-th dimension. The relevance factors
may then be updated in a similar way to Equation (5.13), this time using the
new estimates:

λl,t+1 := λl,t +
F̃ (l)∑n

l=1 F̃ (l) − λl,t
t+ 1 . (5.24)

Since each prototype carries an accompanying Gaussian kernel that estimates
its accuracy, it is now possible to estimate the Fisher criterion score using only
single prototypes from each class, as opposed to the previous algorithm where
multiple prototypes in each class have to be considered to achieve variance esti-
mates. Though the model is made slightly more complex, it is more capable of
successfully handling the multi-modal distribution issue described in Fig. 5.2 as
shown by the experimental results in the Chapter 7.

92 Feature Relevance Determination

5.3 Applying Relevance Determination to the Self-
Supervised Multi-View Learner

5.3.1 During Training

When employing fully-supervised learning vector quantization, in the case of both
the RLVQ and GRLVQ algorithms, the feature weights provided by Equations
(5.1) and (5.3) respectively are generally both updated and applied during train-
ing. Thus, at any given training step the adaptive Euclidean metric of Equation
(4.3) may have different λ weights in each feature dimension, meaning that the
prototype updates of Equation (4.41) and Equations (4.44) and (4.45) can po-
tentially alter prototype weights to varying degrees in each dimension during
training. Both RLVQ and GRLVQ feature relevance updates can also easily be
applied to the self-supervised learner of Algorithm 5, requiring only knowledge of
the nearest-neighbour prototype to the training sample, or in the case of GRLVQ,
knowledge of the nearest correct prototype and the nearest incorrect prototype.

Only one of our proposed feature relevance algorithms, FC2, is amenable to
being applied during the training process in this way, at least in the case of
the self-supervised learner. FC1 cannot easily be applied to the self-supervised
learner during training since it requires the prototypes to be labelled. The reason
why FC2 can be applied during training of the self-supervised learner is because
it does not necessarily require prototype labels. It simply needs to know the iden-
tity of the closest correct prototype to the training sample as well as that of the
closest incorrect prototype. Since steps 18-21 of Algorithm 5 provide that infor-
mation using the φ-probabilities given by the Hellinger distance calculations, this
knowledge is available during training and thus Equation (5.24) can be applied
concurrently.

5.3.2 At Classification Time

Once an instance of the self-supervised learner has been trained using Algorithms
1 and 5 and classification Algorithm 4 is called upon to classify test samples, the
prognosis changes for FC1 because, since the prototype labels in the input view
are provided by a combination of meta-clustering in the output view and Heb-
bian projection, Equation (5.9) may now be applied directly over the prototypes,

5.4 Chapter Summary 93

though without the temporal averaging step of Equation (5.13) that is performed
during training in the fully-supervised case. We may also technically forgo the
application of adaptive feature weighting during training in the cases of RLVQ,
GRLVQ and FC2, choosing instead to update the weights during training and
waiting until classification time to actually apply them in the metric when clas-
sifying test samples. Interestingly, of the above methods, FC2 is the only one
that can be applied directly at classification time without needing any additional
information provided by the training procedure, thus it can potentially serve to
augment the performance of the other methods, even if they have been applied
adaptively during training. In the experimental results of Section 7.2 in Chapter
7 we demonstrate how this can indeed sometimes be the case in practice.

5.3.2.1 In the Output View

The obvious application of our Fisher-based feature relevance approach in the
multi-view setting lies in the input space where some form of cross-view class in-
formation is available. However, in the experiments described in Sections 7.3.3.2,
7.3.3.3, and 7.4 of the experimental results chapter, we also made use of it in the
output space to augment the class discovery process. In the output space, even
though the class cluster structure is initially unknown, it is still possible to select
features that are more likely to be relevant to forming good cluster hypotheses.
Firstly, given i, we split the i-th dimension of V into multiple histogram partitions
QV

1 , . . . , Q
V
k , . . ., where each QV

k = {BVi
1 , . . . , B

Vi
k } subdivides V along the range

of i into k evenly-sized bins containing V -prototypes. Then using QV
k in place

of the class labels in (5.9), (5.10), (5.11) and (5.12), and calculating (5.9) for a
range of k values (we used k = 2, 4, 6, 8, 10 in our experiments), averaging over
k, and assigning a λi weight to the k-averaged value, we selected features over a
certain threshold (we used the λi-average in our experiments) that were likely to
contribute most to good clustering over a range of k-values. We then used these
features as input for the clustering algorithm described in Section 4.2.2.1.

5.4 Chapter Summary

In conclusion, two new relevance determination algorithms have been proposed
for LVQ that exploit the positioning of prototypes in the input feature space to

94 Feature Relevance Determination

calculate Fisher criterion score estimates in the input dimensions for an adap-
tive metric. An advantage provided by these methods over other metric-adaptive
LVQ methods based on gradient descent, is that they do not require a learning
rate or other parameters to be specified. Moreover, they provide incremental
update rules that operate alongside regular LVQ update rules and can therefore
be applied to any algorithms based on the general LVQ paradigm. Towards the
end of the chapter, we also showed how the new methods may be applied to the
multi-view self-supervised learner of Chapter 4 both during training and at clas-
sification time, depending on the method involved. In Section 7.1 of Chapter 7,
experimental evaluations for the fully-supervised case are provided under various
stress conditions and over various datasets and the proposed methods are shown
to perform competitively against various other LVQ-based methods, and against
SVM. As well as that, in Sections 7.2, 7.3 and 7.4 of Chapter 7, we show re-
sults for various combinations of the application of these techniques both during
training and at classification time in the case of self-supervised learning.

Chapter 6

Robot and Vision Systems

Researching and developing real-world systems for affordance learning is difficult
because, given that both perception and action are involved, a number of dif-
ferent, but necessary sub-systems need to be accounted for. On the perception
side, such systems must possess sufficiently robust vision or sensory modules of
some kind so that they can “see” in their environment and recognize invariant
features and salient visual events. Of course, such affordance learning systems
should also be able to interact with their environments using actuators. This can
involve anything from relatively simple mobile robot actuation to complex kine-
matics and motion planning. One of the main tasks in our work for this thesis
was the design of an experimental platform that married sufficient functionality
in each of these areas, so as to facilitate exploratory learning of the basic affor-
dances of objects, using a robotic arm and various camera systems.1 In addition,
further experiments were performed using a secondary platform involving a dif-
ferent robot arm and an RGB-D depth sensor.2 We devote the first part of this
chapter to describing each of these experimental platforms, and the second part
to describing the visual feature extraction methods used in each of them.

1This work was performed at the Visual and Cognitive Systems Lab, Faculty of Computer
and Information Science, University of Ljubljana.

2This work was performed at the Humanoid and Cognitive Robotics Lab, Department of
Automation, Biocybernetics and Robotics, Jožef Stefan Institute.

95

96 Robot and Vision Systems

6.1 Experimental Platforms

6.1.1 Katana/Camera Setup

Machine 1

Corba Server

Machine 2

Arm Control

Camera
Control

Corba/HTTP
Server

Matlab-
based

Control &
Learning
System

Flea & Bumblebee

Camera Systems

Katana Arm

Figure 6.1: Katana/Camera setup system architecture.

In terms of hardware, this experimental setup primarily consisted of both
monocular and stereo cameras for perception and a robotic arm for action. The
system that we developed was designed to be controlled from the MATLAB R©

software environment. MATLAB was chosen as it allows for rapid prototyping
of high-level control programs and provides extensive functionality for computer
vision manipulations as well as other procedures. In order for experiments in-
volving the robot arm to be performed via MATLAB and to aid cross-platform
integration, a CORBA (Common Object Request Broker Architecture) interface
was developed to sit between the low-level arm control software and high-level
Java control client which could easily be called from MATLAB. This allowed for
swift arm/work-space calibration from within MATLAB and allowed for simple
moveTo(x, y, z) functionality for moving the end-effector to a localised position
(x, y, z) in the workspace. Similar functionality was set up to allow capture of
images, 3-D point clouds, and video from the various camera systems. See Figure
6.1 for an overview of the system architecture.

6.1 Experimental Platforms 97

6.1.1.1 Action: 5-DOF Robotic Arm with 2-Finger Gripper

In this setup, we used a Neuronics Katana 6M robotic arm which features 5 DC
motors for main arm movement, as well as a 6th motor to power a 2 fingered
gripper that houses both infrared and haptic sensors. See Figure 6.2 for various
views of the arm in our learning environment. The arm control software that
was used for this work is a modified version of Golem3 [88], control software for
the Katana arm. Given desirable parameters, Golem uses forward kinematics to
generate arm joint orientations and motion paths, then uses cost functions and
searches to select the ones that most closely fit the parameters.

In order to ensure that the actions, and by extension the object affordances,
that were available to the system were as consistent and learnable as possible, we
restricted the motions of the arm in the following two ways:

• Firstly, we constrained the arm’s path-finder software so that the orientation
of the end-effector was as orthogonal to the work surface as possible. This
ensured that the angle of contact between the end effector and objects
remained consistent over repeated actions. While this may appear to be an
exercise in ’freezing’ out degrees-of-freedom, the resultant arm movements
used to achieve these orthogonal orientations remained complex and all arm
joints tended to be used during movement.

• Secondly, we tried to achieve a linear end-effector motion trajectory when
moving between workspace positions. Because the path-planner uses ran-
domly generated motion paths, if we did not place such a constraint on the
search, the movement paths of repeated actions that move the end effector
from position (x1, y1, z1) to position (x2, y2, z2) would be arbitrary.

6.1.1.2 Perception: Monocular and Stereo Camera Systems

Two Point Gray Research cameras- the Flea R© monocular camera (640x480 @
60FPS or 1024x768 @ 30FPS) and the Bumblebee R© 2 grayscale stereo camera
(640x480 at 48FPS or 1024x768 at 20FPS) were used to gather intensity images,
3-D point clouds from range data and video. The camera systems were operated

3Golem was developed by Marek Kopicki at the University of Birmingham who kindly
provided us with a copy for our research.

98 Robot and Vision Systems

using a similar interface to that of the robotic arm. A Java client was called from
MATLAB to interface with a CORBA server that implemented the low-level
camera functionality. During experiments, after an action command was issued
to the robotic arm, the camera system started recording images and continued
recording until movement in the scene has ceased. These images were then used
to create a video, which was passed to a compression module, after which it could
be gathered from a web server.

(a) Top-down view of arm holding a pushing
tool.

(b) Side view of arm holding a pushing tool.

(c) Side view of two-camera setup. (d) Back view of two-camera setup.

Figure 6.2: Learning environment for the Katana/Camera setup.

6.1.1.3 Learning Environment

In the learning environment for this setup, the Katana arm was mounted on a flat
table with a wooden laminate surface, whilst the camera systems were mounted
on tripods in fixed positions facing the work surface. Lighting conditions were

6.1 Experimental Platforms 99

(a) (b) (c) (d)

Figure 6.3: Sample rolling versus non-rolling objects as seen by the Flea colour
camera: (a) blue toy cube (non-rolling) (b) ladybird rattle (rolling) (c) cola can
(rolling) (d) mobile phone (non-rolling).

controlled to facilitate various techniques for segmenting the object from the
scene, including background subtraction and graph-cut segmentation. Household
objects (See Figures 6.3 and 7.15 for examples) were placed on the work surface
so that the arm may interact with them. Figure 6.2 shows various views of the
learning environment.

6.1.2 KUKA-LWR/Kinect Setup

In the second setup, as depicted in Figure 6.4, a 7-DOF KUKA-LWR R© arm as
well as a 3-fingered BarrettHand R© were used for object push interactions, while
a Microsoft Kinect R© RGB-D sensor was used to gather 3-D point clouds of the
scene. The Point Cloud Library (PCL)4 was used to extract and manipulate
object clouds from the resulting data.

6.1.2.1 Learning Environment

As can be seen in Figure 6.4, the environment for this setup was rather similar to
that of the Katana/Camera setup, apart from the inclusion of small hubs around
the edges of the table to prevent the ball objects from rolling off of the table.

4 http://pointclouds.org/

http://pointclouds.org/

100 Robot and Vision Systems

Figure 6.4: A second experimental setup and learning environment using a
KUKA-LWR robot arm, a BarrettHand, and a Microsoft Kinect RGB-D sen-
sor.

6.2 Visual Feature Extraction

Recall from the affordance learning formalisation discussed in Chapters 2 and 3,
we aim to represent object affordances as tuples of the form < O,A,E > where O,
A and E are feature vectors describing the object features, the action performed
on the object and the resultant effects respectively. In our particular affordance
learning scenarios we used visual features derived from the camera outputs as
a basis for vectors O and E. With regard to the O vectors, we required visual
features that described the intrinsic properties of objects, such as object shape,
and with the E vectors, we required visual features that captured the effects
that objects undergo when actions are performed on them, such as motion when
pushed. Different sets of features were extracted for our experiments in various
different ways depending on the setup.

For instance, in the case of the Katana/Camera setup, in order to simplify
the process by which these sets of features were gathered, we extracted them in
two separate stages. When objects were placed in the scene, images were taken
both from the Bumblebee stereo camera and the Flea monocular camera prior
to interaction. The Bumblebee stereo camera produces both regular intensity
images and range data (3-D point clouds) accompanied a point correspondence

6.2 Visual Feature Extraction 101

mapping between them. Once such data was acquired, objects could be segmented
from the scene and object features could be extracted as depicted in the feature
extraction pipeline described in Section 6.2.1 and depicted in Figure 6.5. When
actions were performed on the objects using the arm, video was recorded of the
objects in motion and processed for effect features. This process is described in
Section 6.2.2.

In the following, referring to each of the experimental setups as necessary we
discuss how object features were extracted in Section 6.2.1 and how effect features
were extracted in Section 6.2.2.

6.2.1 Object Features

Intensity Image Object Image

Range Data Object Range Data

E.g. Surface
Modeling

Object
Property
Features

E.g. 2D
Silhouette
Shape
Features

Correspondences
Multi-Modal

Object
Segmentation

Figure 6.5: The object feature extraction pipeline in the Katana/Camera setup.

With regard to the object features, for the purposes of our particular affor-
dance learning scenario, we were primarily interested in extracting features that
describe the global shape of an object as they were likely to be more relevant for
determining how the object would behave when pushed than the types of local
invariant visual features used predominantly in object recognition scenarios. How-
ever, in theory, any types of features that describe properties of the objects under
consideration could be used here, as evidenced by the diversity of approaches

102 Robot and Vision Systems

taken in the literature. For example, Fritz [59, 60] used SIFT features to distin-
guish between liftable and non-liftable objects. Object shape features from 3-D
vision have been used in prior work on push affordance learning [90, 144, 187, 188],
and they form one of the mainstays of our approach here.

In order to extract such global shape features, we required a means of seg-
menting the objects, both from the image data and from the 3-D point clouds
derived from the range data produced by the stereo cameras.

6.2.1.1 Object Detection and Segmentation

Fit plane to
table surface

using RANSAC

Subtract
surface

Meanshift
clustering &

outlier removal

Graph cut
segmentation

Correspondences

Final cleanup &

Graph cut seeding.

Segmented range data.

Segmented object intensity
image & range data.

Range data.

Figure 6.6: The multi-modal object segmentation pipeline in the Katana/Camera
setup.

We developed an algorithm for reliably segmenting the objects multi-modally
from both regular images and their corresponding 3-D point clouds. The main
idea behind the algorithm leverages a notable feature of our affordance learning
environment; that is that the objects always lie on a flat table surface. This fact

6.2 Visual Feature Extraction 103

Algorithm 6 Multi-Modal Object Segmentation
Input: Image XI ⊂ R1 or XI ⊂ R3, Range data XR ⊂ R3, Correspondences

XC ⊆ XI ×XR.
Output: Foreground image YF I ⊂ XI, Foreground range data YF R ⊂ XR, Corre-

spondences YF C ⊆ YF I ×YF R, Background image YBI, Background range data
YBR, Correspondences YBC ⊆ YBI × YBR.

1: Fit plane P to table surface in XR using RANSAC: YBR = ransac(XR, P),
leaving background planar points YBR.

2: Subtract background planar points from XR: XF1R = XR/YBR.
3: Perform mean-shift clustering on XF1R using a large bandwidth θ to find the

largest cluster, discarding outliers: XF2R = meanshift(XF1R, θ).
4: Letting SF I = {xi | (xi, xr) ∈ (XI ×XF2R) ∩XC ∀i} be foreground seed points

and SBI = {xi | (xi, xr) ∈ (XI ×XBR) ∩XC ∀i} be background seed points,
we perform a graph-cut segmentation of the image XI: (YF I, YBI) =
graphcut(XI, SF I, SBI).

5: Erode the foreground image YF I by some small amount α: MF I =
erode(YF I, α). Use the result to get a final clean segmentation of the fore-
ground range data: YF R = {xr | (MF I ×XF2R) ∩XC ∀i}.

6: Set YF C = (YF I × YF R) ∩XC and YBC = (YBI × YBR) ∩XC.

can be exploited since in the 3-D point cloud produced by range data images
of the objects lying on the table surface, the data points corresponding to the
objects tend to be well separated from the background table surface data points.
Moreover, since the background points represent the flat surface of the table we
can relatively easily fit a plane to the 3-D data, find the table surface points, and
subtract those points from the data to find the object points. Since we also have
correspondences between the 3-D points and the 2-D image data, we may then
also use the 3-D segmentation of the object to aid in segmenting the object in the
2-D image. This idea may therefore be regarded as a form of multi-modal object
segmentation, the modalities in this case being the 2-D image data and the 3-D
point cloud from the range data respectively.

The method we developed is depicted visually in Figure 6.6 and in algorithmic
form in Algorithm 6. The first step of the algorithm uses RANSAC (RANdom
SAmple Consensus) [53] to fit a plane to the 3-D point cloud to retrieve the
background table surface points. In the second step, these points are subtracted to

104 Robot and Vision Systems

reveal the object points. Often, however, the object points contain some outliers
so in the third step we perform a clustering operation to find the largest cluster
and discard the remainder. To do this, we use mean-shift clustering [31] which,
although it is a non-parametric method, requires the specification of a kernel size.
We choose a relatively large value for this in order to capture the largest cluster.
Since we have correspondences between the image points and 3-D points, we may
use this information to seed a graph-cut segmentation in the image. The image
points that correspond to the object cluster points from the 3-D segmentation
are used as foreground seeds, while the points from the plane-fitting are used as
background points. The graph-cut segmentation method we used was from [109],
which uses the min-cut/max-flow algorithms outlined in [10, 11, 87] to apply the
standard graph cut technique to segmenting multi-modal tensor valued images.

In the case of the KUKA-LWR/Kinect setup, once again the objects always
lie on a flat table surface, so we were able to make use of the DominantPlaneSeg-
mentation module from the PCL library to segment the objects from the scene
point cloud captured by the Kinect.

6.2.1.2 Visual Shape Features from Object Images

In the case of the Katana/Camera setup, visual features were extracted from
objects segmented from the grayscale scene images produced by the Bumblebee
camera. The multi-modal segmentation technique produced reasonably good in-
tensity image segmentations of objects, and these were then used to calculate the
following 9 shape features:

Oa
1 : Area; number of pixels in the object region.

Oa
2 : Convex area; number of pixels in the convex hull of the object region.

Oa
3 : Eccentricity; ratio of the distance between the foci of the ellipse that has the

same second-moments as the object region and its major axis length.

Oa
4 : Equivalent circular diameter ; diameter of a circle with the same area as the

object region.

Oa
5 : Extent; ratio of pixels in the object region to the pixels in its bounding box.

Oa
6 : Filled area; number of pixels in the filled object region.

6.2 Visual Feature Extraction 105

Figure 6.7: Examples of image and range data taken with the stereo camera in
the Katana/Camera setup for two different types of objects: a book which slides
when pushed by the robotic arm, and a cola can which rolls when pushed by
the arm. From left to right: intensity image, range data of the scene, segmented
object, segmented object range data, object range data with a fitted quadric
surface.

Oa
7 : Major axis length; length of the major axis of the ellipse that has the same

normalized second central moments as the object region.

Oa
8 : Minor axis length; length of the minor axis of the ellipse that has the same

normalized second central moments as the object region.

Oa
9 : Perimeter ; of the boundary of the object region.

6.2.1.3 3-D Shape Features from Object Point Clouds

In order to capture object surface shape properties, 3-D shape features
were extracted from segmented object point clouds derived from both the
Katana/Camera and the KUKA-LWR/Kinect experimental setups. This was
intended to aid in differentiating between rolling and non-rolling objects for ex-
ample, the subject of both Fitzpatrick’s classic affordance experiments [55–57]
and, indeed, our own experiments in Chapter 7. In both setups we took a strat-
egy of surface fitting. For instance, in the case of the Katana/Camera setup,
a quadratic surface was fitted to an object point cloud, or to a part of an ob-
ject point cloud, in order to derive curvature features from the object surface.
Given the points for an object or part of an object, we fit the following quadratic
polynomial function,

Z = aX2 + bXY + cY 2 + dX + eY + f (6.1)

106 Robot and Vision Systems

solving for the coefficients a, b, c, d, e, and f . The principal curvatures of the

surface are then given by taking eigenvalues of the matrix

a b

b c

, providing two

features which form a good description of the curvature of the surface. As well as
that, we fit planes to object or object part point clouds and used the normal to
the plane to indicate the orientation of the points, which provided two features
(we discard the z-coordinate since the point clouds were normalized with respect
to the workspace coordinate frame).

Using these four surface features, two for planar orientation and two for cur-
vature, in the Katana/Camera setup, we divided the object cloud into parts and
extracted the four features for each part. These parts consisted of the global
object cloud itself, as well as eight other parts found by dividing the object cloud
evenly along two of its axes in various ways. This yielded the following list of
features:

Ob
1...4: Global object point cloud plane/curve features.

Ob
5...8: x-axis split, left plane/curve features.

Ob
9...12: x-axis split, right plane/curve features.

Ob
13...16: y-axis split, front plane/curve features.

Ob
17...20: y-axis split, back plane/curve features.

Ob
21...24: x-y-axis split, front-left plane/curve features.

Ob
25...28: x-y-axis split, front-right plane/curve features.

Ob
29...32: x-y-axis split, back-left plane/curve features.

Ob
33...36: x-y-axis split, back-right plane/curve features.

In the case of the KUKA-LWR/Kinect setup we partitioned the object point
clouds slightly differently as depicted in Figure 6.8, this time dividing each of
the x, y and z axes evenly into two parts each and fitting planes to each of their
respective part point clouds as well as to the entire object point cloud. The part
division along the third dimension was motivated by the need to detect the addi-
tional object toppling affordance that resulted from the experiments performed

6.2 Visual Feature Extraction 107

Left Side

Right Side Front Side

Back Side

Top Side

Bottom Side

X-Axis Part Split Z-Axis Part SplitY-Axis Part Split

Overall Object Point Cloud

Figure 6.8: Dividing a 3-D point cloud of a book into parts in the KUKA-
LWR/Kinect setup. Top row: original object point cloud. Middle row: partition-
ing planes divide the point cloud evenly in each dimension to create sub-parts.
Bottom row: planes are fitted to each sub-part for feature extraction.

with this setup. This time, object part centroids as well as plane normals and
curvature features were used, resulting in seven features per part, three for part
centroids, as well as two for the plane normals and two for the curvature features
as before, resulting in the following list of features:

Oa
1 : Area; number of pixels in the object region.

Oc
1...7: Global point cloud centroid/plane/curve features.

Oc
8...14: x-split, left centroid/plane/curve features.

Oc
15...21: x-split, right centroid/plane/curve features.

Oc
22...28: y-split, front centroid/plane/curve features.

Oc
29...35: y-split, back centroid/plane/curve features.

Oc
36...42: z-split, top centroid/plane/curve features.

108 Robot and Vision Systems

Oc
43...49: z-split, bottom centroid/plane/curve features.

6.2.2 Object Effect Features

When it came to the effect features, we chose to both track the objects in motion
globally in the workspace and compare changes in object properties locally, de-
riving three main sets of features based on global motion of the object, changes
in 3-D shape, and local appearance changes of the object respectively, depending
on the platform.

6.2.2.1 Tracking Object Motion

In the Katana/Camera setup, after an arm action was performed on an object, the
resulting videos of the interaction gathered from the Flea camera were processed
for tracked object motion features. This was primarily achieved by tracking the
object in motion using a probabilistic tracker from [93]. This tracker is in essence a
colour-based particle filter, which also makes use of background subtraction using
a pre-learned background image. Background subtraction by itself was insufficient
to localise the object in our experimental setup due to changes in lighting and
the motion of the arm, but it was helpful in reducing ambiguities for the tracker.
Object shapes were approximated by elliptical regions, while their colour was
encoded using colour histograms. The dynamics of objects were modelled using
a dynamic model from [92], which allowed for tracking with a smaller number of
particles, and consequently, near real-time tracking performance.

Estimating how the appearance of the object changed locally required devel-
oping an extension to the particle filter tracker previously described. The tracker
by itself is sufficient for tracking the motion of objects, but it is slightly inaccurate
at times. For example, if an object is rolling and stops suddenly, the tracker some-
times briefly overshoots the object before returning to it a few frames later. While
this does not affect global motion tracking too significantly, it is an unacceptable
starting point if we wish to use the output of the tracker to segment an object
from frame to frame before calculating local appearance estimates. If the tracker
overshoots the object, this causes subsequent segmentation to be inaccurate, pro-
ducing major inaccuracies in appearance calculations. To avoid this, we use the
output of the tracker to define a broad window around the object in the video
frames, before using colour histogram back-projection [175] to localise the object

6.2 Visual Feature Extraction 109

within the window. This tracking refinement process is described algorithmically
in 7 and illustrated in Figures 6.11 and 6.12.

Algorithm 7 Object Tracking Refinement
Input: Sequence of images X = {X1, . . . , Xn |X i ⊂ R3 ∀i}, Object trajectory

from particle filter tracker T = {p1, . . . , pn | pi ∈ R2 ∀i}, Background model
B.

Output: Refined object trajectory T ′ = {q1, . . . , qn | qi ∈ R2 ∀i}.
1: Convert background model image to HSV colour map: B = rgb2hsv(B).
2: for i = 1, . . . , n do
3: X i = rgb2hsv(X i).
4: Crop image X i around point pi to window size θ: X i

C = crop(X i, pi, θ).
5: Crop background model B: BC = crop(B, pi, θ).
6: if i == 1 (we do not have an object model) then
7: Background subtraction: SiC = X i

C −Bi
C.

8: Given SiCj = {SiCh, SiCs, SiCv}, the HSV components of SiC, set k =
arg maxj(area(threshold(SiCj))).

9: Create mask: SiMk = threshold(SiCk).
10: Detect seperate mask objects: S = {O1, . . . , Om} = detectBlobs(SiCk).
11: Select largest object: O = arg max(area(S)).
12: Crop object to use as our object model: M =

crop(SiC, centre(O), sizeof(O)).
13: end if
14: Perform colour histogram back-projection: qiC = histBackProj(SiC,M).
15: Transform cropped coordinates to un-cropped image frame: qi =

transform(X i, X i
C, p

i, θ).
16: end for

The KUKA-LWR/Kinect setup, on the other hand, made use of the
libpcl_tracking library from the PCL, which also uses a particle filter to esti-
mate 3-D object poses using Monte Carlo sampling techniques and calculates the
likelihood using combined weighted metrics for hyper-dimensional spaces includ-
ing Cartesian data, colors, and surface normals. These 3-D object models were
gathered from scene point clouds using the same dominant surface segmentation
method discussed in Section 6.2.1.1. The real-time 3-D object tracking provided
by this method is illustrated in Figure 6.10. It is optimized to perform com-

110 Robot and Vision Systems

Figure 6.9: An example of the object tracking mechanism from the
Katana/Camera setup described in Section 6.2.2.1 using images obtained by the
Flea monocular camera (cf. Section 6.1.1). The images in the first row show a
progression of frames tracking a soda can being pushed by the arm. The outer
rectangle is a likelihood window around the object obtained using the particle fil-
ter tracker. The inner rectangle is the result of using histogram back-projection
within that window to localise the object. The second row of close-up images
shows how the appearance of the object within the inner rectangle changes dur-
ing the course of object motion.

putations in real-time, by employing multiple CPU core optimization, adaptive
particle filtering (KLD sampling) and other modern techniques.

6.2.2.2 Detecting Arm-Object Contact

An important consideration in the calculation of the features we describe below
is how to determine when the arm has made contact with the object. This task
would be greatly simplified by the integration of haptic sensors to the scenario, but
since we did not make use of such sensors, a visual solution had to be employed.
We used a technique very similar to that described by Fitzpatrick [57] in his
Ph.D. thesis, which is based on the idea of detecting an explosion of movement
between frames. In our case, background subtraction and thresholding we identify
the largest connected component in the thresholded image. We assume that
the largest connected component is the mask of the segmented object, and by
recording its mean area over a progression of frames and comparing it to the area
of the largest connected component in the current frame, if there is a significant
difference in these values, then it is likely that the object has been disturbed by
the arm. This is visualized in Figures 6.11 and 6.12.

6.2 Visual Feature Extraction 111

Figure 6.10: PCL-based particle filter tracking from KUKA-LWR/Kinect setup.
Blue points: model of the ball object derived from segmenting the ball from the
table prior to interaction. Orange points: particle filter points used to track the
object during interaction and update the model.

6.2.2.3 Object Motion Features

Using the output of the visually-based particle filter tracker of the
Katana/Camera setup, the following 9 features were calculated:

Ea
1...2: Total distance travelled in x & y dimensions,

Ea
3 : Total Euclidean distance travelled,

Ea
4...5: Mean velocity in x & y dimensions,

Ea
6...7: Velocity variance in x & y dimensions,

Ea
8...9: Final x & y positions,

In the case of the KUKA-LWR/Kinect setup, since the 3-D point cloud-based
particle filter tracker from the PCL library allowed for tracking objects in three
dimensions, we were able to extend some of 2-D features used on the previous
setup into the z dimension. Some alternative features were also designed in
addition to suit the experiments performed with this platform. The 17 resulting
features are listed as follows:

112 Robot and Vision Systems

8

9

10

Figure 6.11: Object tracking refinement in the Katana/Camera setup using his-
togram back-projection for the rolling cola can object. First row: original image
sequence. Second row: cropped windows around particle filter tracker trajectory
points. Third row: background subtraction. Fourth row: labelled components
after background subtraction and thresholding. Fifth row: back-projected im-
ages. Sixth row: convolved back-projected images. Seventh row: localised image
of object after tracking refinement. Eight row: area of of largest component in
fourth row (blue line) versus mean area of largest component.

Eb
1...3: Total distance travelled in x, y & z dimensions,

Eb
4: Total Euclidean distance travelled in R2,

6.2 Visual Feature Extraction 113

8

9

10

8

9

10

Figure 6.12: Object tracking refinement in the Katana/Camera setup using his-
togram back-projection for the non-rolling book object. First row: original image
sequence. Second row: cropped windows around particle filter tracker trajectory
points. Third row: background subtraction. Fourth row: labelled components
after background subtraction and thresholding. Fifth row: back-projected im-
ages. Sixth row: convolved back-projected images. Seventh row: localised image
of object after tracking refinement. Eight row: area of of largest component in
fourth row (blue line) versus mean area of largest component.

Eb
5: Total Euclidean distance travelled in R3,

Eb
6...8: Final x, y & z positions.

114 Robot and Vision Systems

Eb
9: Time in motion.

Eb
10: Trajectory extent volume.

Eb
11: Trajectory convex hull volume.

Eb
12: Trajectory convex hull surface area.

Eb
13: Summed trajectory point distance from start position.

Eb
14: Mean trajectory point distance from start position.

Eb
15: Trajectory point distance variance from start position.

Eb
16: Eb

14, weighted to favour points near end of trajectory.

Eb
17: Eb

15, weighted to favour points near end of trajectory.

6.2.2.4 Object Shape Change Features

In the case of the experiments performed using the KUKA-LWR/Kinect setup,
since we intended to study toppling affordances, we required features capable of
detecting the types of changes in object shape in three dimensions that would
result from such affordances, thus, using a similar methodology to that of Ugur et
al. [188], we derived a set of 3-D shape change features by taking the difference be-
tween the Oc

1...49 3-D shape features from Section 6.2.1.3 recorded from the object
pre-interaction and the same features recorded from the object post-interaction.
These new features, Ec

1...49, were therefore derived as follows:

Ec
1...49: Oc

i (te) − Oc
i (ts) for i = 1 . . . 49 where Oc

i (ts) and Oc
i (te) are the object

shape features Oc
i extracted from the object at time ts, when it is at its start

position, and at time te, when at its end position respectively.

6.2.2.5 Object Appearance Change Features

In the experiments involving the Katana/Camera setup, in order to estimate how
the appearance of the objects change during, motion (cf. Figure 6.9), and thus
potentially capture some of the differences in visual effects between rolling and
non-rolling objects, We derive 3 output modality features from this procedure:
average colour histogram difference, average edge histogram difference, and the

6.3 Chapter Summary 115

product of these two values. we calculated the average difference of both colour
and edge histograms between video frames of the objects, the aim being to detect
both motion blur and the texture changes characteristic of many rotating objects.
Histogram difference averages were then calculated from the start of object motion
until the end. See Figure 6.9 for sample frames from an interaction with an object
that illustrates this technique at work.

We derived three effect features from this procedure:

Ed
1 : Average colour histogram difference.

Ed
2 : Average edge histogram difference.

Ed
3 : Product of Ed

1 and Ed
2 .

6.3 Chapter Summary

In this chapter we described the development of the main robotic system that
we initially used to address the object affordance learning problem, as well as a
secondary system that was used subsequently. In the first section we discussed
the hardware that was used in these systems, including robotic arms and various
camera systems. We also highlighted some important considerations with respect
to the operation of such robotic arms within the context of object pushing exper-
iments, as well as for the working environments of the systems for the purposes
of performing experiments. In the second section we addressed the computer vi-
sion methods we used for feature extraction from the camera images in two main
categories: object features extracted from static images of objects and 3-D point
cloud data, and effect features extracted from videos of objects in motion as well
as post-interaction point clouds. We presented two different algorithms in each of
these areas that built on existing computer vision methods to aid in the feature
extraction process. The first algorithm used information in the 3-D point cloud
data to seed a graph cut segmentation in image data in order to segment objects
from background before extracting shape features. The second algorithm used
colour histogram backprojection to refine the output of a particle filter tracker
such that local object appearance change features could be extracted.

116 Robot and Vision Systems

Chapter 7

Experimental Results

The experimental results presented in this chapter are broadly broken down into
four sections. We wanted to evaluate the feature relevance determination algo-
rithms from Chapter 5 in isolation in a fully-supervised setting since, if they were
proven not to be useful in such a setting where the class labels are present dur-
ing training, they were unlikely to be of any additional use in a self-supervised
setting where the class labels are unknown. Thus, in Section 7.1 we present the
results of evaluating the feature relevance determination algorithms on both syn-
thetically generated labelled data as well as on some popular real-world datasets.
In Section 7.2, we test the self-supervised learner in a controlled setting using
synthetic cross-modal data, examining various combinations of the base learn-
ing algorithms, prototype culling and feature relevance algorithms. Finally, in
Sections 7.3 and 7.4, we describe object push affordance learning experiments
performed using the robotic setups described in Chapter 6 and demonstrate how
the self-supervised learner may be successfully applied to the resulting data.

7.1 Experiments on Feature Relevance Determination Al-
gorithms

The proposed feature relevance determination algorithms from Chapter 5 were
evaluated over simulated data and real-world datasets from the UCI repository
[58]. In the following, the datasets are described in more detail in Section 7.1.1,
our evaluation procedure is discussed in Section 7.1.2, algorithm setup is provided
in Section 7.1.3, and experimental results are presented in Section 7.1.4.

117

118 Experimental Results

Table 7.1: An attribute list for the datasets in Section 7.1.1.

Dataset # Features # Samples # Classes

Simulated 10 90 3
Iris 4 150 3
Ionosphere 34 351 2
Wine 13 178 3
Soybean 35 47 4
WBC 30 569 2

7.1.1 Data

Two simulated datasets were proposed in [8, 69] to test the RLVQ and GRLVQ
algorithms, the first of which was replicated for the experiments here. The data
is composed of three classes, each separated into two clusters with some small
overlap to form multi-modal class data distributions in the first two dimensions.
Eight further dimensions are generated from the first two dimensions as follows:
assuming (x1, x2) is one data point, x3 = x1 + η1, . . . , x6 = x1 + η4 is chosen
where ηi comprises normally-distributed noise with variances 0.05, 0.1, 0.2, and 0.5
respectively. The remaining x7, . . . , x10 components contain pure noise uniformly
distributed in [−0.5, 0.5] and [−0.2, 0.2]. This dataset is multi-modal for each class
in the two relevant dimensions and thus provides a good test for the potential
difference between the two proposed algorithms.

Five different datasets from the UCI repository [58] were tested: Fisher’s Iris
dataset, the ionosphere dataset, the wine dataset, the soybean dataset (small),
and the Wisconsin breast cancer (WBC) dataset.

7.1.2 Evaluation Procedure

The primary goal of the investigation was to evaluate whether or not the newly
proposed feature relevance algorithms from Chapter 5, when applied to standard
LVQ methods such as LVQ1 and GLVQ, offer performance improvements over
those methods in their original form, as well as over other relevance determination
techniques for LVQ, such as RLVQ and GRLVQ. The results of these comparisons
are outlined in Table 7.2 and are discussed in more detail in the following. In the

7.1 Experiments on Feature Relevance Determination Algorithms 119

results, the proposed Fisher criterion score-based relevance determination algo-
rithms (cf. Sections 5.2.1 and 5.2.2) are referred to as FC1LVQ1 and FC2LVQ1
respectively when applied to LVQ1, and FC1GLVQ and FC2GLVQ when applied
to GLVQ.

A secondary consideration was to test the methods under the duress of var-
ious different conditions. GLVQ, for example is known to perform poorly if the
prototype vectors are not initialized within the data distribution [140], thus in
the evaluations discussed below, both random prototype initializations as well
as initializations where the prototypes are placed at the mean points of class
clusters were considered. Note that random prototype initialization in this case
refers to selecting random values for each prototype dimension scaled within the
data range, not random sampling of vectors from the training data. K-means
clustering was used to determine class clusters in the latter case.

We evaluate the learners by training them online over several epochs, that is,
by updating the algorithms online with each sample in the training set and then
repeating this process several times, possibly with randomized sample ordering.
Each run through the training data is referred to as an epoch. This type of train-
ing usually performed in order to simulate large datasets, or to simulate extended
training durations, or both. The performance of LVQ algorithms over short train-
ing periods, e.g. one epoch of training, is not often considered in the literature,
which tends to favour evaluations of the algorithms over several hundred train-
ing epochs to test for convergence. Training over multiple epochs implies having
access to the entire training set such that the algorithm has the opportunity
to revisit previous training data over again as often as is specified. Given that
LVQ algorithms have online training mechanisms, and that the proposed rele-
vance determination techniques were explicitly developed to also function online,
sample-by-sample without access to the rest of the training set, such short-term
training evaluations are important if the methods are to be considered useful
in real-world online settings, autonomous robotics for instance, where the entire
training set is often unavailable during training. With this in mind, we present
the following evaluations over both short and long term epoch periods.

120 Experimental Results

7.1.3 Algorithm Setup

Thus, the results in Table 7.2 are divided into four main evaluations: both one
epoch and 300 epochs of training from random initialization, and both one epoch
and 300 epochs of training from class cluster mean initialization. The 300 epoch
sessions used the relatively slow learning rates of α = 0.1 for the prototype
updates (cf. Equations (4.41), (4.44) & (4.45)) and β = 0.01 for the dimensional
relevance updates where required (cf. Equations (5.1) & (5.3)), whereas the one
epoch training sessions used the faster rates of α = 0.3 and β = 0.1. Note that
the FC1 and FC2 methods do not require the additional β learning rate. In each
of the one epoch evaluations, 20 trials of ten-fold cross validation were performed
with random data orderings in each trial, and results were averaged over test
data performance, whereas in the 300 epoch evaluations, 5 trials were performed.
We run multiple trials to account for variation in both the random prototype
initialization as well as in the data orderings. 10 prototypes were used for every
dataset and the data dimensions were scaled prior to training.

7.1.4 Results

7.1.4.1 Classification

The results in Table 7.2 show that when trained over a single epoch from ran-
dom initialization, of the algorithms tested FC2LVQ1 and FC2GLVQ offer the
best performance, in some cases offering substantial improvements over either
LVQ1 or GLVQ, while also generally beating both RLVQ and GRLVQ. Over
long-term training of 300 epochs from random initialization, the results for all
algorithms aside from GLVQ, tend to improve significantly with FC2LVQ1 and
FC2GLVQ again tending to be more competitive than their counterparts with
certain marginal exceptions. It is worth noting here the significant impact rel-
evance determination has on improving the results of GLVQ when exposed to
poor prototype initialization. When the prototypes are initialized optimally at
the class cluster mean points the results tend to improve dramatically across all
of the classifiers in short-term training, with both FC1 and FC2 relevance deter-
mination doing well over both short-term and long-term training periods, with
FC1 out-performing FC2 in some cases and vice versa. Over all the evaluations,
FC1GLVQ and FC2GLVQ trained over 300 epochs with class cluster mean ini-

7.1 Experiments on Feature Relevance Determination Algorithms 121

tialization tend to provide the best performance. It should also be noted that,
when the class distribution in the data is multi-modal, as is the case with the
simulated dataset, FC2-based methods tend to be a better choice than FC1-based
methods, as predicted.

122
Experim

entalR
esults

Table 7.2: Evaluation of various supervised feature relevance determination algorithms over a simulated dataset and five
datasets from the UCI repository. 10-fold cross validation, 10 prototypes. Best results for LVQ1 & GLVQ based algorithms
are shown in bold. Mean correct classification rates over all folds/trials are shown with errors in standard deviations.

Dataset LVQ1 RLVQ1 FC1LVQ1 FC2LVQ1 GLVQ GRLVQ FC1GLVQ FC2GLVQ

Random Initialization, one Epoch of Training, 20 Trials

Sim 53± 18% 64± 22% 54± 19% 69± 18% 37± 17% 63± 22% 51± 20% 70± 19%
Iris 90± 8% 91± 9% 93± 9% 95± 5% 63± 24% 89± 13% 83± 19% 88± 15%
Iono 81± 8% 75± 11% 85± 6% 84± 7% 66± 13% 80± 9% 82± 7% 84± 7%
Wine 93± 6% 79± 13% 92± 9% 94± 6% 52± 19% 92± 8% 85± 14% 94± 7%
Soy 89± 17% 83± 24% 89± 18% 85± 21% 34± 27% 84± 22% 83± 21% 85± 20%
WBC 92± 4% 86± 8% 93± 4% 93± 3% 71± 19% 93± 5% 90± 10% 94± 3%

Random Initialization, 300 Epochs of Training, 5 Trials

Sim 79± 14% 79± 13% 77± 16% 87± 12% 38± 17% 96± 7% 90± 12% 94± 9%
Iris 92± 7% 92± 8% 95± 5% 96± 5% 47± 24% 96± 5% 91± 16% 96± 4%
Iono 85± 7% 80± 10% 86± 8% 85± 7% 60± 16% 90± 5% 90± 6% 89± 6%
Wine 95± 5% 77± 11% 95± 5% 96± 5% 42± 18% 96± 5% 97± 4% 98± 3%
Soy 99± 6% 97± 10% 100± 4% 98± 7% 33± 26% 97± 8% 97± 7% 96± 9%
WBC 93± 3% 87± 7% 94± 3% 94± 3% 62± 20% 96± 3% 96± 3% 96± 2%

Class Cluster Mean Initialization, one Epoch of Training, 20 Trials

Sim 82± 12% 98± 5% 78± 17% 93± 8% 90± 9% 91± 9% 85± 13% 93± 8%
Iris 96± 5% 96± 5% 96± 5% 96± 5% 95± 5% 95± 5% 95± 5% 96± 5%
Iono 87± 6% 80± 10% 88± 6% 88± 6% 90± 5% 88± 6% 89± 5% 90± 5%
Wine 95± 5% 86± 11% 96± 5% 96± 5% 97± 4% 97± 5% 97± 5% 97± 5%
Soy 100± 2% 95± 10% 100± 3% 99± 5% 100± 2% 99± 4% 100± 2% 99± 5%
WBC 95± 3% 88± 7% 94± 3% 94± 3% 96± 3% 96± 3% 97± 3% 95± 3%

Class Cluster Mean Initialization, 300 Epochs of Training, 5 Trials

Sim 84± 11% 86± 16% 87± 12% 91± 10% 90± 9% 97± 6% 90± 10% 96± 8%
Iris 96± 5% 95± 6% 96± 4% 96± 5% 96± 6% 95± 5% 97± 4% 96± 4%
Iono 88± 5% 82± 9% 89± 5% 88± 5% 89± 5% 90± 5% 90± 5% 91± 5%
Wine 96± 5% 82± 12% 97± 4% 96± 5% 97± 4% 98± 3% 98± 3% 98± 3%
Soy 100± 0% 94± 11% 99± 6% 98± 7% 100± 0% 98± 8% 99± 5% 99± 6%
WBC 96± 2% 89± 5% 95± 3% 95± 3% 96± 3% 96± 3% 97± 2% 97± 2%

7.1 Experiments on Feature Relevance Determination Algorithms 123

Table 7.3: FC1GLVQ & FC2GLVQ versus SVM.

Dataset FC1GLVQ FC2GLVQ SVM

Simulated 90±10% 96±8% 78±14%
Iris 97±4% 96±4% 96±6%
Ionosphere 90±5% 91±5% 94±4%
Wine 98±3% 98±3% 98±3%
Soybean 99±5% 99±6% 100±0%
WBC 97±2% 97±2% 98±2%

A third consideration was to compare the new methods to a state-of-the-art
batch method such as the support vector machine (SVM). Batch methods, as
opposed to online methods that are trained sample-by-sample, have access to the
entire training set during training, and therefore usually provide superior results.
Table 7.3 shows the results of a comparison between FC1GLVQ, FC2GLVQ and a
multi-class SVM trained with a radial basis function (RBF) kernel [19]. For this
comparison, the results for FC1GLVQ and FC2GLVQ from the 300 epoch, class
cluster mean-initialized evaluation described previously were used, while ten-fold
cross validation over five trials was also used for the SVM, where the test data
results were averaged over the five trials and SVM parameters were optimized
using cross validation over the training data prior to training. The results show
both FC1GLVQ and FC2GLVQ either bettering or equalling SVM on four out of
the seven tested datasets and coming within 1% of its performance on two of the
remaining three datasets. Both methods also perform significantly better than
SVM on the multi-modal simulated dataset.

7.1.4.2 Feature Relevance Determination

It is difficult to evaluate the feature relevance determination itself since we do
not always have ground truth information for which features in a given dataset
are most relevant for classification, but we can analyse how feature weights are
distributed by the various algorithms and find correlations between these and
the respective classification scores. Figure 7.1 shows bar plots of feature weights
determined by each of RLVQ1, FC1LVQ1, FC2LVQ1, GRLVQ, FC1GLVQ and
FC2GLVQ for each of the datasets tested in the case of random prototype initial-

124 Experimental Results

isation and one epoch of training, the setting we are most interested in. These
bar plots were calculated by averaging the final feature weights of each learner
averaged over all folds and all trials for each dataset. In the case of the synthetic
dataset, FC1, the least effective of the feature relevance methods in terms of
classification scores, appears to not attribute sufficient relevance to the first two
features, unlike RLVQ1, the FC2-based methods, and to a lesser extent GRLVQ.
This was an expected result given the multi-modal nature of the data distribu-
tion in the synthetic dataset and the reason behind this is explained in Section
5.2.1 of Chapter 5. In the case of the Ionosphere dataset, RLVQ1 is the worst
performer of the feature relevance methods in terms of classification results and
Figure 7.1(c) indicates that this could be attributed to an over-emphasis on the
first and second features of the dataset. Similar could be said of the performance
of RLVQ1 over both the Soybean and WBC datasets, as indicated by Figures
7.1(e) and 7.1(f) respectively, where the middle range of features appear to be
accorded too much weight in each case.

7.1.5 Summary

Overall, we can conclude that feature relevance determination can have a signif-
icant impact on classification results for fully-supervised LVQ methods, particu-
larly over short-term training periods. It also appears to be helpful in compen-
sating for the problems GLVQ suffers with with poor prototype initialisation, as
is evident in the results of Table 7.2. Both of our proposed methods perform
competitively in most situations, often out-performing the competitors evaluated
in the experiments presented here. In the following section, we turn our attention
towards self-supervised learning and demonstrate how feature relevance determi-
nation can be beneficial in boosting classification results in that context.

7.1 Experiments on Feature Relevance Determination Algorithms 125

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Feature Relevances: Synthetic Dataset

Learners

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC1LVQ1

FC2LVQ1

GRLVQ

FC1GLVQ

FC2GLVQ

(a) Synthetic

0

0.1

0.2

0.3

0.4

0.5

Feature Relevances: Iris Dataset

Learners

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC1LVQ1

FC2LVQ1

GRLVQ

FC1GLVQ

FC2GLVQ

(b) Iris

0

0.1

0.2

0.3

0.4

0.5

Feature Relevances: Ionosphere Dataset

Learners

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC1LVQ1

FC2LVQ1

GRLVQ

FC1GLVQ

FC2GLVQ

(c) Ionosphere

0

0.05

0.1

0.15

0.2

Feature Relevances: Wine Dataset

Learners

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC1LVQ1

FC2LVQ1

GRLVQ

FC1GLVQ

FC2GLVQ

(d) Wine

0

0.02

0.04

0.06

0.08

0.1

0.12

Feature Relevances: Soybean Dataset

Learners

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC1LVQ1

FC2LVQ1

GRLVQ

FC1GLVQ

FC2GLVQ

(e) Soybean

0

0.02

0.04

0.06

0.08

0.1

0.12

Feature Relevances: WBC Dataset

Learners

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC1LVQ1

FC2LVQ1

GRLVQ

FC1GLVQ

FC2GLVQ

(f) WBC

Figure 7.1: Feature relevance bar plots for fully-supervised learners acting on
the synthetic dataset and the UCI datasets. Results correspond to the first row
of Table 7.2 for random initialization, one epoch of training and 20 trials of 10-
fold cross-validation. The bar plots show feature weights at the end of training
averaged over all folds and trials.

126 Experimental Results

7.2 Experiments on Self-Supervised Multi-View Learning
Algorithms

In this section, we describe experimental results for self-supervised multi-view
learning over synthetically generated multi-view datasets, or more specifically,
dual-view datasets, i.e. datasets with co-occurring data in two separate data
views. The data are described in more detail in the next sub-section, followed by
the evaluation procedure in Section 7.2.2, the experiments that were performed
in 7.2.3, and finally, the results in Section 7.2.4. In describing the results we
analyse a number of different aspects of self-supervised multi-view learning as we
have presented it in this thesis, namely, unsupervised class discovery, unsuper-
vised cross-modal discriminative learning, full-supervision versus self-supervision,
feature relevance determination in the self-supervised setting, and LVQ1-based
training versus GLVQ-based training.

7.2.1 Data

The bulk of the analysis work presented in this section on self-supervised multi-
view learning was based on dual-view synthetic data generated from three-class
ground-truth distributions. This data is described in the following Section 7.2.1.1.
In a follow-up study, we performed additional experiments using a five-class dual-
view dataset, which is described in Section 7.2.1.2.

7.2.1.1 Three-Class Synthetic Dual-View Dataset

For this synthetic dataset, two sets of 99 co-occurring data points were
generated in two separate 13-dimensional data views. The data in the
first two dimensions of the first (input) view were distributed in three
Gaussian clusters as depicted in Figure 7.2(a). To generate the remain-
ing 11 dimensions, Gaussian-distributed noise was added to the first di-
mension with progressively larger variances in each dimension as follows:
0.05, 0.145, 0.24, 0.335, 0.43, 0.525, 0.62, 0.715, 0.81, 0.905, 1.0. The data in the
first two dimensions of the second (output) view were distributed in three Gaus-
sian clusters as depicted in Figure 7.2(b). Again, to generate the remaining 11
dimensions, Gaussian-distributed noise was added to the first dimension with the

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 127

same progressively larger variances in each dimension as in the first view. The
data points were given ground-truth labels reflecting their cluster patterns as in
Figure 7.2. It should be noted here that these ground-truth labels were not pro-
vided to the self-supervised algorithms during training in the results described
below, whereas they were provided to the fully-supervised algorithms, which were
trained solely on data from the input view.

(a) First two dimensions of in-
put view.

(b) First two dimensions of
output view.

(c) First two dimensions of
each view cross-view con-
nected.

Figure 7.2: Projections from a three-class dual-view synthetic dataset. Only
the first two dimensions of each data view are shown. Each of the views con-
tain a further 11 dimensions of noise progressively distorting each of their first
dimensions.

7.2.1.2 Five-Class Synthetic Dual-View Datasets

For this synthetic data, this time, two sets of co-occurring data points
were generated in two separate 12-dimensional data views and the data in
the first two dimensions of the first (input) view were distributed in five
Gaussian clusters as depicted in Figure 7.3(a). To generate the remain-
ing 10 dimensions, Gaussian-distributed noise was added to the first di-
mension with progressively larger variances in each dimension as follows:
0.225, 0.394, 0.511, 0.606, 0.687, 0.76, 0.826, 0.888, 0.946, 1.0000 The data in the
first two dimensions of the second (output) view were distributed in five Gaussian
clusters as depicted in Figure 7.3(b) Again, to generate the remaining dimensions,
noise was added to the first dimension with the same progressively larger vari-
ances in each dimension as in the input view. In addition, rather than gathering
a single small dataset, as in the previous three-class case and re-updating our
learners with the data repeatedly over multiple epochs in order to simulate a

128 Experimental Results

larger dataset, this time, we generated two datasets for the five-class case, one
small (500 samples) and one large (50,000 samples), via repeated sampling.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) First two dimensions of in-
put view.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) First two dimensions of
output view.

(c) First two dimensions of
each view cross-view con-
nected.

Figure 7.3: Projections from a five-class dual-view synthetic dataset. Only the
first two dimensions of each data view are shown. Each of the views contain a
further 10 dimensions of noise progressively distorting each of their first dimen-
sions.

7.2.2 Evaluation Procedure

To test our self-supervised learning paradigm on the synthetic datasets described
above, we performed k-folds cross-validation with a k value of 10 for multiple
trials on various self-supervised classifiers, evaluating their performance online
at regular intervals over the training period. Given the self-supervision aspect,
the evaluation criteria, by necessity, differed from the traditional match-counting
utilized to evaluate fully-supervised classifiers. Meta-clusters of prototypes were
found in the output view and subsequently matched to the ground truth by first
matching all ground truth labelled training data to nearest-neighbour output view
prototypes, then assigning each meta-cluster the ground truth label which their
respective prototypes matched to most frequently. Then, given a test sample
consisting of an input view test vector xi and an output view test vector yi,
the input view codebook was tasked with predicting an output view meta-cluster
V j using xi as input for Algorithm 4. The output view test vector yi was then
matched to a meta-cluster V k in the output view via the nearest-neighbour rule.
If the V j meta-cluster predicted by the input view codebook matched the V k

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 129

cluster and that cluster also matched the ground truth label for the test sample,
this was deemed to be a true positive.

7.2.3 Experiments

7.2.3.1 Three-Class Synthetic Dual-View Dataset

Test runs were performed for the unsupervised multi-view discriminative learn-
ing described in Section 4.2 the self-supervised multi-view discriminative learning
described in Section, 4.3 4.3.4, alongside fully-supervised algorithms, using vari-
ous combinations of both the prototype culling described in Section 4.2.2.4 and
the feature relevance determination described in Chapter 5. It should be noted
here that prototype culling may also be applied to the fully-supervised learn-
ers in a similar way to the self-supervised learners, by recording histograms of
prototype update frequency during training. In the results figures shown below,
we denote instances of the use of prototype culling with the abbreviation PC.
With regard to feature relevance determination, we tested both fully-supervised
and self-supervised versions of RLVQ1, FC2LVQ1, GRLVQ and FC2GLVQ. In
such cases, the feature relevance weights generated by the algorithm were applied
adaptively during training. We also ran tests where FC1 feature relevance de-
termination was applied at classification time (cf. Section 5.3.2 for more details)
for all instances of both fully-supervised and self-supervised learners. We denote
such applications of feature relevance at classification time with the abbreviation
FRC.

We performed two sets of experiments on all learners using one epoch of
training and 100 epochs of training respectively. In all cases of self-supervised
learning, two phases of training were used in the input view. In the 1-epoch case,
the phase transition occurred half-way through the training, whereas in the 100-
epoch case, the phase transition occurred one tenth of the way through training
after 10 epochs. Unless otherwise stated, in the first phase, regular SOM training
was used using the update rule of Equation (4.7) with an α learning rate linearly
decreasing from 0.2 to 0 over the duration of the learning phase. In the second
phase, in the case of unsupervised multi-view discriminative learning, training
would switch to SOM with a constant learning rate of 0.2, whereas in the self-
supervised case, training would switch to one of the LVQ1-based or GLVQ-based
self-supervised update rules defined in Section 4.3.2 with a constant learning rate

130 Experimental Results

of 0.1. In the case of fully-supervised learning, the regular LVQ1 or GLVQ update
rules defined in Section 4.3.1 were used throughout both training phases with a
constant learning rate of 0.1. In all cases, SOM training was used in the output
view with a learning rate linearly decreasing from 0.2 to 0 over the total training
duration. Wherever RLVQ or GRLVQ feature relevance determination was used
during training, a constant β learning rate of 0.1 was used (cf. Sections 5.1.1 and
5.1.2). In all cases codebooks in both the input and output views consisted of 49
prototypes arranged in a 7× 7 hexagonal lattice with a sheet-shaped topology.

In the results described below we use a particular style of notation to distin-
guish between different supervised and self-supervised classifiers. For example,
the notation (A → B) ⇔ C depicts a bi-modal self-supervised learner where
the double-headed arrow ⇔ indicates cross-view connectivity between two data
views where, in the input view, the single-headed arrow → indicates a learning
phase transition between algorithms A and B, and in the output view, algo-
rithm C presides over the entire learning period. A fully-supervised learner is
denoted either simply by A, A → B or similar, where the lack of a cross-view
connection ⇔ assumes a corresponding lack of self-supervision. Thus, for exam-
ple, (SOM→ LVQ1)⇔ SOM denotes unsupervised SOM training (i.e. Equation
(4.7)) followed by self-supervised LVQ1 training (i.e. Equation (4.48)) in the input
view, with unsupervised SOM training in the output view throughout the train-
ing period, whereas LVQ1 by itself would denote fully-supervised LVQ1 training
(i.e. Equation (4.41)). Learning phases are explained in more detail in Section
4.3.4 of Chapter 4.

7.2.3.2 Five-Class Synthetic Dual-View Datasets Follow-up Study

In the follow-up study using the five-class datasets, our self-supervised learning
vector quantization algorithm (SOM → LVQ1) ⇔ SOM (abbreviated to SS-
LVQ in this follow-up study) was compared to the self-supervised self-organizing
map (SOM → SOM) ⇔ SOM (abbreviated to SSSOM), as well as variations
of both employing feature relevance determination at classification time (SSLVQ
(FRC) and SSSOM (FRC)) alongside the supervised algorithms GLVQ, GRLVQ,
FC1GLVQ, and, the previously untested supervised relevance neural gas (SRNG)
[70], which itself also provides feature relevance estimates. Codebooks in each
data view consisted of 49 prototypes arranged in a 7× 7 hexagonal lattice with a
sheet-shaped topology [86]. In contrast to the previous experiment, this time, in

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 131

the case of the large dataset of 50,000 samples constant learning rates of αWt = 0.1,
αVt = 0.1, were used for the prototype update of Equation (4.7) in codebooks W
and V respectively in the unsupervised learning phase, and α = 0.1 was used
for the prototype update of Equation (4.47) in the self-supervised learning phase.
The training phase shift from unsupervised to self-supervised took place one tenth
of the way through training (after 4,500 samples in 10-fold CV). In the case of
the small dataset of 500 samples constant learning rates of αWt = 0.2, αVt = 0.2,
were used for the prototype update of Equation (4.7) in codebooks W and V

respectively in the unsupervised learning phase, and α = 0.2 was used for the
prototype update of Equation (4.47) in the self-supervised learning phase. In this
case, the training phase shift from unsupervised to self-supervised took place one
fifth of the way through training (after 90 samples in 10-fold CV).

7.2.4 Results: Three-Class Synthetic Dataset

The results presented here are broken into a number of different sub-sections
where we we highlight various different properties of our self-supervised learn-
ing framework. First of all we check whether or not class clusters are correctly
formed in the output view by unsupervised prototype clustering, then we analyse
the unsupervised multi-view discriminative learning of Section 4.2. We follow
that by comparing fully-supervised learning with self-supervised learning in Sec-
tion 7.2.4.5. Later in Section 7.2.4.4 we take a closer look at feature relevance
determination in the self-supervised setting, before finally comparing LVQ1-based
self-supervision to GLVQ-based self-supervision in Section 7.2.4.5.

7.2.4.1 Unsupervised Class Discovery

An important consideration in evaluating whether or not our framework is capable
of self-supervised multi-view learning is to examine if it is capable of successfully
finding class clusters in the output view, without which self-supervised discrim-
inative learning in the input view would not be possible. Recall that this is
achieved by meta-clustering prototypes in the output view at classification time
using k-means clustering (cf. Section 4.2.2.1). But how quickly do the prototypes
position themselves such that this meta-clustering may happen successfully? Fig-
ure 7.4 answers this question by showing the rate at which ground truth labelled
output view test samples fall within output view clusters with matching ground

132 Experimental Results

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
lu

st
er

 to
 G

ro
un

d
T

ru
th

 C
la

ss
 M

at
ch

 A
cc

ur
ac

y
%

Self−Supervised SOM−based Online Class Discovery

SOM <=> SOM

SOM <=> SOM with PC

SOM <=> SOM with FRC

SOM <=> SOM with PC and FRC

Figure 7.4: Online class discovery results for various unsupervised SOM-based
multi-view learners.

labels (cf. Section 7.2.2) over time. As can be seen from the figure, optimal per-
formance is achieved in the 2-epoch case just over a quarter of the way through
the training procedure meaning that, after that point in training, cross-view pre-
diction from input view test samples should at least have the opportunity to reach
optimal ground truth prediction rates. In the next section, we examine whether
or not this is achieved by unsupervised multi-view discriminative learning.

7.2.4.2 Unsupervised Cross-Modal Discriminative Learning

In this section we take a look at relatively simple unsupervised multi-view learning
comparisons where the multi-view learners lack an LVQ-based self-supervised
discriminative training component. Figure 7.5 shows online classification results
for training SOM ⇔ SOM and (SOM → SOM) ⇔ SOM unsupervised multi-
view learners where, in the former case SOM training proceeds with constant α
learning rates in both data views (α = 0.1 in the input view, α = 0.2 in the
output view), whereas in the latter case, linearly decreasing α learning rates (0.2
in both cases) are employed in each view before transitioning to a constant α of
0.1 in the input view at a given point during training. Each of these learning
templates were tested in their original form, as well as with prototype culling at
classification (PC) (cf. Section 4.2.2.4), with feature relevance determination at
classification (FRC) (FC1 from 5.2.1), and with a combination of both PC and
FRC. Each of these combinations were evaluated over 10 trials of 10-fold cross
validation as described above in Section 7.2.2 using random prototype weight

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 133

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised SOM Online Classification

SOM <=> SOM

SOM <=> SOM with PC

SOM <=> SOM with FRC

SOM <=> SOM with PC and FRC

(a) SOM ⇔ SOM, 2 epochs.

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised SOM−>SOM Online Classification

(SOM −> SOM) <=> SOM

(SOM −> SOM) <=> SOM with PC

(SOM −> SOM) <=> SOM with FRC

(SOM −> SOM) <=> SOM with PC and FRC

(b) (SOM → SOM) ⇔ SOM, 2 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised SOM Online Classification

SOM <=> SOM

SOM <=> SOM with PC

SOM <=> SOM with FRC

SOM <=> SOM with PC and FRC

(c) SOM ⇔ SOM, 100 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised SOM−>SOM Online Classification

(SOM −> SOM) <=> SOM

(SOM −> SOM) <=> SOM with PC

(SOM −> SOM) <=> SOM with FRC

(SOM −> SOM) <=> SOM with PC and FRC

(d) (SOM → SOM) ⇔ SOM, 100 epochs.

Figure 7.5: Online classification results for various unsupervised multi-view
SOM-based learners. The learners in the left column used SOM training with
constant α learning rates in both data views, whereas the learners in the right
hand column used linearly decreasing α learning rates in each view before transi-
tioning to a constant α learning rate in the input view at a point during training
indicated by the vertical dashed line in the figures. In each figure, learners with
various different combinations of prototype culling (PC) and feature relevance
determination at classification (FRC) are compared.

initialization over both a short-term training period of 2 epochs and a long-term
training period of 100 epochs.

The most striking result from these initial tests is that both prototype culling
and feature relevance determination appear to have a significant impact on the
performance of the underlying learners. Prototype culling by itself does not ap-

134 Experimental Results

pear to enhance results to any great extent, and over longer training periods can
even prove to be mildly detrimental (cf. Figures 7.5(c) and 7.5(d)), yet when com-
bined with feature relevance determination, which is clearly effective in its own
right, the pair offer quite a noticeable improvement. With regard to to feature
relevance determination, the fact that SOM training employs a neighbourhood
function that updates many prototypes at each training step is likely to aid FC1
(our first proposed feature relevance algorithm from Section 5.2.1) performance.
This is because FC1 takes all codebook prototypes into account when calculat-
ing feature relevance. As we shall see later, FC1 can struggle with LVQ-based
learning where prototypes are updated one at a time, thus ensuring an increased
likelihood of the presence of redundant or harmful prototypes in the codebook.
The prototype culling technique helps to guard against this possibility which is
why the two techniques work well in unison.

7.2.4.3 Full-Supervision Versus Self-Supervision

In this section we examine and compare both fully-supervised and self-supervised
LVQ-based learners of various varieties. Figure 7.6 juxtaposes results for fully-
supervised LVQ1 with those for self-supervised (SOM → LVQ1) ⇔ SOM as
well as results for fully-supervised GLVQ with those for self-supervised (SOM→
LVQ1) ⇔ SOM in both 2-epoch and 100-epoch runs. Some important effects
are discernible from these graphs, the most surprising of which being that self-
supervised learning appears to out-perform fully-supervised learning in all but
one of them. This was an unanticipated result, but nevertheless belies a logical
explanation. In the fully-supervised case, the codebook prototypes are labelled
arbitrarily in advance of training, whereas in the self-supervised case, the proto-
types in the input view are dynamically labelled at classification time via the use
of multi-view information as summarized in Algorithm 4. In effect, this means
that it takes more updates and therefore more time for the fully-supervised learn-
ers to appropriately adjust the positions of the pre-labelled prototypes to more
accurately represent the decision borders. The self-supervised learners, on the
other hand, can bypass the adjustment of prototype positions in favour of di-
rectly labelling the codebook prototypes with the most appropriate labels based
on their current positions and the cross-view perspective of a guiding data view.
This problem for the fully-supervised learners is exacerbated by the fact that
we randomly initialized the prototype weights in these experiments. It would,

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 135

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised LVQ1−based Online Classification

LVQ1

LVQ1 with PC

LVQ1 with FRC

LVQ1 with PC and FRC

(SOM −> LVQ1) <=> SOM

(SOM −> LVQ1) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(a) LVQ1-based, 2 epochs.

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised GLVQ−based Online Class Prediction

GLVQ

GLVQ with PC

GLVQ with FRC

GLVQ with PC and FRC

(SOM −> GLVQ) <=> SOM

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(b) GLVQ-based, 2 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised LVQ1−based Online Classification

LVQ1

LVQ1 with PC

LVQ1 with FRC

LVQ1 with PC and FRC

(SOM −> LVQ1) <=> SOM

(SOM −> LVQ1) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(c) LVQ1-based, 100 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised GLVQ−based Online Class Prediction

GLVQ

GLVQ with PC

GLVQ with FRC

GLVQ with PC and FRC

(SOM −> GLVQ) <=> SOM

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(d) GLVQ-based, 100 epochs.

Figure 7.6: Fully-supervised versus self-supervised LVQ1-based and GLVQ-based
learners. LVQ1-based learners are shown in left column, GLVQ-based learners are
shown in the right column, and each row shows training for two and 100 epochs
respectively. The vertical dashed lines in each figure indicate learning phase
shifts in the input data view from unsupervised SOM training to self-supervised
LVQ-based training.

of course, be possible to initialize the prototypes more appropriately based on
prior knowledge, i.e. by analysing the training set in advance of training, but this
would go against the online learning principles we hoped to adhere to as outlined
in Chapter 3.

Figures 7.7 and 7.8 show results for using base algorithms that apply feature
relevance determination during training; RLVQ1 and GRLVQ-based in the first
figure, and FC2LVQ1 and FC2GLVQ-based in the second. These experiments

136 Experimental Results

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised RLVQ1−based Online Classification

RLVQ1

RLVQ1 with PC

RLVQ1 with FRC

RLVQ1 with PC and FRC

(SOM −> RLVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(a) RLVQ1-based, 2 epochs.

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised GRLVQ−based Online Class Prediction

GRLVQ

GRLVQ with PC

GRLVQ with FRC

GRLVQ with PC and FRC

(SOM −> GRLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(b) GRLVQ-based, 2 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised RLVQ1−based Online Classification

RLVQ1

RLVQ1 with PC

RLVQ1 with FRC

RLVQ1 with PC and FRC

(SOM −> RLVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(c) RLVQ1-based, 100 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised GRLVQ−based Online Class Prediction

GRLVQ

GRLVQ with PC

GRLVQ with FRC

GRLVQ with PC and FRC

(SOM −> GRLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(d) GRLVQ-based, 100 epochs.

Figure 7.7: Fully-supervised versus self-supervised RLVQ1-based and GRLVQ-
based learners. RLVQ1-based learners are shown in left column, GRLVQ-based
learners are shown in the right column, and each row shows training for two and
100 epochs respectively. Again, the vertical dashed lines in each figure indicate a
learning phase shift in the input view.

were run concurrently on the same data as in the previous ones over 2 epochs
and 100 epochs on randomly initialized codebook prototypes. We shall return to
the issue of using feature relevance determination during training in more detail
momentarily in the following section, but for now we can identify some inter-
esting features of these new results as compared to the results shown in Figures
7.5 and 7.6 within the context of comparing full-supervision to self-supervision.
It is evident that when feature relevance determination is added into the mix
for adaptive feature weighting during training that it helps the fully-supervised
GLVQ-based methods to avoid the problems they would otherwise suffer with

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 137

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised FC2LVQ1−based Online Class Prediction

FC2LVQ1

FC2LVQ1 with PC

FC2LVQ1 with FRC

FC2LVQ1 with PC and FRC

(SOM −> FC2LVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(a) FC2LVQ1-based, 2 epochs.

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised FC2GLVQ−based Online Class Prediction

FC2GLVQ

FC2GLVQ with PC

FC2GLVQ with FRC

FC2GLVQ with PC and FRC

(SOM −> FC2GLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(b) FC2GLVQ-based, 2 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised FC2LVQ1−based Online Class Prediction

FC2LVQ1

FC2LVQ1 with PC

FC2LVQ1 with FRC

FC2LVQ1 with PC and FRC

(SOM −> FC2LVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(c) FC2LVQ1-based, 100 epochs.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised FC2GLVQ−based Online Class Prediction

FC2GLVQ

FC2GLVQ with PC

FC2GLVQ with FRC

FC2GLVQ with PC and FRC

(SOM −> FC2GLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(d) FC2GLVQ-based, 100 epochs.

Figure 7.8: Fully-supervised versus self-supervised FC2LVQ1-based and
FC2GLVQ-based learners. FC2LVQ1-based learners are shown in left column,
FC2GLVQ-based learners are shown in the right column, and each row shows
training for two and 100 epochs respectively. Again, the vertical dashed lines in
each figure indicate a learning phase shift in the input view.

poor prototype initialisation, at least over long-term training periods. This can
be seen in Figure 7.7(d) where GRLVQ with prototype culling outperforms the
self-supervised methods over 100 epochs and in Figure 7.8(d), where the same
is true of FC2GLVQ, FC2GLVQ with PC, and FC2GLVQ with PC and FRC
respectively. Although fully-supervised LVQ1-based methods are less vulnerable
to this problem, it is clear that when aided by feature relevance determination
they do substantially better, particularly when FC2 is employed, allowing them
to generally out-perform the self-supervised methods over long training periods,
as shown in Figure 7.8(c).

138 Experimental Results

0

0.05

0.1

0.15

0.2

0.25

Synthetic Cross−Modal Dataset

Fully−Supervised, Feature Relevance from Training

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC2LVQ1

GRLVQ

FC2GLVQ

(a) Fully-supervised, feature relevance during
training.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Synthetic Cross−Modal Dataset

Fully−Supervised, Feature Relevance at Classification

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC2LVQ1

GRLVQ

FC2GLVQ

(b) Fully-supervised, feature relevance at clas-
sification.

0

0.05

0.1

0.15

0.2

Synthetic Cross−Modal Dataset

Self−Supervised, Feature Relevance from Training

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC2LVQ1

GRLVQ

FC2GLVQ

(c) Self-supervised, feature relevance during
training.

0

0.05

0.1

0.15

0.2

0.25

Synthetic Cross−Modal Dataset

Self−Supervised, Feature Relevance at Classification

F
ea

tu
re

 R
el

ev
an

ce

RLVQ1

FC2LVQ1

GRLVQ

FC2GLVQ

(d) Self-supervised, feature relevance at classi-
fication.

Figure 7.9: Feature relevance bar plots for both fully-supervised and self-
supervised learners acting on the synthetic multi-view dataset. The bar plots
show feature weights at the end of training averaged over all folds and trials for
2 epochs of training.

7.2.4.4 Feature Relevance Determination in the Self-Supervised Set-
ting

All of the figures mentioned so far also show different combinations of the applica-
tion of prototype culling at classification time and feature relevance determination
at classification time in the guise of FC1 from Chapter 5 as discussed in the algo-
rithm setup of Section 7.2.3. Figure 7.9 shows separate feature weight bar plots
for the fully-supervised learners using feature relevance both during training, and
at classification time, alongside the same for the self-supervised learners. It is

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 139

clear from the plots that GRLVQ-based methods do not manage to effectively
discriminate the most relevant features, at least not quickly enough over such a
short training period. Self-supervised GRLVQ also does not appear to be aided
by the dynamic labelling of self-supervision, whereas self-supervised FC2-based
methods appear to work well by comparison.

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification Vanilla Comparison

(SOM −> SOM) <=> SOM

(SOM −> LVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM

(SOM −> GLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM

(a) Normal.

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC Comparison

(SOM −> SOM) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with PC

(b) With prototype culling (PC).

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification FRC Comparison

(SOM −> SOM) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with FRC

(c) With feature relevance determination at
classification time (FRC).

0 18 36 54 72 90 108 126 144 162 180
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC & FRC Comparison

(SOM −> SOM) <=> SOM with PC and FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(d) With prototype culling and feature rele-
vance determination at classification time (PC
and FRC).

Figure 7.10: Comparison of multiple self-supervised learners for two epochs of
training.

Figures 7.10 and 7.11 show comparisons between all of the self-supervised
learners separated into the following four groups: normal, with prototype culling,
with feature relevance determination at classification time, and with both pro-
totype culling and feature relevance determination at classification time. From
these figures, it becomes evident that the use of FC1 at classification time sta-

140 Experimental Results

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification Vanilla Comparison

(SOM −> SOM) <=> SOM

(SOM −> LVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM

(SOM −> GLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM

(a) Normal.

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC Comparison

(SOM −> SOM) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with PC

(b) With prototype culling (PC).

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification FRC Comparison

(SOM −> SOM) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with FRC

(c) With feature relevance determination at
classification time (FRC).

0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC & FRC Comparison

(SOM −> SOM) <=> SOM with PC and FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(d) With prototype culling and feature rele-
vance determination at classification time (PC
and FRC).

Figure 7.11: Comparison of multiple self-supervised learners for 100 epochs of
training.

bilizes performance across multiple self-supervised classifiers over time, bringing
their performance into alignment with one another. This is reflected in the feature
weight bar plot of Figure 7.9(d) which shows almost identical feature weighting
provided by FC1 to each of the self-supervised learners in the 2-epoch case. We
can also see from Figures 7.10(a) and 7.10(b) that FC2-based feature relevance
tends to fare better under self-supervision than its RLVQ or GRLVQ-based coun-
terparts, at least in the shorter term, though it must be noted that this could
also be dependent on the selection of learning rates for RLVQ and GRLVQ. In-
terestingly, from these graphs it also becomes clear that the best performer of
all in short-term training is (SOM → SOM) ⇔ SOM with PC and FRC, which

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 141

lacks any LVQ-based self-supervised refinement. We would attribute this to the
neighbourhood function of SOM providing regular updates to a broader number
of prototypes as opposed to the single prototype updates of LVQ-based meth-
ods. This is likely to aid the performance of FC1, which relies on the prototypes
approximating the data distribution to function optimally.

7.2.4.5 LVQ1-based training versus GLVQ-based training

The most noticeable difference between LVQ1-based training and GLVQ-based
training is that while LVQ1-based methods can achieve better results faster, they
tend to be less stable over time, whereas GLVQ-based methods are more reliable in
this sense. Each of the Figures 7.6(c), 7.7(c), and 7.8(c) show divergent behaviour
for LVQ1-based methods over 100 epochs, particularly in the self-supervised case.
Such divergence is less evident in the GLVQ-based learners running over the same
period in Figures 7.6(d), 7.7(d), and 7.8(d). Over shorter-term training periods,
however, it is clear that LVQ1-based methods may be a more appropriate choice,
as demonstrated in the comparison between Figures 7.6(a), 7.7(a), and 7.8(a),
and Figures 7.6(b), 7.7(b), and 7.8(b). This observation is clear for the fully-
supervised learners, but less-so for the self-supervised learners, which tend to be
more agnostic to the underlying LVQ method, as evidenced in Figures 7.10 and
7.11, although self-supervised RLVQ1 does appear to provide an anomaly here
with unexpectedly dominant performance over the medium term before diverging.

7.2.5 Results: Five-Class Synthetic Datasets Follow-up Study

In the experiments using the five-class datasets, we wished to test our learners in
a more complex problem setting, in part in order to analyse whether or not the
LVQ-based self-supervised discriminative methods might offer more of an advan-
tage over the SOM-based unsupervised methods than had been evidenced previ-
ously. Here, we analyse the results of class discovery, class prediction and feature
relevance determination in Sections 7.2.5.1, 7.2.5.2 and 7.2.5.3 respectively.

7.2.5.1 Class Discovery

What is perhaps most interesting about the class discovery graphs in Figure
7.12 is the fact that there is such a similarity between the left graph (small 500

142 Experimental Results

sample dataset) and the right graph (large 50,000 sample dataset). We might have
expected class discovery results to converge much faster in the latter case, but
the improvement appears meagre when compared to the former case. We suspect
this may be due to similarity in the rate of reduction of the SOM neighbourhood
radius between cases, but this remains unproven. Nevertheless, both cases provide
reasonable results by the end of training such that class prediction learning may
occur, thus we take a closer look at this aspect next.

0 45 90 135 180 225 270 315 360 405 450

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSGLVQ

SSGLVQ (FRC)

SSSOM

SSSOM (FRC)

0 4500 9000 13500 18000 22500 27000 31500 36000 40500 45000

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSGLVQ

SSGLVQ (FRC)

SSSOM

SSSOM (FRC)

Figure 7.12: Class discovery results for 10-folds cross validation on the 500
sample 5-class synthetic dataset (left graph) and for 5-folds cross validation on
the 50000 sample 5-class synthetic dataset (right graph).

7.2.5.2 Class Prediction

The main result worth noting in the class prediction graphs of Figure 7.13 is that
our initial hypothesis turned out to be correct: given a more complex categori-
sation scenario, in this case with five categories, the LVQ-based self-supervised
discriminative methods do indeed out-perform their unsupervised SOM-based
counterparts, at least over long training durations, as evidenced by the right
graph of Figure 7.13. Moreover, this result appears to be independent of whether
or not feature relevance is applied at classification time: plain SSGLVQ proves to
be better than plain SSSOM, and SSGLVQ (FRC) outperforms SSSOM (FRC)
by as much as 10% by the end of training. The self-supervised methods do not
compete as well with the supervised methods in this instance over such long train-
ing periods, but do appear to hold their own against GRLVQ, for example, over
the shorter period (left graph). FC1GLVQ also evidently performs well here.

7.2 Experiments on Self-Supervised Multi-View Learning Algorithms 143

0 45 90 135 180 225 270 315 360 405 450

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

GLVQ

GRLVQ

FC1GLVQ

SRNG

SSGLVQ

SSGLVQ (FRC)

SSSOM

SSSOM (FRC)

0 4500 9000 13500 18000 22500 27000 31500 36000 40500 45000

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

GLVQ

GRLVQ

FC1GLVQ

SRNG

SSGLVQ

SSGLVQ (FRC)

SSSOM

SSSOM (FRC)

Figure 7.13: Class prediction results for 10-folds cross validation on the 500
sample 5-class synthetic dataset (left graph) and for 5-folds cross validation on
the 50000 sample 5-class synthetic dataset (right graph).

7.2.5.3 Feature Relevance Determination

With regard to feature relevance determination, the left and right graphs of Figure
7.14 show bar plot comparisons of feature weighting at the end of training for
GRLVQ SRNG, FC1GLVQ, SSSOM (FRC) and SSGLVQ (FRC) after training
with the small dataset and the large dataset respectively. It is evident from these
graphs that the feature relevance determination method of Section 5.2.1, when
applied at classification time, allows for rapid estimation of feature relevance when
applied to SSGLVQ, correctly identifying the first feature dimension in the input
modality to be the most important, giving generally progressively lower weighting
from the third feature dimension onwards which were generated by progressively
adding noise to the first dimension, and correctly giving one of the lowest weights
to the second feature which is uninformative for class discrimination.

GRLVQ SRNG FC1GLVQ SSSOM (FRC) SSGLVQ (FRC)

0

0.2

0.4

0.6

0.8

1

Supervised Vs. Self−Supervised Feature Relevance

Learners

F
e

a
tu

re
 R

e
le

v
a

n
c

e

GRLVQ SRNG FC1GLVQ SSSOM (FRC) SSGLVQ (FRC)

0

0.2

0.4

0.6

0.8

1

Supervised Vs. Self−Supervised Feature Relevance

Learners

F
e

a
tu

re
 R

e
le

v
a

n
c

e

Figure 7.14: Feature relevance determination results for 10-folds cross validation
on the 500 sample 5-class synthetic dataset (left graph) and for 5-folds cross
validation on the 50000 sample 5-class synthetic dataset (right graph).

144 Experimental Results

7.2.6 Summary

After analysing the above experiments, we may conclude that our proposed self-
supervised multi-view learning framework should function as we require it to for
self-supervised object affordance learning. Working with quite noisy data in the
guise of the synthetic multi-view dataset presented above in Section 7.2.1, the
multi-view learners managed to correctly meta-cluster the classes present in the
output view relatively rapidly, an important first step towards cross-view class
prediction. In Section 7.2.4.2, in examining class prediction from unsupervised
multi-view discriminative learning, we ascertained that both prototype culling
and feature relevance determination can offer substantial boosts in performance.

After that, in Section 7.2.4.3 we demonstrated an unanticipated result show-
ing that when comparing fully-supervised and self-supervised LVQ-based learn-
ing, the additional information provided by self-supervision from an additional
data view can actually provide better performance than fully-supervised learning
with ground truth labels, at least over short-term training periods and under the
conditions defined in this thesis (cf. Chapter 3). In Section 7.2.4.4 we showed how
the application of FC1-based feature relevance determination (cf. Chapter 5) at
classification time, which exploits cross-view dynamic prototype labelling, tends
to have a stabilizing effect on all of the self-supervised learners tested, bringing
their respective performances into alignment with one another. We discussed how
LVQ1-based learners, though less stable than GLVQ-based learners over longer
training periods, may be more appropriate over shorter terms, offering better
results, faster.

Perhaps the most interesting results however, came in the follow-up study re-
ported in Section 7.2.5. There it was shown that when a more complex class distri-
bution is involved, our GLVQ-based self-supervised discriminative method does
indeed offer significant improvement over the SOM-based unsupervised multi-
view alternative, at least over long enough training periods. This goes some way
towards validating our approach in this thesis.

7.3 Object Push Affordance Experiments with Katana/Camera Setup 145

7.3 Object Push Affordance Experiments with
Katana/Camera Setup

To conclude our experimental results chapter, we present, in the final two sec-
tions, experiments that were performed using real-world data gathered from the
robotic systems described in Chapter 6, in which the systems were tasked with
pushing household objects in their experimental environments using their robotic
arm manipulators and learning about the affordances of the objects through visual
observation and self-supervised learning. In the first of these sections, we describe
experiments where the Katana/Camera setup was used to gather a dataset by
performing learning trials involving objects and pushes that resulted in two differ-
ent affordance ground-truth effect classes being produced: rolling and non-rolling
classes.

Various learning trials were performed and comparisons were made between
our proposed self-supervised algorithms and well-known supervised vector quan-
tization algorithms as in the previous sections. These were divided into a number
of sub-experiments, using different combinations of the feature sets described in
Sections 6.2.1 and 6.2.2 depending on the particular platform being used and the
goals of the experiment. In the following sub-sections, we describe the dataset
that was gathered in Section 7.3.1, an evaluation procedure that was used to test
the abilities of the algorithms to generalize to novel objects in Section 7.3.2, the
experiments that were performed in Section 7.3.3, and finally, the results of the
experiments in Sections 7.3.4, 7.3.5 and 7.3.6.

7.3.1 Data

To test our affordance learning system with the Katana/Camera platform, the
experimental environment was set up as previously described in both the intro-
duction to the thesis and in Chapter 6 and as shown in Figures 1.2 and 6.2. During
experiments, objects were placed at a fixed starting position prior to interaction.
The two camera systems were used to provide both sufficiently detailed close-up
range data of the object surfaces and a sufficiently wide field of view to capture
object motion over the entire work area. To achieve this, the stereo camera was
positioned above the start position, while the monocular camera was positioned

146 Experimental Results

at a higher position in front of the workspace giving both cameras a top-down
viewpoint of the work surface.

We selected eight household objects (cf. Figure 7.15) for the experiments:
four flat-surfaced objects; a book, a CD box, a box of tea and a drink carton, and
four curved-surfaced objects; a box of cleaning wipes, a Pepsi R© can a Sprite R©

can and a tennis ball box. A dataset was gathered consisting of 20 object push

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.15: Sample rolling versus non-rolling objects as seen by the Bumblebee
2 grayscale camera: 7.15(a) Book (non-rolling), 7.15(b) CD Box (non-rolling),
7.15(c) Cleaning wipes box (rolling), 7.15(d) Green tea box (non-rolling), 7.15(e)
Green tea carton (non-rolling), 7.15(f) Pepsi can (rolling), 7.15(g) Sprite can
(rolling), 7.15(h) Tennis ball box (rolling).

tests for each of the eight objects and the resulting data was processed, leaving
160 data samples. A projection of this data onto the dimensions of curvature
features Ob

3 and Ob
3 of the input object feature data view is shown in Figure 7.16.

Each of these objects was placed centred at the start position with a consistent
orientation, and the robotic arm pushed the object at a fixed speed using a fixed
pushing action. During tests, the curved objects would tend to roll after being
pushed, whereas the flat objects would stop suddenly, so the samples were then
hand-labelled with two ground truth labels: rolling and non-rolling. Some sample
interactions with both rolling and non-rolling objects are shown in Figure 7.17.
As before, the ground-truth labels were not used to train the self-supervised
learners, but were required for the performance evaluation. Before an action
was performed on an object, both intensity and range images were gathered
from the stereo camera. After an action was performed on an object, images

7.3 Object Push Affordance Experiments with Katana/Camera Setup 147

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curvature Feature 1

C
ur

va
tu

re
 F

ea
tu

re
 2

Object Property Modality Dims 1 & 2 of Training Data & Test Data

Training Data: Rolling Objects
Training Data: Non−Rolling Objects
Test Data: Spritecan

Figure 7.16: A projection of object feature training data from the
Katana/Camera experiment onto two of the feature dimensions, specifically the
3-D curvature features Ob

3 (x-axis) and Ob
4 (y-axis), along with a projection of test

data for the Sprite can object. The data are well-separated along the second cur-
vature feature dimension so, all other things being equal, it should be possible to
construct a reliable classifier if it places appropriate emphasis on this dimension.

were gathered and passed to the tracking system described in Section 6.2.2 This
data was processed to produce the visual shape features {Oa

1 , . . . , O
a
9} and 3-D

shape features {Ob
1, . . . , O

b
36} (cf. Sections 6.2.1.2 & 6.2.1.3), as well as the global

motion effect features {Ea
1 , . . . , E

a
9} and the local appearance change features

{Ed
1 , . . . , E

d
3} (cf. Sections 6.2.2.3 & 6.2.2.5).

7.3.2 Evaluation Procedure

In the following, a modified form of leave-one-out cross validation, which we call
leave-one-object-out cross validation (LOOOCV) was employed. In order to eval-
uate our learning approach. Given an {X, Y } dataset of features extracted from
interactions with various objects from a given experiment, LOOOCV involved
splitting the dataset into a test set consisting of all of the samples for a given
object, and a training set of all of the samples for the remaining objects. The
learning task was then to train learners using the training set, find the affordance
classes in the output view and try to classify the test set samples of the left-out
object on that basis. Cross validation was performed by using each of the objects
in the full dataset in turn as the test object to form multiple test and training
sets, performing the learning task using each of these, and averaging class dis-
covery and class prediction scores across all of them. Performing the evaluation

148 Experimental Results

Figure 7.17: Sample interactions as seen from the Flea camera of the test objects
described in Section 7.3.1 being interacted with. From top row to bottom: a book,
a CD box, a box of tea, a drink carton, a box of cleaning wipes, a Pepsi can, a
Sprite can, and a tennis ball box. The first four objects tend to slide, while the
last four tend to roll.

7.3 Object Push Affordance Experiments with Katana/Camera Setup 149

in this way, using LOOOCV, allowed us to test the performance of affordance
prediction for novel objects that the algorithms do not encounter during training,
a more stringent evaluation than would otherwise be provided by LOOCV or
k-folds cross validation.

7.3.3 Experiments

In the first and second of three sub-experiments, the details of which are de-
scribed below, the features {Oa

1 , . . . , O
a
9} were paired with the two 3-D global

object curvature features {Ob
3, O

b
4} to produce input view space Xa,b consisting

of vectors of the form x = {Oa
1 , . . . , O

a
9 , O

b
3, O

b
4}T , while in the third, vectors

of the form x = {Ob
1, . . . , O

b
36}T using all of the 3-D shape features formed

the basis for input view space Xb. In all three sub-experiments, both the
global motion effect features and the local appearance change effect features were
grouped and defined the output view space Y a,d composed of vectors of the form
y = {Ea

1 , . . . , E
a
9 , E

d
1 , . . . , E

d
3}T . The first experiment was designed to test the ef-

ficacy of the algorithms in a situation where where only some of the features are
useful, as was likely to be the case for the small sub-set of 3-D features paired with
a majority of less relevant 2-D features. The second experiment was performed
as part of a follow-up study published in [145], and involved testing against a
previously untested supervised classifier, a shorter training period, and tweaks to
the algorithm parameters. The third experiment, which also formed part of the
follow-up study, was designed to test the algorithms with a full compliment of
parts-based 3-D features, perhaps many of which would be useful for affordance
prediction, and perhaps many of which would, in turn, be revealed by the feature
relevance determination mechanisms involved.

7.3.3.1 3-D + 2-D Object Features Dataset

In this experiment, both the fully-supervised and self-supervised algorithms were
set up identically to what was described in Section 7.2.3 for the synthetic multi-
view dataset, the only differences being that here, firstly, LOOOCV was used
instead of k-fold cross validation, and secondly, rather than doing two experi-
mental runs over one epoch of training and 100 epochs of training respectively,
we performed experimental runs over two training epochs with a learning phase
transition half-way through training (after one epoch). As before, the feature

150 Experimental Results

weights of the codebook prototype vectors were randomly initialized to test the
abilities of the algorithms to learn from scratch. LOOOCV was therefore per-
formed in 10 trials and results were averaged in order to account for the variation
in codebook initialization between trials.

7.3.3.2 3-D + 2-D Object Features Dataset Follow-Up Study

In the follow-up study [145] using the same feature set, our self-supervised
learning vector quantization algorithm (SOM → LVQ1) ⇔ SOM (here ab-
breviated to SSLVQ) was compared to the self-supervised self-organizing map
(SOM → SOM) ⇔ SOM (here abbreviated to SSSOM), as well as variations
of both employing feature relevance determination at classification time (SSLVQ
(FRC) and SSSOM (FRC)) alongside the supervised algorithms GLVQ, GRLVQ
and, the previously untested supervised relevance neural gas (SRNG) [70], which
itself also provides feature relevance estimates. Codebooks in each data view
consisted of 49 prototypes arranged in a 7 × 7 hexagonal lattice with a sheet-
shaped topology [86]. In contrast to the previous experiment, this time, constant
learning rates of αWt = 0.1, αVt = 0.1, were used for the prototype update of
Equation (4.7) in codebooks W and V respectively in the unsupervised learning
phase, and α = 0.1 was used for the prototype update of Equation (4.47) in the
self-supervised learning phase. In addition to that, since the rapid rate of class
discovery in the previous experiment had proved promising, this time, training in
experimental runs was performed over a single epoch (a single run through train-
ing data). Learning phases were switched from unsupervised to self-supervised
halfway through training.

7.3.3.3 3-D Object Features Dataset Follow-Up Study

As part of the same follow-up study [145], we performed an experiment using the
full set of 3-D object features x = {Ob

1, . . . , O
b
36}T in the input data view along-

side the co-occurring features y = {Ea
1 , . . . , E

a
9 , E

d
1 , . . . , E

d
3}T in the output view.

As in the previous experiment in Section 7.3.3.2, the multi-view self-supervised
algorithms SSSOM, SSLVQ, SSSOM (FRC) and SSLVQ (FRC) were compared
with the mono-view supervised algorithms GLVQ, GRLVQ and SRNG, and the
experimental and algorithmic conditions also remained as before. In the following
three sub-sections we report the results from these experiments.

7.3 Object Push Affordance Experiments with Katana/Camera Setup 151

7.3.4 Results: 3-D + 2-D Object Features Dataset

In this experiment, the self-supervised learners were trained using data from
{Xa,b, Y a,d}, while the supervised learners were trained with {Xa,b, LGT (Xa,b)},
where LGT applies ground-truth labels to the input view samples. Online eval-
uation and comparison of the learners was performed using LOOOCV over two
epochs of training. What follows here is a detailed discussion, similar to that of
Section 7.2.4, of the performance properties of the various self-supervised multi-
view learner variations as applied to this dataset. For a more high-level discussion,
see the results of the follow-up study in the succeeding Section 7.3.5.

7.3.4.1 Affordance Class Discovery

As can be seen from Figure 7.18, the meta-clustering of object affordance classes
in the output object effects view occurs very rapidly indeed in this instance,
reaching optimal ground truth matching performance almost immediately (tests
were performed every 20 training steps for the figures in this section). Compared

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
lu

st
er

 to
 G

ro
un

d
T

ru
th

 C
la

ss
 M

at
ch

 A
cc

ur
ac

y
%

Self−Supervised SOM−based Online Class Discovery

SOM <=> SOM

SOM <=> SOM with PC

SOM <=> SOM with FRC

SOM <=> SOM with PC and FRC

Figure 7.18: Online affordance class discovery results for unsupervised multi-view
SOM-based learners.

to the synthetic dataset of the previous section where there were three ground
truth output view classes and a lot of noise in the additional feature dimensions,
in the object affordance learning dataset presented here, there are two classes and
less noise present, which may make the unsupervised class discovery task easier.
As such, it may also be possible for cross-view class prediction from the input
object features view to reach good performance levels more rapidly also, which is
what we examine next.

152 Experimental Results

7.3.4.2 Affordance Class Prediction

Looking first at the case of unsupervised multi-view discriminative learning
(again, cf. Section 4.2), Figure 7.19 shows the basic unsupervised SOM ⇔ SOM
and (SOM→ SOM)⇔ SOM algorithms performing reasonably well initially, but
proving unstable as training progresses, perhaps as more diverse object samples
are encountered. However, the addition of both prototype culling and feature

(a) SOM ⇔ SOM, 2 epochs.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised SOM−>SOM Online Classification

(SOM −> SOM) <=> SOM

(SOM −> SOM) <=> SOM with PC

(SOM −> SOM) <=> SOM with FRC

(SOM −> SOM) <=> SOM with PC and FRC

(b) (SOM → SOM) ⇔ SOM, 2 epochs.

Figure 7.19: Online object affordance prediction of unsupervised multi-view
SOM-based learners over two training epochs.

relevance determination at classification time boosts performance significantly
to the point where the learners reach close to optimal predictive performance
roughly mid-way through training. It should be reiterated here that these eval-
uations are for predicting the affordance classes of novel objects that have not
been encountered during training.

Turning to self-supervised multi-view discriminative learning, Figure 7.20
compares self-supervised learning for each of the base update types to their fully-
supervised counterparts. Once again it is evident that the self-supervised learners
outperform the fully-supervised learners over this short-term 2 epoch training pe-
riod in almost all cases, FC2LVQ1 with prototype culling being the one exception.
Why this happens is not clear from such prediction result plots, but begins to
make sense when we look more closely at the underlying data.

7.3 Object Push Affordance Experiments with Katana/Camera Setup 153

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised LVQ1−based Online Classification

LVQ1

LVQ1 with PC

LVQ1 with FRC

LVQ1 with PC and FRC

(SOM −> LVQ1) <=> SOM

(SOM −> LVQ1) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(a) LVQ1-based, 2 epochs.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised GLVQ−based Online Class Prediction

GLVQ

GLVQ with PC

GLVQ with FRC

GLVQ with PC and FRC

(SOM −> GLVQ) <=> SOM

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(b) GLVQ-based, 2 epochs.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised RLVQ1−based Online Classification

RLVQ1

RLVQ1 with PC

RLVQ1 with FRC

RLVQ1 with PC and FRC

(SOM −> RLVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(c) RLVQ1-based, 2 epochs.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised GRLVQ−based Online Class Prediction

GRLVQ

GRLVQ with PC

GRLVQ with FRC

GRLVQ with PC and FRC

(SOM −> GRLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(d) GRLVQ-based, 2 epochs.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised FC2LVQ1−based Online Class Prediction

FC2LVQ1

FC2LVQ1 with PC

FC2LVQ1 with FRC

FC2LVQ1 with PC and FRC

(SOM −> FC2LVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(e) FC2LVQ1-based, 2 epochs.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Fully−Supervised & Self−Supervised FC2GLVQ−based Online Class Prediction

FC2GLVQ

FC2GLVQ with PC

FC2GLVQ with FRC

FC2GLVQ with PC and FRC

(SOM −> FC2GLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(f) FC2GLVQ-based, 2 epochs.

Figure 7.20: Online object affordance prediction of fully-supervised and self-
supervised learners over two training epochs. Left column: LVQ1-based learners.
Right column: GLVQ-based learners. Top row: no feature relevance during train-
ing. Middle row: RLVQ1 and GRLVQ-based feature relevance during training.
Bottom row: FC2-based feature relevance during training.

154 Experimental Results

Figure 7.16 shows data projections along the Ob
3 and Ob

4 curvature feature
dimensions of the input object feature data view for both training data and test
data when the test object is the Sprite can. These two 3-D object curvature
features are the two most important features in the data for predicting rolling
versus non-rolling objects, and the figure shows good separability in the data
with respect to the Ob

3 feature (Curvature Feature 2 in Figure 7.16). Figures
7.21 and 7.22 show similar plots, but instead of projecting the training data,
they show the input view codebook prototypes for both fully-supervised and
self-supervised learners respectively projected along the feature dimensions. The
potential importance of prototype initialisation, dynamic labelling and prototype
culling is evident from these figures. In Figure 7.21, for example, the prototypes
are initialized randomly, and many of them become redundant during training and
clutter the feature space. Prototype culling greatly improves this situation. In
Figure 7.22, the initial bout of unsupervised SOM training clusters the prototypes
over the data distribution and prototype clustering further removes those which
are discriminatively redundant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curvature Feature 1

C
ur

va
tu

re
 F

ea
tu

re
 2

LVQ1
Object Property Modality Dims 1 & 2 of Codebook & Test Data

Codebook: Rolling Objects
Codebook: Non−Rolling Objects
Test Data: Spritecan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curvature Feature 1

C
ur

va
tu

re
 F

ea
tu

re
 2

LVQ1 with PC
Object Property Modality Dims 1 & 2 of Codebook & Test Data

Codebook: Rolling Objects
Codebook: Non−Rolling Objects
Test Data: Spritecan

Figure 7.21: The effect of prototype culling (cf. Section 4.2.2.4) after training
with the LVQ1 classifier. Each figure shows a projection of both the codebook
prototype vectors as well as test data the 3-D curvature feature dimensions Ob

3

(y-axis) and Ob
4 (x-axis) in the object feature view. In the left figure, prototype

culling has not been applied, whereas in the right figure, it has been.

Another question that arises is, does the addition of LVQ-based self-
supervision offer any improvement over unsupervised multi-view discriminative
learning? To answer that question, we compare unsupervised multi-view discrim-
inative learning to self-supervised multi-view discriminative learning in isolation
in Figures 7.23 and Figures 7.24. Here, it would appear from Figure 7.23(a)

7.3 Object Push Affordance Experiments with Katana/Camera Setup 155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curvature Feature 1

C
ur

va
tu

re
 F

ea
tu

re
 2

(SOM −> LVQ1) <=> SOM
Object Property Modality Dims 1 & 2 of Codebook & Test Data

Codebook: Rolling Objects
Codebook: Non−Rolling Objects
Test Data: Spritecan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curvature Feature 1

C
ur

va
tu

re
 F

ea
tu

re
 2

(SOM −> LVQ1) <=> SOM with PC
Object Property Modality Dims 1 & 2 of Codebook & Test Data

Codebook: Rolling Objects
Codebook: Non−Rolling Objects
Test Data: Spritecan

Figure 7.22: The effect of prototype culling after training with the (SOM →
LVQ1) ⇔ SOM self-supervised classifier. Again, in the left figure, prototype
culling has not been applied, whereas in the right figure, it has been.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification Vanilla Comparison

(SOM −> SOM) <=> SOM

(SOM −> LVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM

(SOM −> GLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM

(a) Normal.

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification FRC Comparison

(SOM −> SOM) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with FRC

(b) With feature relevance determination at
classification time (FRC).

Figure 7.23: Comparing unsupervised and self-supervised learners, with and
without feature relevance determination at classification time.

that discounting prototype culling or any form of feature relevance determina-
tion, the unsupervised (SOM → SOM) ⇔ SOM actually does marginally better
than the self-supervised (SOM → LVQ1) ⇔ SOM or (SOM → GLVQ) ⇔ SOM.
This situation changes when prototype culling is added, boosting self-supervision
results slightly beyond those of the unsupervised learner, as can be seen in Fig-
ure 7.24(a). When feature relevance determination during training is considered,
RLVQ1-based self-supervision appears to offer great improvement over its LVQ1-
based counterparts. And once feature relevance is introduced at classification

156 Experimental Results

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC Comparison

(SOM −> SOM) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with PC

(a) With prototype culling (PC).

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC & FRC Comparison

(SOM −> SOM) <=> SOM with PC and FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(b) With prototype culling and feature rel-
evance determination at classification time
(FRC).

Figure 7.24: Comparing unsupervised and self-supervised learners with proto-
type culling, with and without feature relevance determination at classification
time.

time, all self-supervised learners tend to improve dramatically, as was the case in
the previous section with the synthetic multi-view dataset.

7.3.4.3 Feature Relevance Determination

The bar plots of Figures 7.25 and 7.26 show average feature relevancies for various
fully-supervised and self-supervised learners both from training and at classifica-
tion time. In the fully-supervised case, we can observe that both RLVQ1 and
GRLVQ do not do as well as the FC2-based methods during training, a fact that
can be correlated with their respective prediction results in the graphs of Figure
7.23. From here, we can also see why the RLVQ1-based self-supervised learning
does so well at prediction in the results of Figure 7.23(a) when no augmentations
are considered compared to the other self-supervised learners. Figure 7.26(a)
shows that it finds an appropriate feature weighting during training whereas the
FC2-based methods do not do as good a job. However, as seen in Figure 7.26(b),
this is resolved by applying feature relevance determination at classification which
provides appropriate feature weighting across all of the learners, leading to the
uniformly good predictive results shown in Figures 7.23(b) and 7.24(b).

7.3 Object Push Affordance Experiments with Katana/Camera Setup 157

RLVQ1 FC2LVQ1 GRLVQ FC2GLVQ

0

0.5

1

1.5

Supervised Learners: Feature Relevancies from Training
R
e
le
v
a
n
c
e

Oa
1

Oa
2

Oa
3

Oa
4

Oa
5

Oa
6

Oa
7

Oa
8

Oa
9

Ob
3

Ob
4

(a) Feature relevance from training.

RLVQ1 FC2LVQ1 GRLVQ FC2GLVQ

0

0.5

1

1.5

Supervised Learners: Feature Relevancies at Classification

R
e
le
v
a
n
c
e

Oa
1

Oa
2

Oa
3

Oa
4

Oa
5

Oa
6

Oa
7

Oa
8

Oa
9

Ob
3

Ob
4

(b) Feature relevance at classification.

Figure 7.25: Feature relevance bar plots for fully-supervised learners showing
feature weights, both from in-built feature relevance mechanisms, and from the
FC1 feature relevance method being applied at classification time, averaged over
all folds and trials. Vertical dashed lines separate bar plots for different learners.

7.3.5 Results: 3-D + 2-D Object Features Dataset Follow-Up Study

In this experiment, once again, the self-supervised learners were trained us-
ing data from {Xa,b, Y a,d}, while the supervised learners were trained with
{Xa,b, LGT (Xa,b)}, where LGT applies ground-truth labels to the input view sam-
ples. This time, however, online evaluation and comparison of the learners was
performed using LOOOCV over only a single epoch of training, and we focused
the results on a more direct comparison between selected supervised and self-
supervised learners.

7.3.5.1 Affordance Class Discovery

Optimal performance was achieved very early in training, after ~10 samples,
with class-cluster-to-ground-truth match accuracy being maintained at ~100%
throughout, meaning that cross-view prediction from input view test samples

158 Experimental Results

SSRLVQ1 SSFC2LVQ1 SSGRLVQ SSFC2GLVQ

0

0.5

1

1.5

Self−Supervised Learners: Feature Relevancies from Training

R
e
le
v
a
n
c
e

Oa
1

Oa
2

Oa
3

Oa
4

Oa
5

Oa
6

Oa
7

Oa
8

Oa
9

Ob
3

Ob
4

(a) Feature relevance from training.

SSRLVQ1 SSFC2LVQ1 SSGRLVQ SSFC2GLVQ

0

0.5

1

Self−Supervised Learners: Feature Relevancies at Classification

R
e
le
v
a
n
c
e

Oa
1

Oa
2

Oa
3

Oa
4

Oa
5

Oa
6

Oa
7

Oa
8

Oa
9

Ob
3

Ob
4

(b) Feature relevance at classification.

Figure 7.26: Feature relevance bar plots for self-supervised learners showing
feature weights, both from in-built feature relevance mechanisms, and from the
FC1 feature relevance method being applied at classification time, averaged over
all folds and trials. Vertical dashed lines separate bar plots different learners.

should at least have the opportunity to reach optimal ground truth prediction
rates within the training period.

7.3.5.2 Affordance Class Prediction

When it comes to predicting these newly discovered classes, Figure 7.27 shows
how the various self-supervised learners perform and how they compare to su-
pervised classifiers predicting ground truth labels using input view features. In
this test, only a small subset of the object features (curvature features {Ob

3, O
b
4})

is relevant for class prediction, and the most significant result is that there is a
prominent difference between those self-supervised learners with feature relevance
mechanisms and those without, most likely due to this reason. Interestingly, all
of the self-supervised classifiers out-perform the supervised classifiers throughout
training. This initially surprising result is likely due to the fact that, owing to the
randomized prototype initialization, the prototype class labels of the supervised

7.3 Object Push Affordance Experiments with Katana/Camera Setup 159

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

50

60

70

80

90

100

Samples

G
ro

u
n

d
 T

ru
th

 C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

SSSOM

SSSOM (FRC)

SSLVQ

SSLVQ (FRC)

GLVQ

GRLVQ

SRNG

Figure 7.27: LOOOCV (cf. Section 7.3.2) class prediction results for the
Katana/Camera 3-D + 2-D object feature experiment (cf. Section 7.3.5.2). Verti-
cal dashed line indicates transition from unsupervised to self-supervised learning.

classifiers are not optimally distributed with respect to the class distributions
at the outset, whereas the self-supervised classifiers undergo dynamic labelling
of their input view prototypes as described in Section 4.1.2.2. This means that
the supervised classifier prototypes potentially take more time to adjust their
positions with respect to the class distributions. It is also worth noting that SS-
LVQ appears to maintain more predictive stability over this short training period
than SSSOM, which lacks the self-supervised discriminative learning mechanism
of SSLVQ (cf. Section 4.3).

7.3.5.3 Feature Relevance Determination

Figure 7.28 illustrates the mean results of feature relevance determination at the
end of training for both the input and output views. The input view graph fea-
tures comparisons with the supervised learners GRLVQ and SRNG that feature
feature relevance determination mechanisms. The features Ea

2 , E
a
3 , E

a
9 , E

d
2 and

Ed
3 , those being total distance travelled in y, total Euclidean distance travelled,

final y position, the average edge histogram difference and the product of it and
its colour counterpart, are highlighted as being the most relevant in the output
view for class discovery, which makes sense given their assumed potential for
distinguishing rolling versus non-rolling behaviours in the context of this experi-

160 Experimental Results

GRLVQ SRNG SSSOM (FRC) SSLVQ (FRC)

Supervised Vs. Self−Supervised Input Feature Relevance

Re
le

va
nc

e

0

0.5

1
Self−Supervised Output Feature Relevance

Re
le

va
nc

e

0

0.5

1

Figure 7.28: Feature relevance results for the Katana/Camera 3-D + 2-D object
features experiment (cf. Section 7.3.5.3). Vertical dashed line in lower figure
separates input view feature histograms for two supervised and two self-supervised
learners. Upper figure shows output view results which were applicable to self-
supervised learners only and were the same in both cases (SSSOM & SSLVQ).
Features are colour-coded (see legends).

ment. In the input view, most of the learners correctly select the Ob
3 feature, or

the object curvature along the x-dimension (along the rolling direction), as being
the most relevant for class prediction. Both GRLVQ and SRNG make the least
prominent distinction, because, in the short training time tested, their gradient
descent-based feature relevance mechanisms most likely do not have sufficient
training time in which to function optimally.

7.3.6 Results: 3-D Object Features Dataset

In this experiment, this time, the self-supervised learners were trained using data
from {Xb, Y a,d}, while the supervised learners were trained with {Xb, LGT (Xb)},
where LGT applies ground-truth labels to the input view samples. Once again,
online evaluation was performed using LOOOCV over only a single epoch of

7.3 Object Push Affordance Experiments with Katana/Camera Setup 161

training, and we focused the results on a more direct comparison between selected
learners.

7.3.6.1 Affordance Class Discovery

In this experiment, both the output view data and learning parameters were the
same as in the previous experiment, thus class discovery results were indistin-
guishable, with optimal performance again being attained early in training and
maintained throughout.

7.3.6.2 Affordance Class Prediction

In this experiment, the 2-D visual object features were removed in favour of purely
3-D surface features of feature space Xb, and since many more of these features
were relevant for class prediction than in the previous case, there were correlated
improvements in the class prediction capabilities of all learners, as illustrated in
Figure 7.29. This time all of the self-supervised learners perform comparably well,
reaching ~100% performance early in training, as well as beating the supervised
classifiers over one epoch of training.

7.3.6.3 Feature Relevance Determination

Since both the features that were used in the output view, as well as the output
view learning parameters, were identical to those used in the previous experiment,
the results for output feature relevance determination were almost identical also,
so we omit those results here. Input view feature relevancies, on the other hand,
as shown in Figure 7.30, reveal that many of the features of Xb are relevant for
class prediction.

162
Experim

entalR
esults

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

50

60

70

80

90

100

Samples
G

ro
u

n
d

 T
ru

th
 C

la
ss

if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

SSSOM

SSSOM (FRC)

SSLVQ

SSLVQ (FRC)

GLVQ

GRLVQ

SRNG

Figure 7.29: LOOOCV class prediction results for the Katana/Camera 3-D object features experiment (cf. Section 7.3.6).

Supervised Vs. Self−Supervised Input Feature Relevance

Re
le

va
n

c
e

GRLVQ SRNG SSSOM (FRC) SSLVQ (FRC)

0.5

1

0

Figure 7.30: Input view feature relevance results from the Katana/Camera experiment using the 3-D object features (cf.
Section 7.3.6). Vertical dashed line separates input view feature histograms for two supervised and two self-supervised
learners averaged over 10 trials.

7.4 Object Push Affordance Experiments with KUKA-LWR/Kinect Setup 163

Features Ob
3, O

b
9, O

b
19, and Ob

33 are favoured prominently by both the supervised
and self-supervised learners. The selection of Ob

3 matches with the results from
the previous experiment, where it was one of two curvature features included in
input space Xa,b, and was selected as the most relevant feature. The right side of
the x-axis split that generated the Ob

9 plane normal feature was the closest side
to the stereo camera, so produced more 3-D points, thus yielding more reliable
surface fits and resulting features. Similarly, Ob

19 is generated from the back side
of the y-axis split, which is the closest object part to the camera along that
dimension. Finally, feature Ob

33 is generated from the part at the intersection
between the previous two, and so benefits from the increased reliability of both.

7.3.7 Summary

In summary, the results of applying our self-supervised multi-view learning frame-
work on real-world data from object push affordance learning experiments ap-
pear to validate its application at least in this two-class context. The affordance
classes are discovered very rapidly by meta-clustering prototypes in the output
view. Cross-view class prediction from the input data view works very effectively,
reaching near-optimal performance after a short training period for all variants
of the self-supervised algorithm when the prototype culling and feature relevance
augmentations are applied. Feature relevance determination itself also appears
to operate quite effectively, at least when applied at the classification step af-
ter dynamic labelling in the input view. Moreover, these results were achieved
under the difficult conditions of leave-one-object-out validation, thus demonstrat-
ing that the learners can effectively predict the affordances of novel objects from
experience learning with similar ones. In the experiments presented in the fol-
lowing section, we sought to further analyse the generalization capabilities of our
framework by using a different robotic system, more objects, and an additional
affordance class.

7.4 Object Push Affordance Experiments with KUKA-
LWR/Kinect Setup

In the KUKA-LWR/Kinect setup experiment, we set out to apply our learning
framework to a slightly more complex pushing scenario that would yield more

164 Experimental Results

than two affordance classes: rolling, toppling and translating. The environment
was set up similarly as in the experiments with the Katana/Camera system (cf.
Figure 6.4). This time we selected 10 household objects (cf. Figure 7.31) for the
experiments: six flat-surfaced objects and four curved-surfaced objects.

Figure 7.31: Segmented 3-D object point clouds from the KUKA-LWR/Kinect
experiment (not to scale).

7.4.1 Data

During the experiment, objects were again placed at a fixed starting position
prior to interaction. This time, however, objects were placed in more varied poses
when possible in order to generate more varied affordance effects: flat, sideways or
upright, and either with the major axis of the object perpendicular to or parallel
to the push direction vector if that was well-defined, i.e. for the non-ball objects.
These descriptions are provided here for the readers’ benefit and were not used for
training, outside of the pose information potentially being encoded in the input
feature vectors. During these trials, the flat-surfaced objects would either tend to
translate forward or topple over after being pushed, depending on their pose, and
the balls would tend to roll, but along much more complex and varied trajectories
than in the Katana/Camera experiments, as illustrated in Figure 7.32.

The samples were again hand-labelled with the ground-truth labels: rolling,
translating, and toppling. 126 samples were collected in total of a biscuit box,
a coffee box, a cookie packet, a contact lens solution box, a marshmallow box, a
book, a handball, a small football, and both lightly coloured and darkly coloured
larger plastic toy balls. A summary of the dataset is provided in Table 7.4.
This time the data was used to generate the 3-D shape features described in
Section 6.2.1.3 for the input view space Xc consisting of feature vectors of the

7.4 Object Push Affordance Experiments with KUKA-LWR/Kinect Setup 165

Figure 7.32: Object trajectories and trajectory convex hulls from the KUKA-
LWR/Kinect experiment colour-coded by ground-truth; red: rolling, green: top-
pling, blue: translating.

Table 7.4: A summary of the dataset from the KUKA-LWR/Kinect experiment.

Object # Toppling # Translating # Rolling Total

Biscuit box 8 4 0 12
Coffee box 5 15 0 20
Cookie packet 0 8 0 8
Contact lens box 16 0 0 16
Marshmallow box 9 14 0 23
Book 6 8 0 14
Handball 0 0 8 8
Small football 0 0 6 6
Lightly-coloured ball 0 0 8 8
Darkly-coloured ball 0 0 11 11

Total 44 49 33 126

form x = {Oc
1, . . . , O

c
49}T , as well as the 3-D shape change features and the

global motion effect features described in Sections 6.2.2.3 and 6.2.2.4 respectively,

166 Experimental Results

to form the output view space Y c,b consisting of feature vectors of the form
y = {Ec

1, . . . , E
c
49, E

b
1, . . . , E

b
17}T .

7.4.2 Staged Feature Relevance Determination

Initial learning trials with the full {Xc, Y a,d} feature set proved inconsistent, so
we opted for a more advanced learning strategy: staged self-supervised learning,
in which the most relevant features are determined via thresholding feature rel-
evance at each stage, and the remaining features are discarded before retraining
with the reduced feature set at the next stage. This, emulates an aspect of devel-
opmental learning, where concepts are refined over multiple learning stages. We
thus performed three rounds of self-supervised learning using LOOOCV on the
SSLVQ (FRC) learner over 10 epochs for the first two stages, before performing
a final run of LOOOCV on all of the learners over 50 epochs using the remain-
ing features. After the first stage, only the features from the output view were
reduced, whereas after the second stage, both the input and output view feature
sets were reduced. When reducing feature sets, thresholds were set to the mean
feature relevance value plus one standard deviation. Output feature relevancies
were calculated separately for the shape difference features and for the motion
features.

7.4.3 Results

7.4.3.1 Feature Relevance Determination

Input vectors used in the first stage were of the form xs1 = {Oc
1, . . . , O

c
49}T ,

with output vectors ys1 = {Ec
1, . . . , E

c
49, E

b
1, . . . , E

b
17}T . After the first stage, the

input vectors remained as xs2 = xs1 for the second stage, while the output vec-
tors were reduced to the form ys2 = {Ec

9, E
c
11, E

c
23, E

c
24, E

c
38, E

c
39, E

c
45, E

b
14, E

b
16}T ,

After the second stage, the input vectors were reduced to xs3 =
{Oc

4, O
c
11, O

c
18, O

c
23, O

c
24, O

c
25, O

c
28, O

c
31, O

c
32, O

c
39, O

c
41, O

c
45}T , while the output vec-

tors were reduced to ys3 = {Ec
45, E

b
14}T . The feature relevance results over the

three stages are collated in Figure 7.33. Feature relevance results in Figure 7.35,
show output view results at the end of the second stage, and input view results
at the end of the third stage respectively.

7.4
O
bject

Push
A
ffordance

Experim
ents

w
ith

K
U
K
A
-LW

R
/K

inect
Setup

167

Re
le

va
n

c
e

Staged Self-Supervised Input Feature Relevance

0.25
0.5

0.75
1

Re
le

va
n

c
e

Staged Self-Supervised Output Feature Relevance

0.25
0.5

0.75
1

Overall Point Cloud X Split, Left Side X Split, Right Side Y Split, Front Side Y Split, Back Side Z Split, Bottom Side Z Split, Top Side

Object Motion Features

Overall Point Cloud X Split, Left Side X Split, Right Side Y Split, Front Side Y Split, Back Side Z Split, Bottom Side Z Split, Top Side

Centroid
Plane Norm

Curvature

Centroid
Plane Norm

Curvature

Figure 7.33: Staged feature relevance determination from the KUKA-LWR/Kinect experiment.

0 1119 2238 3357 4476 5595

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSSOM

SSSOM (FRC)

SSLVQ

SSLVQ (FRC)

0 1119 2238 3357 4476 5595

30

40

50

60

70

80

90

100

Samples
G

ro
u

n
d

 T
ru

th
 C

la
ss

if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

SSSOM

SSSOM (FRC)

SSLVQ

SSLVQ (FRC)

GLVQ

GRLVQ

SRNG

Figure 7.34: Mean class discovery (left graph) and prediction (right graph) results for the third stage of LOOOCV (cf.
Section 7.4.2) run over 50 training epochs in the KUKA-LWR/Kinect experiment.

168 Experimental Results

GRLVQ SRNG SSSOM (FRC) SSLVQ (FRC)0

0.5

1

Supervised Vs. Self−Supervised Input Feature Relevance

Re
le

va
nc

e

0

0.5

1
Self−Supervised Output Feature Relevance

Re
le

va
nc

e Shape:

Motion:

Figure 7.35: Mean feature relevance results for both input and output views
in staged feature relevance learning for the KUKA-LWR/Kinect experiment as
described in Section 7.4.2. Upper figure shows relevance histogram of reduced
output feature set after second learning stage with a vertical line separating shape
and motion features which were clustered and reduced separately at each stage.
Lower figure shows reduced feature relevance histograms for input view after third
stage where vertical dashed line separates supervised and self-supervised learners.

By the end of the final third stage, in the output view, only the Ec
45 (z-

axis split top side part centroid z-coordinate difference) and Eb
14 (mean trajectory

point distance from the start position) features remain as the most relevant for
class discovery, whereas the input view features Oc

28 (y-axis split front side part
y-curvature) and Oc

45 (z-axis split top side part centroid z-coordinate) are the
most relevant for class prediction. This demonstrates that affordance concepts
which associate curvature in the direction of the push (Oc

28) and object height
(Oc

45) with affordance effect classes defined primarily by object height difference
(Ec

45) and the distance travelled by the object in motion (Eb
14), have been formed

autonomously using staged self-supervised learning. This appears to match with
human intuition for this scenario, though this has not been tested empirically.
It is also worth noting that the SSLVQ-based method proposed in this paper
proves to be more effective than SSSOM at discerning relevant discriminative
features in the input view. This is not too surprising given that the SSSOM lacks
a cross-view discriminative learning mechanism.

7.4 Object Push Affordance Experiments with KUKA-LWR/Kinect Setup 169

7.4.3.2 Affordance Class Discovery

The left graph of Figure 7.34 shows average class discovery results for each of
the self-supervised learners over 10 trials of the 50-epoch third stage LOOOCV
evaluation. Learning parameters were the same in the output view in all cases, so
the results are similar for each of the learners. The learners discover the ground
truth classes with a mean accuracy of ~90% after 50 epochs of training, which
sets a limit on their potential results for class prediction.

7.4.3.3 Affordance Class Prediction

The right graph of Figure 7.34 shows both average class prediction results for
all learners and average SSLVQ (FRC) class prediction for specific test objects.
While GRLVQ and SRNG reach just over ~85% accuracy on average during most
of the 50-epoch training period, the self-supervised learners start out quite poorly,
before reaching ~75% accuracy by the end of training. SSLVQ (FRC) appears
to show slightly better performance over the other self-supervised learners, but
the results are inconclusive. This might be explained by the fact that the feature
sets have been significantly refined by this final learning stage. The graphs of
Figure 7.36 show that SSLVQ (FRC) appears to struggle most with both class
discovery and prediction when either the dark or the light-coloured large balls are
left out of the training set. This may be due to the fact that when either of these

0 1119 2238 3357 4476 5595

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Specific Object Discovery

Handball

Football

Dark Ball

Light Ball

Biscuit Box

Coffee Box

Solution Box

Mallow Box

Cookie Pack

Book

0 1119 2238 3357 4476 5595

0

10

20

30

40

50

60

70

80

90

100

Samples

G
ro

u
n

d
 T

ru
th

 C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Self−Supervised Specific Object Prediction

Handball

Football

Dark Ball

Light Ball

Biscuit Box

Coffee Box

Solution Box

Mallow Box

Cookie Pack

Book

Figure 7.36: Mean class discovery (left graph) and prediction results (right
graph) for all learners & for SSLVQ (FRC) with specific test objects for the
third stage of LOOOCV (cf. Section 7.4.2) run over 50 training epochs in the
KUKA-LWR/Kinect experiment.

objects are left out, there are far fewer training samples that are both curved in
the direction of the push (Oc

28 feature) and are relatively tall (Oc
45 feature). For

170 Experimental Results

example, when the dark ball is left out, there are 115 total training samples, 22
of which are rolling samples, and only 8 of which are samples of relatively tall
ball objects rolling. By comparison, when the small football is left out, there are
120 total training samples, 27 of which are rolling samples, and 19 of which are
samples of relatively tall rolling balls. Without adequate numbers of samples of
tall rolling balls in the training set, the self-supervised learner struggles when it
encounters them as novel samples in the test set.

7.4.4 Summary

To summarize this final experimental section, we wished to test our proposed
learning framework on a different robotic system, using more objects and more
affordance classes, thus the KUKA-LWR/Kinect robotic platform was employed
and the additional affordance class of “toppling” was introduced through the use
of more varied objects and object poses. When performing learning experiments
on the subsequent dataset, it was noted that using the full dataset was yielding
poor results, thus we devised a more developmentally staged learning approach in
which the most relevant features are determined via thresholding feature relevance
at each stage, and the remaining features are discarded before retraining with the
reduced feature set. We demonstrated how this staged self-supervised learning
process could be successfully applied to the dataset, how the small number of most
relevant features could thereby be extracted, and how reasonable class discovery
and class prediction results could thereby be achieved.

7.5 Chapter Summary

This chapter was divided into four separate experimental sections. In the first,
we evaluated the feature relevance determination algorithms proposed in Chapter
5 in a fully-supervised setting over both a synthetic dataset and various public
datasets from the UCI repository. From these experiments we concluded that
feature relevance determination can play an important role in boosting the per-
formance of LVQ-based methods, particularly over short-term periods, which was
one of our main concerns.

In the second section, we evaluated the self-supervised multi-view learning
framework from Chapter 4 over a synthetic multi-view dataset. Online compar-

7.5 Chapter Summary 171

isons were performed between various different strains of our self-supervised learn-
ing algorithm, using various different update rules, and fully-supervised LVQ-
based classifiers using k-folds cross validation. Based on these experiments, we
analysed different aspects of the algorithms, including unsupervised class discov-
ery in the output data view, unsupervised multi-view discriminative learning,
full-supervision versus self-supervision, feature relevance determination in the
self-supervised setting, and LVQ1-based training versus GLVQ-based training.
A surprising result to emerge from these experiments was that when compar-
ing fully-supervised and self-supervised LVQ-based learning, the additional infor-
mation provided by self-supervision from an additional data view can actually
provide better performance than fully-supervised learning with ground truth la-
bels, at least over short-term training periods and under hard online learning
constraints.

In the last two sections of this chapter, we presented object push affordance
learning experiments that were performed using the robotic systems described
in Chapter 6. In the first of these sets of experiments, the robotic arm in the
Katana/Camera setup was used to push eight different rolling and non-rolling
household objects along a work surface and, using the data subsequently gath-
ered, the self-supervised learning framework was tasked with discovering the af-
fordance classes within the data in the output effects data view and learning to
predict them from data in the input object features view. In the second set of
experiments described in the final section, in order to test our learning framework
on another system, the KUKA-LWR/Kinect setup was used, and this time, 10 dif-
ferent household objects were used, resulting in three different affordance classes:
rolling, translating and toppling. In each experiment we performed a variation
on leave-one-out cross validation, that is, leave-one-object-out cross validation, in
which the data for one object was left out of the training set in each fold in order
to test the ability of the learners to predict novel objects. The results appeared
to validate the effectiveness of our self-supervised multi-view learning approach,
showing good performance for object affordance class discovery, object affordance
prediction, and differentiating relevant object features for affordance prediction.

172 Experimental Results

Chapter 8

Conclusion

8.1 Thesis Summary

In this thesis we sought to address the problem of basic object affordance learn-
ing in a robotic system. Drawing on ideas from a number of different fields, we
framed the problem to suit our particular approach and outlined a number of
requirements such that our proposed solution would adhere to some ideals of de-
velopmental learning, namely online learning and self-supervised learning. Our
particular affordance learning scenario involved robotic arms interacting in an
environment with a table surface, pushing household objects and observing their
behaviour using cameras. The idea was that the system might differentiate be-
tween different object behaviours and learn to predict them based on the shape
properties of the individual objects.

In developing a solution, we proposed a self-supervised multi-view learning
algorithm built on a theoretical foundation of unsupervised clustering, Hebbian
learning and learning vector quantization. In this algorithm, codebook layers of
prototypes are used to represent separate data views or sensory modalities, and
are trained online using competitive learning. The separate data view codebook
layers are connected together via a cross-view Hebbian mapping that itself may be
trained online using the co-occurrence of data between the separate layers. Class
clusters are dynamically formed in a data view by meta-clustering the prototypes
and the cross-view mapping can be used to map these classes onto another data
view through a process known as Hebbian projection, enabling a form of cross-
view classification. We have shown how, given the multi-vew structure of the
codebook layers, we may derive learning rules based on both Hebbian projection

173

174 Conclusion

and the learning vector quantization paradigm that can employ class probabilities
instead of actual class labels during training, thus allowing us to bootstrap the
self-supervised learning process in an online manner even when the categories are
not yet fully known.

We also proposed two new feature relevance determination algorithms for
learning vector quantization that use the Fisher criterion score as well as the
positioning of prototypes in the input space to form an adaptive Euclidean metric
that weighs each feature dimension on their respective discriminative relevance.
Both methods may be trained online, thus fitting our learning requirements, and
can be applied to any algorithms based on the general learning vector quantization
paradigm. They can also be successfully applied to our proposed self-supervised
multi-view learning algorithm both during training and at classification time,
depending on the particular algorithm, and help to boost learning performance
substantially in that regard.

In order to perform actual affordance learning experiments, we also developed
a robotic system using a Katana robotic arm and various camera systems such
that objects could be interacted with, image data of the interactions could be
recorded, and visual features could be extracted from the data. To this end, we
presented two computer vision algorithms for extracting object property features
from static images of objects and 3-D point cloud data, and for extracting object
effect features from videos of objects in motion. The first algorithm used infor-
mation in the 3-D point cloud data to seed a graph cut segmentation in image
data in order to segment objects from the background before extracting shape
features. The second algorithm used colour histogram backprojection to refine
the output of a particle filter tracker such that local object appearance change
features could be extracted. As well as that, we made use of another robotic
platform, this one employing a KUKA-LWR robotic arm and the Kinect RGB-D
depth sensor, to perform additional experiments and put our learning framework
to the test under different conditions.

Finally, we evaluated all of the above in a series of experiments. This was
broken into four parts. We wanted to evaluate the proposed feature relevance
determination algorithms in isolation so, in the first part, they were tested in a
fully-supervised setting using ground-truth labels over both a synthetic dataset
and various popular public datasets. These experiments demonstrated that the
proposed feature relevance methods could potentially boost learning vector quan-

8.1 Thesis Summary 175

tization performance significantly, particularly over short-term online training pe-
riods, which we were most interested in from an autonomous robotics perspective
in which a robot may have to learn rapidly from few examples.

In the second part of our experimental work, we evaluated the proposed
self-supervised multi-view learning algorithm, comparing it to equivalent fully-
supervised algorithms, over a synthetic multi-view dataset in order to judge its
capabilities for potential application to the affordance learning problem. Various
different aspects of the algorithm were analysed including its ability to discover
categories present in the data from unsupervised clustering, its ability to perform
cross-view discriminative category prediction, how it compared to fully-supervised
classifiers, and whether it worked well with the proposed feature relevance deter-
mination methods. These experiments provided one insightful result in particu-
lar, in that it was evident that under the hard online learning conditions we had
laid out, LVQ-based self-supervised learning appeared to outperform LVQ-based
fully-supervised learning in short-term online learning trials. The reason for this
was proposed to be that, in the self-supervised case, the additional information
provided by self-supervision from an additional data view allows for dynamic la-
belling of prototypes under such hard online learning conditions, whereas in the
fully-supervised case, lacking such additional information or the opportunity to
pre-process the data, the learners must resort to applying ground truth labels to
prototypes arbitrarily.

In the final part of our series of experiments we used each of the robotic plat-
forms to gather data from arm interactions with a number of household objects in
pushing tests. Some of these objects were round and tended to roll when pushed,
while others were flat and tended not to, and in the KUKA-LWR/Kinect setup
experiments in particular, still other objects were tall and tended to topple over
when pushed. The objective was for the self-supervised learning algorithm to
differentiate between these affordance classes and learn to predict them. The
results appeared to validate the effectiveness of our learning approach, showing
near-optimal performance for object affordance class discovery, object affordance
prediction, and determining relevant object features for affordance prediction.

176 Conclusion

8.2 Summary of Contributions

• A self-supervised multi-view learning algorithm is proposed that
dynamically identifies categories in data while using them to drive
online supervised learning. This part of the work was described in
Chapter 4.

• Two novel feature relevance determination algorithms for learning
vector quantization are proposed to augment the self-supervised
learning algorithm. These algorithms were described in Chapter 5.

• A robotic system with appropriate actuation and visual feature
extraction mechanisms has been developed, used to perform real-
world experiments on object affordance learning and to test our
learning algorithms on the resulting data. The robotic and vision
systems were detailed in Chapter 6.

• Experimental results demonstrating how when comparing fully-
supervised and self-supervised LVQ-based learning under cer-
tain conditions, the additional information provided by self-
supervision from a separate data view can provide better perfor-
mance than fully-supervised learning with ground truth labels.
This was discussed in the experimental results of Chapter 7.

8.3 Future Work

With regard to future work on the multi-view learning framework, perhaps one
of the most interesting ideas would be to try to replace the vector quantization
within data view layers with a generative model of some kind that can also be
trained online. One possible candidate for this would be online kernel density
estimation [94]. Another potential candidate might be a more advanced form of
SOM [104]. Referring back to Figure 3.1 in Chapter 3, it would be very interest-
ing to expand our self-supervised multi-view learning framework to account for
alternative models of the affordance learning problem. For instance, parametris-
ing actions and including an action space as a separate data view as depicted in
Figure 3.1(a) would make for a more complex, but potentially much more power-
ful model. To imagine this in more concrete terms, a separate codebook could be

8.3 Future Work 177

used to model structure in the action view which would be cross-view connected
to the object effects codebook alongside the object features codebook. The effects
view codebook could be used to drive self-supervised learning in both the object
features view and the action view. For prediction, the output of both the object
and action views could perhaps be combined by ensemble averaging, mixture of
experts or similar.

Affordances are, of course, intrinsically action-grounded concepts, and one of
the aspects of this thesis we would have liked to have developed further would
have been the further development of the action-related components. One way to
achieve this would be to increase the number of available actions. For instance,
objects might be pushed from different directions and different learners could
train on the data for each of the separate actions. This might in turn expand
the number of affordances that the system could potentially learn. Some of our
current and ongoing work involves using trajectory data from different pushing
actions to ground 3-D object point cloud features (similar to those used in Section
6.2.1.3) with respect to a coordinate frame defined by the pushing actions and
their contact points on the surfaces of objects [143].

It would also be very interesting to test our framework on other forms of object
affordance learning problems, or indeed, affordance learning problems generally.
Grasping objects as opposed to pushing them might be one potential line of
research here. It would also be very interesting to experiment with different
types of visual features, or perhaps features that would come from other sensory
systems that could be added to the system. Haptic data from a robotic hand
with touch sensors would be such an example.

References

[1] E. Alhoniemi, J. Himberg, and J. Vesanto. Probabilistic measures for re-
sponses of self-organizing map units. In In Proceedings of the International
ICSC Congress on Computational Intelligence Methods and Applications, 1999.

[2] E. Ardizzone, A. Chella, M. Frixione, and S. Gaglio. Integrating subsymbolic
and symbolic processing in artificial vision. Journal of intelligent systems,
1(4):273–308, 1992.

[3] A. M. Arsenio. Developmental learning on a humanoid robot. In Neural
Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on,
volume 4, pages 3167–3172. IEEE, 2004.

[4] R. G. Barker. Ecological psychology: Concepts and methods for studying the
environment of human behavior. Stanford Univ Pr, 1968.

[5] S. Bickel and T. Scheffer. Multi-view clustering. In Proceedings of the IEEE
International Conference on Data Mining (ICDM), pages 19–26, Washington
D.C., USA, November 2004.

[6] C. M. Bishop. Pattern recognition and machine learning, volume 4. Springer
New York, 2006.

[7] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the eleventh annual conference on Computational
learning theory, pages 92–100, 1998.

[8] T. Bojer, B. Hammer, D. Schunk, and K. T. von Toschanowitz. Relevance
determination in learning vector quantization. In European Symposium on
Artificial Neural Networks, pages 271–276, 2001.

178

References 179

[9] N. Bolshakova and F. Azuaje. Cluster validation techniques for genome ex-
pression data. Signal Processing, 83(4):825–833, April 2003.

[10] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.

[11] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1222–1239, 2001.

[12] T. Breuer, M. Ndoundou-Hockemba, and V. Fishlock. First observation of
tool use in wild gorillas. PLoS Biol, 3(11):e380, October 2005.

[13] R. A. Brooks. Intelligence without representation. Artificial Intelligence,
47(1-3):139–159, 1991.

[14] La casa amarilla — {V}iquipèdia{,} l’enciclopèdia lliure, December 2014.
http://ca.wikipedia.org/w/index.php?title=La_Casa_Amarilla, Page Version
ID: 14266466.

[15] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics, 3(1):1–27, 1974.

[16] G. Card and M. H. Dickinson. Visually mediated motor planning in the
escape response of drosophila. Current Biology, 2008.

[17] Cephalopod intelligence — {W}ikipedia{,} the free encyclopedia, November
2014. https://en.wikipedia.org/w/index.php?title=Cephalopod_intelligence,
Page Version ID: 618746614.

[18] P. Cesari, F. Formenti, and P. Olivato. A common perceptual parameter for
stair climbing for children, young and old adults. Human movement science,
22(1):111–124, 2003.

[19] C. Chang and C. Lin. LIBSVM: a library for support vector machines. 2001.

[20] Y.-H. Chang, P. R. Cohen, C. T. Morrison, R. S. Amant, and C. R. Beal.
Piagetian adaptation meets image schemas: The jean system. In SAB, pages
369–380, 2006.

180 References

[21] J. Chappell and A. Kacelnik. Tool selectivity in a non-primate, the new
caledonian crow (corvus moneduloides). Animal Cognition, 5(2):71–78, 2002.

[22] H. H. Chaput, B. Kuipers, and R. Miikkulainen. Constructivist learning: A
neural implementation of the schema mechanism. Proceedings of the Workshop
on Self-Organizing Maps (WSOM03), 2003.

[23] H. H. Chaput, B. Kuipers, and R. Miikkulainen. The Constructivist Learning
Architecture a Model of Cognitive Development for Robust Autonomous Robots.
PhD thesis, University of Texas at Austin, 2004.

[24] A. Chella, M. Frixione, and S. Gaglio. A cognitive architecture for artificial
vision. Artificial Intelligence, 89(1-2):73–111, 1997.

[25] A. Chemero, C. Klein, and W. Cordeiro. Events as changes in the layout of
affordances. Ecological Psychology, 15(1):19–28, January 2003.

[26] A. Chemero. An outline of a theory of affordances. Ecological Psychology,
15(2):181–195, 2003.

[27] M. H. Coen. Cross-modal clustering. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI), volume 2, pages 932–937, Pitts-
burgh, PA, USA, July 2005. AAAI Press.

[28] M. H. Coen. Multimodal dynamics: self-supervised learning in perceptual
and motor systems. PhD thesis, Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science, 2006.

[29] M. H. Coen. Self-supervised acquisition of vowels in american english. In
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI),
volume 2, pages 1451–1456, Boston, MA, USA, July 2006. AAAI Press.

[30] L. B. Cohen, H. H. Chaput, and C. H. Cashon. A constructivist model of
infant cognition. Cognitive Development, 17(3):1323–1343, 2002.

[31] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(5):603–619, 2002.

[32] I. Cos-Aguilera, L. Canamero, and G. Hayes. Motivation-driven learning of
object affordances: First experiments using a simulated khepera robot. In The

References 181

Logic of Cognitive Systems. Proceedings of the Fifth International Conference
on Cognitive Modelling, volume 1001, pages 57–62, 2003.

[33] I. Cos-Aguilera, L. Canamero, and G. Hayes. Using a SOFM to learn object
affordances. In Proceedings of the 5th Workshop of Physical Agents (WAF’04),
Girona, Spain, 2004.

[34] K. Crammer, R. Gilad-bachrach, A. Navot, and N. Tishby. Margin analysis
of the LVQ algorithm. In Advances in Neural Information Processing Systems
15, pages 462–469, Vancouver, BC, Canada, 2003. MIT Press.

[35] P. Davidsson. Toward a general solution to the symbol grounding problem:
combining machine learning and computer vision. In AAAI Fall Symposium
Series, Machine Learning in Computer Vision: What, Why and How, pages
157–161, 1993.

[36] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–
227, April 1979.

[37] V. R. de Sa and D. H. Ballard. Self-teaching through correlated input.
Computation and neural systems, pages 437–441, 1992.

[38] V. R. de Sa and D. H. Ballard. Category learning through multimodality
sensing. Neural Computation, 10:1097–1117, 1998.

[39] V. R. de Sa, P. Gallagher, J. Lewis, and V. Malave. Multi-view kernel
construction. Machine Learning, 79(1):47–71, 2010.

[40] V. R. de Sa. Learning classification with unlabeled data. In Advances in
Neural Information Processing Systems 6, pages 112–119, Denver, CO, USA,
1994. Morgan Kaufmann.

[41] V. R. de Sa. Unsupervised classification learning from cross-modal environ-
mental structure. Ph.d. thesis, University of Rochester, 1994.

[42] V. R. de Sa. Sensory modality segregation. In Advances in Neural Informa-
tion Processing Systems 16, pages 913–920, 2003.

[43] V. R. de Sa. Spectral clustering with two views. In In Proceedings of the
ICML 2005 Workshop on Learning With Multiple Views, Bonn, Germany, 2005.

182 References

[44] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger, and
J. Piater. Learning grasp affordance densities. Paladyn, 2(1):1–17, 2011.

[45] G. Dorffner, J. Irran, F. Kintzler, and P. Poelz. Robotic learning architecture
that can be taught by manually putting the robot to action sequences. Tech-
nical report 5.3. 1, The Austrian Research Institute for Artificial Intelligence
(OFAI), 2005.

[46] G. L. Drescher. Made-up minds: a constructivist approach to artificial in-
telligence. Mit Press Series Of Artificial Intelligence, page 220, 1991.

[47] S. Dudoit and J. Fridlyand. A prediction-based resampling method for esti-
mating the number of clusters in a dataset. Genome Biology, 3(7):research0036,
June 2002.

[48] J. C. Dunn. Well-separated clusters and optimal fuzzy partitions. Journal
of Cybernetics, 4(1):95–104, 1974.

[49] L. Fe-Fei, R. Fergus, and P. Perona. A bayesian approach to unsupervised
one-shot learning of object categories. In Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on, pages 1134–1141. IEEE, 2003.

[50] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories. Computer Vision and Image Understanding, 106(1):59–70, 2007.

[51] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsuper-
vised scale-invariant learning. In Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2,
pages II–264. IEEE, 2003.

[52] J. K. Finn, T. Tregenza, and M. D. Norman. Defensive tool use in a coconut-
carrying octopus. Current Biology, 19(23):R1069–R1070, 2009.

[53] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[54] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7:179–188, 1936.

References 183

[55] P. Fitzpatrick and G. Metta. Grounding vision through experimental manip-
ulation. Philosophical Transactions: Mathematical, Physical and Engineering
Sciences, 361(1811):2165–2185, 2003.

[56] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning about
objects through action-initial steps towards artificial cognition. In Proceed-
ings of the 2003 IEEE International Conference on Robotics and Automation
(ICRA), volume 3, 2003.

[57] P. M. Fitzpatrick. From First Contact to Close Encounters: A Develop-
mentally Deep Perceptual System for a Humanoid Robot. PhD thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Com-
puter Science, 2003.

[58] A. Frank and A. Asuncion. UCI Machine Learning Repository. University
of California, Irvine, School of Information and Computer Sciences, 2010.

[59] G. Fritz, L. Paletta, R. Breithaupt, E. Rome, and G. Dorffner. Learning pre-
dictive features in affordance based robotic perception systems. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2006.

[60] G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breithaupt, and E. Rome.
Visual learning of affordance based cues. From animals to animats, 9:52–64,
2006.

[61] B. Fritzke. Some competitive learning methods. Technical report, Institute
for Neural Computation, Ruhr-Universitat Bochum, 1997.

[62] P. Gärdenfors. Three levels of inductive inference. Studies in Logic and the
Foundations of Mathematics, 134:427–449, 1995.

[63] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics.
International Statistical Review, 70(3):419–435, December 2002.

[64] E. J. Gibson, G. Riccio, M. A. Schmuckler, T. A. Stoffregen, D. Rosenberg,
and J. Taormina. Detection of the traversability of surfaces by crawling and
walking infants. Journal of Experimental Psychology: Human Perception and
Performance, 13(4):533, 1987.

[65] J. J. Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, 1979.

184 References

[66] J. J. Gibson. The Ecological Approach to Visual Perception. Lawrence Erl-
baum Associates, 1986.

[67] H. Grabner, J. Gall, and L. Van Gool. What makes a chair a chair? Colorado
Springs, USA., 2011.

[68] J. G. Greeno. Gibson’s affordances. 1994.

[69] B. Hammer and T. Villmann. Generalized relevance learning vector quanti-
zation. Neural Networks, 15(8-9):1059–1068, 2002.

[70] B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with
general similarity measure. Neural Processing Letters, 21(1):21–44, 2005.

[71] T. C. Handy, S. T. Grafton, N. M. Shroff, S. Ketay, and M. S. Gazzaniga.
Graspable objects grab attention when the potential for action is recognized.
Nature Neuroscience, 6(4):421–427, 2003.

[72] S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenom-
ena, 42:335–346, 1990.

[73] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
New York: Wiley, 1949.

[74] X. Huang and J. Weng. Novelty and reinforcement learning in the value
system of developmental robots. Proceedings of the 2nd international workshop
on Epigenetic Robotics: Modeling cognitive development in robotic systems,
pages 47–55, 2002.

[75] K. Huebner, S. Ruthotto, and D. Kragic. Minimum volume bounding box de-
composition for shape approximation in robot grasping. In IEEE International
Conference on Robotics and Automation, 2008. ICRA 2008, pages 1628–1633.
IEEE, May 2008.

[76] J. Irran, F. Kintzler, and P. Pölz. Grounding affordances. Cybernetics and
Systems. Austrian Society for Cybernetic Studies, Vienna, 2006.

[77] D. Katz and O. Brock. Manipulating articulated objects with interactive per-
ception. In Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on, pages 272–277, 2008.

References 185

[78] D. Katz, Y. Pyuro, and O. Brock. Learning to manipulate articulated objects
in unstructured environments using a grounded relational representation. In
In Robotics: Science and Systems. Citeseer, 2008.

[79] B. Kenward, A. A. S. Weir, C. Rutz, and A. Kacelnik. Behavioural ecology:
Tool manufacture by naive juvenile crows. Nature, 433(7022):121, January
2005.

[80] B. Kenward, C. Rutz, A. A. Weir, and A. Kacelnik. Development of tool
use in new caledonian crows: inherited action patterns and social influences.
Animal Behaviour, 72(6):1329–1343, 2006.

[81] J. M. Kinsella-Shaw, B. Shaw, and M. T. Turvey. Perceiving ’walk-on-able’
slopes. Ecological Psychology, 4(4):223, December 1992.

[82] S. Kirstein, H. Wersing, and E. Korner. Rapid online learning of objects in a
biologically motivated recognition architecture. Deutschen Arbeitsgemeinschaft
fur Mustererkennung, pages 301–308, 2005.

[83] S. Kirstein, H. Wersing, H.-M. Gross, and E. Körner. A life-long learning
vector quantization approach for interactive learning of multiple categories.
Neural Networks, 28:90–105, April 2012.

[84] D. E. Knuth. The Art of Computer Programming (Volume 2). Addi-
son–Wesley, 1981.

[85] W. Kohler and E. Winter. The mentality of apes. 1925.

[86] T. Kohonen. Self-organizing maps. Springer, 1997.

[87] V. Kolmogorov and R. Zabih. What energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):147–159, 2004.

[88] M. Kopicki, A. Sloman, J. Wyatt, and R. Dearden. Learning to predict in
robotic manipulation. Technical report, 2008.

[89] M. Kopicki, J. Wyatt, and R. Stolkin. Prediction learning in robotic pushing
manipulation. In International Conference on Advanced Robotics, 2009. ICAR
2009, pages 1–6. IEEE, June 2009.

186 References

[90] M. Kopicki, S. Zurek, R. Stolkin, T. Morwald, and J. Wyatt. Learning to
predict how rigid objects behave under simple manipulation. In Proceedings of
the 2011 IEEE International Conference on Robotics and Automation (ICRA),
pages 5722 –5729, May 2011.

[91] M. Kopicki. Prediction learning in robotic manipulation. Ph.d. thesis, Uni-
versity of Birmingham, April 2010.

[92] M. Kristan, J. Perš, A. Leonardis, and S. Kovačič. A hierarchical dynamic
model for tracking in sports. In Proceedings of the Sixteenth Electrotechnical
and Computer Science Conference, September 2007.

[93] M. Kristan, J. Perš, M. Perše, and S. Kovačič. Closed-world tracking of
multiple interacting targets for indoor-sports applications. Computer Vision
and Image Understanding, 113(5):598–611, 2009.

[94] M. Kristan, A. Leonardis, and D. Skočaj. Multivariate online kernel density
estimation with gaussian kernels. Pattern Recognition, 2011.

[95] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, and others. Object–action complexes:
Grounded abstractions of sensory–motor processes. Robotics and Autonomous
Systems, 59(10):740–757, 2011.

[96] M. Krützen, J. Mann, M. R. Heithaus, R. C. Connor, L. Bejder, and W. B.
Sherwin. Cultural transmission of tool use in bottlenose dolphins. Proceed-
ings of the National Academy of Sciences of the United States of America,
102(25):8939–8943, 2005.

[97] W. J. Krzanowski and Y. T. Lai. A criterion for determining the number of
groups in a data set using sum-of-squares clustering. Biometrics, 44(1):23–34,
1988.

[98] G. Lakoff. Women, fire, and dangerous things: What categories reveal about
the mind. University of Chicago press, 1987.

[99] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and
segmentation with an implicit shape model. In Workshop on statistical learning
in computer vision, ECCV, volume 2, page 7, 2004.

References 187

[100] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, 28(1):84–95, 1980.

[101] S. P. Lloyd. Least squares quantization in PCM’s. Bell Telephone Lab.
Paper, Murray Hill. NJ, 1957.

[102] B. Long, P. S. Yu, and Z. M. Zhang. A general model for multiple view
unsupervised learning. In Proc. 8th SIAM Int. Conf. Data Mining, pages 822–
833, 2008.

[103] M. Lopes and J. Santos-Victor. Visual learning by imitation with motor
representations. IEEE Transactions on Systems, Man, and Cybernetics—Part
B: Cybernetics, 35(3), 2005.

[104] E. López-Rubio. Probabilistic self-organizing maps for continuous data.
Neural Networks, IEEE Transactions on, 21(10):1543–1554, 2010.

[105] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental
robotics: a survey. Connection Science, 15(4):151–190, 2003.

[106] K. F. MacDorman. Partition nets: An efficient on-line learning algorithm.
In Ninth International Conference on Advanced Robotics, 1999.

[107] K. MacDorman. Responding to affordances: learning and projecting a
sensorimotor mapping. In Robotics and Automation, 2000. Proceedings. ICRA
’00. IEEE International Conference on, volume 4, pages 3253–3259 vol.4, 2000.

[108] J. MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, page 14, 1967.

[109] J. Malcolm, Y. Rathi, and A. Tannenbaum. A graph cut approach to image
segmentation in tensor space. In Workshop on Component Analysis Methods
(CVPR), pages 18–25, 2007.

[110] L. S. Mark. Eyeheight-scaled information about affordances: A study of
sitting and stair climbing. Journal of Experimental Psychology: Human Per-
ception and Performance, 13(3):361, 1987.

[111] D. Marr and others. Vision: A computational investigation into the human
representation and processing of visual information. 1982.

188 References

[112] M. J. Mayo. Symbol grounding and its implications for artificial intelligence.
In Proceedings of the 26th Australasian computer science conference-Volume 16,
pages 55–60, 2003.

[113] M. E. McCarty, R. K. Clifton, D. H. Ashmead, P. Lee, and N. Goubet. How
infants use vision for grasping objects. Child Development, 72(4):973–987, 2001.

[114] F. Mechner and L. Guevrekian. Effects of deprivation upon counting and
timing in rats. Journal of the Experimental Analysis of Behavior, 5(4):463,
1962.

[115] F. Mechner. Probability relations within response sequences under ratio
reinforcement. Journal of the Experimental Analysis of Behavior, 1(2):109,
1958.

[116] G. Metta and P. Fitzpatrick. Early integration of vision and manipulation.
Adaptive Behavior, 11(2):109–128, 2003.

[117] C. F. Michaels. Affordances: Four points of debate. Ecological Psychology,
15(2):135, April 2003.

[118] R. Miikkulainen. Dyslexic and category-specific aphasic impairments in
a self-organizing feature map model of the lexicon. Brain and Language,
59(2):334–366, 1997.

[119] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic
grasp planning using shape primitives. In Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference on, volume 2, pages
1824–1829 vol.2, 2003.

[120] L. Montesano and M. Lopes. Learning grasping affordances from local
visual descriptors. In Development and Learning, 2009. ICDL 2009. IEEE 8th
International Conference on, pages 1–6, 2009.

[121] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learn-
ing object affordances: From sensory-motor coordination to imitation. IEEE
Transactions on Robotics, 24(1):15–26, 2008.

[122] J. Mugan and B. Kuipers. Learning distinctions and rules in a continuous
world through active exploration. In Proc. of the Int. Conf. on Epigenetic
Robotics, 2007.

References 189

[123] J. Mugan and B. Kuipers. Towards the application of reinforcement learning
to undirected developmental learning. In Proc. of the Int. Conf. on Epigenetic
Robotics, 2008.

[124] K. M. Newell, D. M. Scully, F. Tenenbaum, and S. Hardiman. Body scale
and the development of prehension. Developmental Psychobiology, 22(1):1–13,
January 1989.

[125] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes. In Advances in Neural
Information Processing Systems, pages 849–856, 2001.

[126] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal
deep learning. In NIPS 2010 Workshop on Deep Learning and Unsupervised
Feature Learning, 2010.

[127] D. Omrčen, C. Boge, T. Asfour, A. Ude, and R. Dillmann. Autonomous ac-
quisition of pushing actions to support object grasping with a humanoid robot.
In Proceedings of the 9th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 277 –283, December 2009.

[128] R. R. Oudejans, C. F. Michaels, B. van Dort, and E. J. P. Frissen. To cross
or not to cross: The effect of locomotion on street-crossing behavior. Ecological
Psychology, 8(3):259–267, 1996.

[129] E. Oztop, N. S. Bradley, and M. A. Arbib. Infant grasp learning: a com-
putational model. Experimental Brain Research, 158(4), June 2004.

[130] L. Paletta and G. Fritz. Reinforcement learning of predictive features. In
Proceedings of 31st Workshop of the Austrian Association for Pattern Recogni-
tion (AAPR/OAPR), pages 105–112, 2007.

[131] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner. Learning to
perceive affordances in a framework of developmental embodied cognition. In
Development and Learning, 2007. ICDL 2007. IEEE 6th International Confer-
ence on, pages 110–115, 2007.

[132] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner. Perception
and developmental learning of affordances in autonomous robots. LECTURE
NOTES IN COMPUTER SCIENCE, 4667:235, 2007.

190 References

[133] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 1988.

[134] C. E. Pedreira. Learning vector quantization with training data selection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):157–
162, 2006.

[135] F. S. Perotto, J. C. Buisson, and L. O. Alvares. Constructivist anticipa-
tory learning mechanism (CALM) - dealing with partially deterministic and
partially observable environments. In Proceedings of the Seventh International
Conference on Epigenetic Robotics, 2007.

[136] J. Piaget. The Origins of Intelligence in Children. International Universities
Press, 1952.

[137] M. Popovic, D. Kraft, L. Bodenhagen, E. Baseski, N. Pugeault, D. Kragic,
T. Asfour, and N. Krüger. A strategy for grasping unknown objects based
on co-planarity and colour information. Robotics and Autonomous Systems,
58(5):551–565, 2010.

[138] M. Pregenzer, G. Pfurtscheller, and D. Flotzinger. Automated feature se-
lection with a distinction sensitive learning vector quantizer. Neurocomputing,
11(1):19–29, 1996.

[139] J. D. Pruetz and P. Bertolani. Savanna chimpanzees, pan troglodytes verus,
hunt with tools. Current Biology, 17(5):412–417, 2007.

[140] A. K. Qin and P. N. Suganthan. Initialization insensitive LVQ algorithm
based on cost-function adaptation. Pattern Recognition, 38(5):773–776, May
2005.

[141] R. M. Ramstad. A Constructivist Approach to Artificial Intelligence Reex-
amined. PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical
Engineering and Computer Science, 1992.

[142] E. S. Reed. Encountering the world: Toward an ecological psychology. Ox-
ford University Press, USA, 1996.

[143] B. Ridge and A. Ude. Action-grounded push affordance bootstrapping of
unknown objects. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2791–2798, November 2013.

References 191

[144] B. Ridge, D. Skočaj, and A. Leonardis. Self-supervised cross-modal on-
line learning of basic object affordances for developmental robotic systems. In
Proceedings of the 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 5047–5054, Anchorage, USA, May 2010. IEEE.

[145] B. Ridge, A. Leonardis, A. Ude, M. Deniša, and D. Skočaj. Self-supervised
online learning of basic object push affordances. International Journal of Ad-
vanced Robotic Systems, 2014.

[146] H. Robbins and S. Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, 22(3):400–407, 1951.

[147] M. T. Rosenstein and P. R. Cohen. Symbol grounding with delay coordi-
nates. In Working Notes of the AAAI Workshop on The Grounding of Word
Meaning, 1998.

[148] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53–65, November 1987.

[149] A. Roy and S. Marcel. Crossmodal matching of speakers using lip and
voice features in temporally non-overlapping audio and video streams. In 2010
International Conference on Pattern Recognition, pages 4504–4507, 2010.

[150] D. K. Roy and A. P. Pentland. Learning words from sights and sounds: A
computational model. Cognitive science, 26(1):113–146, 2002.

[151] D. Roy. Grounded speech communication. In Sixth International Confer-
ence on Spoken Language Processing, 2000.

[152] D. Roy. Learning visually grounded words and syntax of natural spoken
language. Evolution of communication, 4(1):33–56, 2002.

[153] D. K. Roy. Learning visually grounded words and syntax for a scene de-
scription task. Computer Speech & Language, 16(3-4):353–385, 2002.

[154] D. Roy. Grounded spoken language acquisition: Experiments in word learn-
ing. IEEE Transactions on Multimedia, 5(2):197–209, 2003.

[155] D. Roy. Grounding words in perception and action: Insights from compu-
tational models. Trends in Cognitive Science, 9(8):389–96, 2005.

192 References

[156] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk. To afford
or not to afford: A new formalization of affordances toward affordance-based
robot control. Adaptive Behavior, 15(4):447, 2007.

[157] J. T. Sanders. An ontology of affordances. Ecological Psychology, 9(1):97–
112, 1997.

[158] A. Sato and K. Yamada. Generalized learning vector quantization. In
Advances in Neural Information Processing Systems 8, pages 423–429, Denver,
CO, USA, 1996. MIT Press.

[159] A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng. Robotic grasping of
novel objects. In In Proceedings of the Twentieth Annual Conference on Neural
Information Processing Systems Conference, Vancouver, Canada, 2006.

[160] A. Saxena, J. Driemeyer, J. Kearns, C. Osondu, and A. Ng. Learning to
grasp novel objects using vision. In Experimental Robotics, pages 33–42, 2008.

[161] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects
using vision. The International Journal of Robotics Research, 27(2):157, 2008.

[162] A. Saxena, L. Wong, M. Quigley, and A. Ng. A vision-based system for
grasping novel objects in cluttered environments. Robotics Research, pages
337–348, 2011.

[163] D. Skočaj, B. Ridge, and A. Leonardis. On different modes of continuous
learning of visual properties. In Proceedings of the Fifteenth Electrotechnical
and Computer Science Conference, pages 105–108, Portorož, Slovenia., 2006.

[164] D. Skočaj, G. Berginc, B. Ridge, A. Štimec, M. Jogan, O. Vanek,
A. Leonardis, M. Hutter, and N. Hawes. A system for continuous learning
of visual concepts. In Proceedings of Fifth International Conference on Com-
puter Vision Systems (ICVS), Bielefeld, Germany, 2007.

[165] D. Skočaj, B. Ridge, G. Berginc, and A. Leonardis. A framework for con-
tinuous learning of simple visual concepts. In Proceedings of the Twelveth
Computer Vision Winter Workshop, pages 99–105, St. Lambrecht, Austria,
2007.

References 193

[166] D. Skočaj, M. Kristan, A. Vrečko, B. Ridge, A. Leonardis, S. Roa, and G.-J.
Kruijff. DR 5.2 continuous learning of cross-modal concepts. EU FP7 CogX
project year 2 deliverable, University of Ljubljana, DFKI Saarbrücken, 2010.

[167] M. Steedman. Plans, affordances, and combinatory grammar. Linguistics
and Philosophy, 25(5):723–753, 2002.

[168] L. Steels and F. Kaplan. AIBO’s first words: The social learning of language
and meaning. Evolution of communication, 4(1):3–32, 2002.

[169] L. Steels and P. Vogt. Grounding adaptive language games in robotic
agents. In Proceedings of the fourth european conference on artificial life, pages
474–482, 1997.

[170] T. A. Stoffregen. Affordances as properties of the animal-environment sys-
tem. Ecological Psychology, 15(2):115–134, 2003.

[171] A. Stoytchev. Behavior-grounded representation of tool affordances. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 3060–3065, 2005.

[172] A. Stoytchev. Toward learning the binding affordances of objects: A
behavior-grounded approach. In Proceedings of AAAI Symposium on Develop-
mental Robotics, pages 17–22, 2005.

[173] R. Sun. Symbol grounding: a new look at an old idea. Philosophical
Psychology, 13(2):149–172, 2000.

[174] S. Sun. A survey of multi-view machine learning. Neural Computing and
Applications, pages 1–8, 2013.

[175] M. J. Swain and D. H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11–32, 1991.

[176] J. D. Sweeney and R. Grupen. A model of shared grasp affordances from
demonstration. In Humanoid Robots, 2007 7th IEEE-RAS International Con-
ference on, pages 27–35, 2007.

[177] A. H. Taylor, G. R. Hunt, J. C. Holzhaider, and R. D. Gray. Spontaneous
metatool use by new caledonian crows. Current Biology, 17(17):1504–1507,
2007.

194 References

[178] C. R. Thouless, J. H. Fanshawe, and B. C. R. Bertram. Egyptian vultures
neophron percnopterus and ostrich struthio camelus eggs: the origins of stone-
throwing behaviour. Ibis, 131(1):9–15, 1989.

[179] M. K. Tsay, K. H. Shyu, and P. C. Chang. Feature transformation with gen-
eralized learning vector quantization for hand-written chinese character recog-
nition. IEICE Transactions on Information and Systems, E82-D(3):687–692,
1999.

[180] M. Tucker and R. Ellis. On the relations between seen objects and com-
ponents of potential actions. Journal of Experimental Psychology: Human
perception and performance, 24(3):830, 1998.

[181] M. T. Turvey, K. Shockley, and C. Carello. Affordance, proper function, and
the physical basis of perceived heaviness. Cognition, 73(2):B17–B26, December
1999.

[182] M. T. Turvey. Affordances and prospective control: An outline of the
ontology. Ecological Psychology, 4(3):173–187, 1992.

[183] G. F. Tzortzis and C. L. Likas. Multiple view clustering using a weighted
combination of exemplar-based mixture models. IEEE Transactions on Neural
Networks, 21(12):1925–1938, December 2010.

[184] A. Ude, D. Schiebener, N. Sugimoto, and J. Morimoto. Integrating surface-
based hypotheses and manipulation for autonomous segmentation and learning
of object representations. In Proceedings of the 2012 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1709 –1715, May 2012.

[185] E. Ugur, M. R. Dogar, M. Cakmak, and E. Sahin. Curiosity-driven learning
of traversability affordance on a mobile robot. In Proceedings of the 6th IEEE
International Conference on Development and Learning (ICDL), pages 13–18,
2007.

[186] E. Ugur, M. R. Dogar, M. Cakmak, and E. Sahin. The learning and use of
traversability affordance using range images on a mobile robot. In Proceedings
of the 2007 IEEE International Conference on Robotics and Automation, pages
1721–1726, 2007.

References 195

[187] E. Ugur, E. Oztop, and E. Sahin. Goal emulation and planning in perceptual
space using learned affordances. Robotics and Autonomous Systems, 2011.

[188] E. Ugur, E. Sahin, and E. Oztop. Self-discovery of motor primitives and
learning grasp affordances. In Proceedings of the 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3260 –3267, Oc-
tober 2012.

[189] E. Ugur, S. Szedmak, and J. Piater. Bootstrapping paired-object affor-
dance learning with learned single-affordance features. In 4th International
Conference on Development and Learning and on Epigenetic Robotics, 2014.

[190] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol-
ume 1, pages I–511. IEEE, 2001.

[191] E. Visalberghi, E. Addessi, V. Truppa, N. Spagnoletti, E. Ottoni, P. Izar,
and D. Fragaszy. Selection of effective stone tools by wild bearded capuchin
monkeys. Current Biology, 19(3):213–217, 2009.

[192] P. Vogt. The physical symbol grounding problem. Cognitive Systems Re-
search, 3(3):429–457, 2002.

[193] W. H. Warren and S. Whang. Visual guidance of walking through apertures:
Body-scaled information for affordances. Journal of Experimental Psychology:
Human Perception and Performance, 13(3):371, 1987.

[194] W. H. Warren. Perceiving affordances: Visual guidance of stair climb-
ing. Journal of Experimental Psychology: Human Perception and Performance,
10(5):683, 1984.

[195] A. J. Wells. Gibson’s affordances and turing’s theory of computation. Eco-
logical Psychology, 14(3):140–180, July 2002.

[196] J. Weng and W. Hwang. Incremental hierarchical discriminant regression.
IEEE Transactions on Neural Networks, 18(2):397, 2007.

[197] J. Weng and J. Weng. Developmental robotics: theory and experiments.
International Journal of Humanoid Robotics, 1(2):199–236, 2004.

196 References

[198] J. Weng, W. Hwang, Y. Zhang, C. Yang, and R. Smith. Developmental
Humanoids: Humanoids that Develop Skills Automatically. 2000.

[199] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and
E. Thelen. ARTIFICIAL INTELLIGENCE: Autonomous Mental Development
by Robots and Animals, volume 291. 2001.

[200] J. Weng. The developmental approach to intelligent robots. 1998 AAAI
Spring Symposium Series, Integrating Robotic Research: Taking The Next Leap,
Stanford University, 1998.

[201] M. Wertheimer. Laws of organization in perceptual forms. A source book
of Gestalt psychology, pages 71–88, 1938.

[202] K. Woods, D. Cook, L. Hall, K. Bowyer, and L. Stark. Learning member-
ship functions in a function-based object recognition system. Arxiv preprint
cs.AI/9510103, 1995.

[203] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr. Cognitive
agents — a procedural perspective relying on the predictability of object-
action-complexes (OACs). Robotics and Autonomous Systems, 57(4):420–432,
April 2009.

[204] M. Wünstel and R. Moratz. Automatic object recognition within an
office environment. Canadian Conference on Computer and Robot Vision
(CRV2004), 2004.

[205] H. Yin and N. M. Allinson. Self-organizing mixture networks for probability
density estimation. IEEE Transactions on Neural Networks, 12(2):405–411,
2001.

[206] Y. Zhang and J. Weng. Action chaining by a developmental robot with a
value system. Development and Learning, 2002. Proceedings. The 2nd Inter-
national Conference on, pages 53–60, 2002.

[207] Y. Zhang and J. Weng. Chained action learning through real-time inter-
actions. Neural Networks, 2002. IJCNN\’02. Proceedings of the 2002 Interna-
tional Joint Conference on, 3, 2002.

Appendix A

Derivation of Update Rules for GLVQ
that use Probabilities instead of Class
Labels

Following the discussion in Section 4.3.2, in the case where we do not have explicit
class labels for training samples, but instead have a probability function 0 ≤
φ(wj) ≤ 1 indicating the probability of prototype wj correctly classifying the
current training sample, we may define

wj = arg min
wl

{
d2(x,wl)

∣∣∣∀l : wl ∈
{
wi ∈ W |∀i : φ(wi) ≥ ε+ δ

}}
,

wk = arg min
wl

{
d2(x,wl)

∣∣∣∀l : wl ∈
{
wi ∈ W |∀i : φ(wi) < ε− δ

}}
.

to be the nearest matching and non-matching prototypes in the vicinity of sample
x respectively, where ε is some threshold value and ±δ is a window of uncertainty
around ε.

The following is adapted from the original GLVQ stochastic gradient descent
derivation in [158]. Given an error function

E =
m∑
i=1

f(g(xi))

recall that the original GLVQ [158] definition for g(x) is

g(x) = dj − dk
dj + dk

= dj
dj + dk

− dk
dj + dk

197

198 Appendix

where dj and dk are the distances of x to the nearest correctly labeled prototype
and incorrectly labeled prototype respectively.

We seek to re-define g(x) such that it accounts for the uncertainty in the
class identity of the prototypes. Recall (Section 4.3.1.2) that under the GLVQ
framework, g should be a function that is negative when the sample is classified
correctly and positive when the sample is classified incorrectly. We may incorpo-
rate the φ probability function into g such that when φ(wj) indicates uncertainty
in the correctness of wj, g(x) becomes more positive and, equally, when φ(wk)
indicates uncertainty in the incorrectness of wk, g(x) becomes more negative. We
thus re-define g(x) as follows:

g(x) =
(

dj
dj + dk

− (1− φ(wj)
∣∣∣∣∣ dj
dj + dk

− 1
2

∣∣∣∣∣
)
−
(

dk
dj + dk

− φ(wk)
∣∣∣∣∣ dk
dj + dk

− 1
2

∣∣∣∣∣
)

= 2dj − 2dk − (1− φ(wj)− φ(wk))|dj − dk|
2(dj + dk)

.

Using this altered definition of g, we seek to minimize E via stochastic gradient
descent [146], such that the prototypes are updated in the following fashion:

wi := wi − α ∂E
∂wi

.

Therefore, since at a given timestep t, both wj and wk have been selected and
the terms φ(wj) and φ(wk) are therefore constant, taking the partial derivatives
of E with respect to both wj and wk, we have:

∂E

∂wj
= ∂f

∂g

∂g

∂dj
∂dj

∂wj
= −∂f

∂g

dk(φ(wj
t) + φ(wk

t) + 1)
(dj + dk)2 (x−wj),

∂E

∂wk
= ∂f

∂g

∂g

∂dk
∂dk

∂wk
= ∂f

∂g

dj(φ(wj
t) + φ(wk

t) + 1)
(dj + dk)2 (x−wk).

This gives us update rules of the form:

wj
t+1 := wj

t + α
∂f

∂g

dk(φ(wj
t) + φ(wk

t) + 1)
(dj + dk)2 (x−wj

t),

wk
t+1 := wk

t − α
∂f

∂g

dj(φ(wj
t) + φ(wk

t) + 1)
(dj + dk)2 (x−wk

t),

where
∂f

∂g
= ft(g(x))(1− ft(g(x))

when f is defined as the sigmoidal function

ft(g(x)) = 1
1 + exp−g(x)t . (A.1)

Appendix B

Extended Summary in Slovenian

B.1 Uvod

B.1.1 Motivacija

Če naj bi roboti bistveno povečali svoje sposobnosti in prežemali naše vsakdanje
življenje na vseh področjih, bodo morali biti sposobni avtonomnega učenja in
prilagajanja svojemu okolju. Razlog za to je preprost: svet okoli nas je komple-
ksen! Svet, ki nas obkroža, je tako kompleksen, da, pravzaprav paradoksalno,
lahko zaidemo v situacije, ko roboti z lahkoto rešijo najbolj zapletene naloge,
navidez enostavne naloge pa predstavljajo zanje zelo zapleten problem. Danda-
nes se roboti rutinsko uporabljajo za zahtevne, a zelo dobro definirane naloge v
nadzorovanih okoljih, kot je proizvodnja avtomobilov. Na tak način, z ročnim
programiranjem in definiranjem nalog, je zelo težko oz. skoraj nemogoče upošte-
vati vse mogoče situacije, ki jih lahko srečamo v bolj nenadzorovanem okolju kot
so moderni družinski domovi. Srečni inženir robota, ki opravlja kompleksna a
ponavljajoče se dela, kot je npr. izdelava istega tiskanega vezja za avtomobilski
satelitski navigacijski sistem, je lahko brezskrben, saj se načrt tiskanega vezja le
redko spremeni; po drugi strani pa bo nesrečni snovalec večfunkcijskega hišnega
robota obupoval, ko robot ne bo uspel najti belega daljinskega televizijskega
upravljavca, ker je bil programiran le za iskanje črnih.

Rešitev tega problema je v učenju; toda razvoj robotov s sposobnostjo učenja
je zelo globok in večplasten problem, ki zaobjema veliko različnih raziskovalnih
področij, kot so umetna inteligenca, strojno učenje, računalniški vid, psihologija,
nevroznanost in druge. Eden izmed teh problemov, in sicer učenje funkcionalnih

199

200 Appendix

lastnosti predmetov, je glavna tema tega dela. Ena izmed osnovnih človekovih
sposobnosti je zmožnost učenja o predmetih in njihovih lastnostih, tudi funkci-
onalnih lastnostih; sposobni smo se naučiti kako se predmeti, ki nas obkrožajo,
obnašajo, ko na različne načine rokujemo z njimi. Ta sposobnost je bistvena za
učenje bolj kompleksnih konceptov, lahko celo rečemo, da je ključna za razvoj
naše inteligence. Iz tega lahko sklepamo, da ta sposobnost igra podobno ključno
vlogo tudi pri razvoju kompleksnih sposobnosti inteligentnih robotov.

B.1.1.1 Kaj so funkcionalne lastnosti predmetov?

Izraz „funkcionalna lastnost predmeta” (ang. object affordance) je skoval psiholog
J.J. Gibson [66] in opisuje interaktivne zmožnosti, ki jih agentu omogoča njegovo
okolje. Npr., žoga omogoča, oz. nudi (ang. affords), da se jo zakotali, stikalo pa
omogoča prižig luči. Gibson je ta pojem definiral kot:

„Funkcionalne lastnosti okolja so definirane s tem kar nudijo ži-
valim, kar jim omogočajo, v njihovo dobro ali slabo. . . . Nanašajo
se tako na okolje kot na žival; implicirajo komplementarnost živali in
okolja.” [66, str. 127].

Ravno ta komplementarnost živali in okolja igra zelo pomembno vlogo. Ko govo-
rimo o tem, kako bi se spoznavni agent, kot je robot, učil funkcionalnih lastnosti
predmetov, moramo upoštevati kar nekaj faktorjev, kot so morfologija ali oblika
agenta, morfologija okolja in objektov v njem, kontekst okolja ter kontekst objek-
tov (npr., kako je objekt postavljen v okolje), kot tudi kontekst agenta, in tudi
vse možne akcije, ki jih agent lahko izvrši v danem kontekstu. Oz., kot pravi
Gibson:

„Različne postavitve omogočajo različna obnašanja različnim živa-
lim ter različne tipe interakcij. . . . Višina kolena za otroka ni enaka
višini kolena za odraslega, torej so funkcionalne lastnosti predmetov
relativne glede na velikost posameznika.” [66, str. 128].

Ravno zato je sposobnost učenja funkcionalnih lastnosti predmetov na dinamičen
in razvojen (ang. developmental) način tako ključnega pomena. Za ljudi in tudi
vse ostale žive organizme je značilno, da niti dve telesi nista enaki. Še več, telesa
se skozi življenje dramatično spreminjajo, iz česar izhaja zahteva po neprestanem

B.1 Uvod 201

prilagajanju in kontinuiranem učenju funkcionalnih lastnosti predmetov. Vsak
spoznavni organizem v naravi se je v evolucijski zgodovini razvijal skupaj z oko-
ljem, ravno tako se skupaj s svojim okoljem razvija v teku svojega življenja. In
to tako, da sta njegova zaznavni in motorični sistem zgrajena posebej zanj, tako
da mu omogočata razpoznavanje in uporabo funkcionalnih lastnosti predmetov,
ki jih potrebuje, na način, ki mu omogoča preživetje in razmnoževanje. Oz. kot
pravi pregovor: Kar je dobro za Petra morda ni dobro za Pavla: kar ena vrsta
organizma zazna kot funkcionalno lastnost, ki jo lahko uporabi, je morda druga
vrsta organizma ne more uporabiti ali niti zaznati. Razlog pa je seveda v tem,
da imata ta dva organizma različen nabor senzorjev in aktuatorjev za zaznavanje
in interakcijo z okoljem.

V naravi najdemo veliko takšnih primerov. Pes se ne bo nikoli naučil prijema-
nja predmetov z njegovimi šapami, ker mu anatomija njegovih šap to ne omogoča.
Krava razpozna travo kot hrano, medtem ko mravlja isto travo razpozna kot visok
objekt na katerega lahko spleza. Krava ne bo nikoli zaznala trave kot objekta, ki
bi lahko podpiral njeno težo in mravlja se ne bo nikoli namenila prežvečiti celo-
tne travne bilke. Nedavna študija muhe Drosophila [16] zelo lepo ponazarja kako
pomanjkanje zmožnosti zaznavanja trenutnega konteksta okolja in akcij, ki jih
omogoča, lahko pomeni razliko med življenjem in smrtjo. Mehanizem za nadzor
motoričnih akcij, ki pri načrtovanju uporablja vizualno informacijo, ji običajno
omogoča pobeg pred grozečo nevarnostjo. Ko nekdo poskuša muho mahniti s
časopisom, muhin mehanizem za vizualno zaznavanje zazna časopis, ki se ji hitro
približuje, in predno odleti na varno, muha izračuna lokacijo časopisa ter postavi
položaj svojega telesa in kril v položaj za vzletanje. Toda, če se muhi s časopisom
približamo bolj počasi, le-ta ne zazna tega kot nevarnost in ne izvede običajnega
pred-vzletnega protokola, ker je njen zaznavni mehanizem prilagojen hitrim pre-
mikom in ne počasnim. Zaradi te neprilagojenosti ima precej manj možnosti za
preživetje.

Torej, zakaj je to vprašanje pomembno pri načrtovanju robota sposobnega
učenja funkcionalnih lastnosti? Glavni poudarek je na dejstvu, da je zelo velika
odvisnost med tem kar sistem lahko zazna, uporabi ali se nauči na eni strani, in
funkcionalnimi lastnosti predmetov ter senzorji, aktuatorji in spoznavni meha-
nizmi, ki so mu na voljo, na drugi strani. Še več, celo zelo majhna sprememba
v postavitvi ali majhna razlika med sistemi ima lahko zelo dramatičen vpliv.
Npr., zajem dobrega oblaka 3D točk, ki predstavlja majhen predmet, s stereo

202 Appendix

kamero je zelo odvisen od raznih spremenljivk, kot so razdalja med kamerama,
tekstura objekta, osvetlitev, oddaljenost predmeta od kamere, ipd. To lahko pov-
zroči različno zaznavo objekta, kot zaobljenega ali ploskega, grobega ali gladkega,
ali celo prisotnega ali neprisotnega. Tem faktorjem moramo torej nameniti po-
sebno pozornost med konstruiranjem takšnega sistema. Čeprav si seveda želimo
imeti v sistemu dobre senzorje in aktuatorje, je modro hkrati tudi razviti splošne
in plastične mehanizme učenja, ki bodo lahko sistem prilagodili na spremembe
v senzorskem in motoričnem sistemu ali na ostale nepredvidene okoliščine brez
ponovnega programiranja.

B.1.1.2 Spoznavna in razvojna robotika

Iz naslova doktorske disertacije izhaja, da se v njej predvsem osredotočamo na
problem kako naj robot odkriva in se uči osnovnih funkcionalnih lastnosti pred-
metov v njegovem okolju. Z uporabo svojih senzorjev za opazovanje predmetov,
tako statičnih kot med gibanjem, in z uporabo aktuatorjev za interakcijo z njimi,
lahko robot izpelje relacijo med morfologijo objektov, različnimi akcijami ter ob-
našanjem predmetov med interakcijo z njimi. Če je informacija, uporabljena za
izpeljavo takšnih relacij, dovolj bogata in se sistem te relacije učinkovito nauči,
jih lahko nato posploši in uporabi v novih situacijah. Z drugimi besedami, robot
naj bi izvedel akcijo, npr. „potisni center predmeta”, na podobnih predmetih,
npr. na nogometni žogi ali na teniški žogici, in opazoval kaj se bo zgodilo; v tem
primeru bi se predmeta odkotalila stran, ker sta oba okrogle oblike. Ko bi nato
sistem zaznal pomarančo, bi moral biti sposoben sklepati, da se bo tudi odkotalila
stran, ker se je tako naučil z opazovanjem obnašanja podobnih predmetov. In, če
bi sistem izvedel podobno akcijo potiskanja na škatlah za kosmiče in knjigah, in
opazil, da se predmet samo malce podrsa naprej, naj bi bil nato sposoben pred-
videti, da se bo zaradi podobne oblike podobno gibal tudi paket igralnih kart, če
po potisnjen na podoben način.

V zadnjih letih smo bili priča porastu intenzitete aktivnosti na področju ra-
zvojne robotike (ang. developmental robotics) [105], s ciljem preiti od trenutnih
robotskih sistemov, zasnovanih za konkretne omejene naloge, k bolj robustnim
in prilagodljivim platformam in arhitekturam. Zaželene lastnosti takih sistemov
vključujejo zmožnost konstruiranja novih konceptov na osnovi predhodno nauče-
nih ali poznanih konceptov, sposobnost aktivnega učenja v interakciji s človeškim
mentorjem ali drugim inteligentnim agentom, sposobnost učenja v interakciji z

B.1 Uvod 203

okoljem in predmeti v njem ipd. To so seveda težki problemi za katere (še) ne
obstajajo celovite in splošne rešitve, toda med njimi lahko identificiramo mnoge
zanimive in rešljive pod-probleme, kot je tudi problem učenja funkcionalnih la-
stnosti predmetov.

Na področju razvojne robotike je velik poudarek tudi na principu kontinuira-
nega učenja (ang. continuous, on-line learning). Sistem sposoben kontinuiranega
učenja ne zgradi svoje znanje naenkrat, v fazi paketnega učenja, ampak konti-
nuirano iterativno osvežuje svoje znanje skozi celotni življenjski cikel. Glede na
naravo razvojnega robotskega sistema, ki deluje v realnem okolju, kjer se nepre-
stano pojavljajo nove situacije, je realno pričakovati, da sistem ne bo imel venomer
dostopa do vseh podatkov iz preteklosti. Takšen scenarij torej izključuje paketno
učenje, ki predvideva, da so vsi podatki hkrati na voljo.

Zdi se torej, da je prava pot pri načrtovanju razvojnega robotskega sistema,
sposobnega učenja funkcionalnih lastnosti predmetov, takšna, ki bo zgradila sis-
tem zmožen kontinuiranega učenja. Da bi te koncepte prikazali na bolj konkre-
tnem primeru, bomo v naslednjem razdelku podali oris našega scenarija za učenje
funkcionalnih lastnosti predmetov, nato pa bomo te raziskovalne teme bolj na-
tančno razdelali v preostanku tega dela.

B.1.2 Scenarij za učenje funkcionalnih lastnosti predmetov

Različni raziskovalci se posvečajo različnim aspektom učenja funkcionalnih la-
stnosti predmetov v skladu s specifičnimi problemi, ki jih rešujejo in v skladu z
opremo, ki jo imajo na voljo. Mi smo se v našem primeru osredotočili na sce-
narij prikazan na Sliki B.1, ki vključuje robotsko roko, pritrjeno na vodoravno
ravno površino, ter kamere različnih tipov, ki opazujejo sceno s fiksnih položajev.
Objekte postavljamo na površino, sistem pa z robotsko roko izvaja akcije nad
njimi ter s kamerami snema dogajanje.

Osredotočili smo se na bistvo problema učenja funkcionalnih lastnosti predme-
tov, pri čemer nismo dali poudarka na nekatere detajle s področja računalniškega
vida in avtonomne robotike, ki bi še dodatno zapletli celotni problem. Z uporabo
takšne postavitve kot je prikazana na Sliki B.1, in ne npr. z uporabo mobilnega
robota, smo lahko dodatno omejili naravo interakcij, kar je poenostavilo proces
zajemanja podatkov. Naš namen je bil slediti objektom na delovni površini med
interakcijo med robotsko roko in njimi. Z vidika računalniškega vida je takšna

204 Appendix

Slika B.1: Postavitev sistema za učenje funkcionalnih lastnosti predmetov.

statična postavitev kamer zmanjšala verjetnost problematičnih pojavov, kot so
zameglitev slike zaradi gibanja, prekrivanje predmetov in odvisnost od velikosti
predmetov. Fiksna postavitev robotske roke je tudi olajšala probleme povezane z
lokalizacijo predmetov na sceni. Osvetlitev je tudi bila statična in nadzorovana,
kar je olajšalo sledenje in segmentacijo predmetov. K temu je pripomogla tudi
ravna ter lepo teksturirana delovna površina. Omogoča namreč zanesljivo de-
tekcijo ravne ploskve v oblaku 3D točk, zajetih s stereo kamero, kar posledično
olajša zaznavanje ozadja in segmentacijo predmetov postavljenih na mizo.

Slika
predmeta

3D podatki

Akcija
robotske

roke

Video zapis predmeta
v gibanju

Značilnice predmeta Značilnice učinka

Slika B.2: Glavna ideja našega sistema za učenje funkcionalnih lastnosti pred-
metov.

Takšen scenarij nam je omogočil implementacijo in raziskovanje naše glavne
ideje za učenje funkcionalnih lastnosti predmetov, ki je prikazana na Sliki B.2.
Potem, ko postavimo predmet na mizo, sistem zajame vizualne podatke, kot so
slike predmeta in oblak 3D točk, ter iz podatkov izloči glavne značilnice predmeta
(ang. object features). Robotska roka potem izvede akcijo, sistem pa posname
video interakcije med roko in predmetom. Iz tega videa se nato izločijo značilnice

B.1 Uvod 205

učinka akcije (ang. effect features). Naš glavni cilj je bil izgradnja modela ter uč-
nega algoritma za ta scenarij, tako da bi bil robotski sistem sposoben postopoma
nadgrajevati znanje o obnašanju predmetov z opazovanjem novih predmetov ter
interakcij z njimi. Ko bi torej sistemu predstavili nov predmet, naj bi bil sposoben
glede na zajete značilnice predmeta in naučen model predvideti kaj se bo s tem
predmetom zgodilo v smislu naučenih učinkov akcij, bodisi kategorij funkcional-
nih lastnosti predmeta ali vektorjev značilnic učinka. V idealnem primeru bi si
želeli, da bi bil sistem sam zmožen kreirati svoje modele funkcionalnih lastnosti
predmetov na vsaj do neke mere razvojen način.

B.1.3 Prispevki

Glavni prispevki k znanosti so naslednji:

• V tem delu predlagamo samo-nadzorovani več-modalni algoritem za učenje,
ki dinamično odkrije kategorije v podatkih in jih uporablja za usmerjanje
nadzorovanega učenja. Pristop je osnovan na principu kvantizacije vektor-
jev z uporabo prototipov za predstavitev različnih senzorskih modalnosti
(oz. pogledov na podatke), ki so med-modalno povezane s Hebbianovo
preslikavo. Algoritem izvaja sprotno gručenje podatkov (ang. clustering)
v vsaki izmed modalnosti, medtem ko Hebbianove preslikave hranijo po-
datke o sopojavnosti med njimi. To omogoča več-modalne preslikave iz ene
modalnosti v drugo, ki so gonilna sila samo-nadzorovanosti predlaganega
algoritma. Ta je osnovan na paradigmi učenja kvantizacije vektorjev (ang.
learning vector quantisation, LVQ). Učenje se odvija brez eksplicitne po-
trebe po oznakah razredov (ang. labels), saj se namesto tega uporabljajo
verjetnosti več-modalnih preslikav.

• Predlagamo tudi dva nova algoritma za določanje ustreznosti posameznih
značilnic pri učenju kvantizacije vektorjev, ki dopolnjujeta algoritem za
samo-nadzorovano učenje. Algoritma uporabljata Fisherjev kriterij za oce-
njevanje pomembnosti posameznih dimenzij v prostoru značilnic. Prvi iz-
med njiju pri tem uporablja globalne pozicije prototipov, medtem ko drugi
uporablja lokalne pozicije najbližjih prototipov. Oba algoritma sta zasno-
vana tako, da se lahko uporabljata skupaj s kopico metod, ki temeljijo na
algoritmu LVQ. V delu tudi pokažemo kako se lahko lokalna metoda upo-

206 Appendix

rabi med samim sprotnim samo-nadzorovanim učenjem, ko so na voljo samo
verjetnosti za posamezne razrede in ne tudi njihove dejanske oznake.

• Razvili smo robotski sistem z ustreznimi sposobnostmi za izvajanje akcij ter
sposobnostmi za zajemanje in procesiranje vizualne informacije, ki izvaja
poskuse v realnem svetu ter testira naše algoritme na pridobljenih podatkih.
Z nadgradnjo znanih tehnik računalniškega vida smo razvili algoritme za
izločanje značilnic oblike predmetov iz statičnih slik ter izločanje značilnic
učinkov akcij iz videa. To je zahtevalo razvoj več-modalnega algoritma za
segmentacijo objektov z uporabo slik in 3D podatkov. Za sledenje pred-
metov na videu smo uporabili filter z delci, rezultati pa so bili izboljšani
in stabilizirani z uporabo barvnih histogramov, kar je omogočalo analizo
sprememb v izgledu predmeta.

• Pokazali bomo tudi eksperimentalne rezultate, ki demonstrirajo, da, ko
primerjamo popolnoma nadzorovano in samo-nadzorovano učenje LVQ v
določenih pogojih, dodatna informacija, ki jo zagotavlja samo-nadzorovani
nadzor iz druge modalnosti lahko zagotovi boljšo delovanje učnega algo-
ritma kot popolnoma nadzorovano učenje s poznanimi oznakami. Poizkusi,
ki to demonstrirajo so bili izvedeni v pogojih striktnega sprotnega učenja
brez shranjevanja učnih primerov, rezultate pa smo primerjali po kratkih
učnih epizodah. V teh pogojih se je boljše izkazal samo-nadzorovani algo-
ritem, ki je izkoristil dinamično označevanje prototipov v nasprotju s po-
polnoma nadzorovanim učenjem, ki mora zaradi pomanjkanja vnaprejšnje
informacije o prototipih, na začetku le-te naključno označiti.

V nadaljnjih razdelkih bomo povzeli glavne komponente doktorske disertacije:
predlagani okvir za samo-nadzorovano več-modalno učenje, metodo za odkriva-
nje pomembnosti posameznih značilnic, robotski sistem za učenje funkcionalnih
lastnosti predmetov, ter rezultate poizkusov.

B.2 Samo-nadzorovano več-modalno učenje

Več-modalno učenje je področje strojnega učenja kjer podatki ne prihajajo iz
enega samega prostora značilnic, ampak se podatki sopojavljajo v večih ločenih
modalnostih ali pogledih na podatke. Cilji učenja so lahko različni in se razli-
kujejo glede na določen kontekst v katerem poteka učenje. V zadnjem času je

B.2 Samo-nadzorovano več-modalno učenje 207

tako precej priljubljeno več-modalno učenje pri katerem se uporablja besedilo na
spletni strani kot en pogled na podatke ter povezave na to spletno stran kot drugi
pogled [5, 43, 102, 183]. Pogosta aplikacija tega principa v literaturi je tudi poskus
povezati sopojavljajoče vizualne in avditorne podatke zajete s snemanjem člove-
škega govora [38, 126, 149]. V našem scenariju za učenje funkcionalnih lastnosti
predmetov obravnavamo lastnosti predmetov (npr. oblika), kot eno modalnost,
medtem ko obravnavamo učinke (posledice interakcije med predmetom in robot-
sko roko) kot drugo modalnost. Modalnost učinkov naj bi usmerjala učenje v
modalnosti oblik, npr. s formiranjem kategorij učinkov, ki so vzvratno povezane
z modalnostjo oblik. Tak način naj bi omogočal diskriminantno učenje in napove-
dovanje učinkov akcij zgolj na osnovi oblik predmetov. Te zahteve nas vodijo do
ideje samo-nadzorovanega več-modalnega učenja, ki je samo po sebi zelo zahteven
problem; še posebej, če dodamo še zahtevo po sprotnem inkrementalnem učenju,
kar je pogosto zahteva na področju avtonomne robotike in je tudi ena glavnih
zahtev, ki smo si jo postavili pri našem delu.

Naš sistem za samo-nadzorovano več-modalno učenje v veliki meri povzema,
kombinira ter nadgrajuje ideje predlagane s strani treh avtorjev. Miikkulainen
[118] je predlagal model za simulacijo leksikalnega razvoja, ki več-modalno po-
vezuje šifrante (ang. codebook) vnaprej označenih prototipov vektorjev s Hebbi-
anovimi asociativnimi preslikavami med sopojavljajočimi vektorji. Vsak šifrant
predstavlja različne značilnice treh ločenih leksikalnih modalnosti (ortografske,
fonološke in semantične). Taki šifranti so zgrajeni na nenadzorovan način z upo-
rabo Samo-organizajočih kart (ang. self-organizing maps, SOM) [86], Hebbianove
presikave, ki povezujejo šifrante med seboj, pa z uporabo Hebbianovega učenja.
Tako je mogoče, npr., z označevanjem vektorjev prototipov v vsaki modalnosti
asocirati fonološke koncepte s semantičnimi. Struktura naše mreže za učenje je
zelo podobna strukturi, ki jo je predlagal Miikkulainen, se pa razlikuje način
učenja te strukture. V našem delu namreč ne zahtevamo nadzorovano označeva-
nje vhodnih vektorjev, saj smo razvili metodo za nenadzorovano odkrivanje teh
oznak.

De Sa [37, 38, 40–42] je razvil algoritem za nenadzorovano učenje nevronskih
mrež za učenje ločenih vizualnih in avditornih klasifikatorjev govora z uporabo so-
pojavljajočih se vzorcev premikanja ustnic in zvočnih signalov. Osnova za učenje
te mreže je minimizacija nestrinjanja med modalnostmi z uporabo nenadzoro-
vanega označevanja prototipov in učenja kvantizacije vektorjev za optimizacijo

208 Appendix

položajev prototipov okrog odločitvenih mej. V našem delu uporabljamo spre-
menjeno obliko učenja kvantizacije vektorjev, kjer se topološka struktura naše
mreže in narava učenja razlikujeta od de Sajeve.

Pred kratkim je Coen [27–29] predlagal algoritem za več-modalno gručenje
z mrežo, ki je podobno strukturirana kot Miikkulainenova a brez učnega meha-
nizma SOM. Coen se osredotoča na iskanje meta-gruč vektorjev prototipov v
vsaki modalnosti z uporabo preslikav sopojavljanj za projiciranje verjetnostnih
uteži iz prototipov ene modalnosti v drugo. Na ta način se kreira več-modalna
metrika razdalje, ki se uporablja za meta-gručenje. Za razliko od Coena, se mi
manj osredotočamo na nenadzorovano so-gručenje med modalnostmi in nas bolj
zanima iskanje gruč posameznih razredov na nenadzorovan način v eni modal-
nosti; te gruče nato preko preslikav v druge modalnosti nadzirajo učenje v teh
modalnostih.

V tem delu torej predlagamo algoritem za samo-nadzorovano več-modalno
učenje, ki temelji na teoretičnih osnovah nenadzorovanega gručenja, Hebbiano-
vega učenja in učenja kvantizacije vektorjev. Šifranti prototipov se uporabljajo
za predstavitev posameznih senzorskih modalnosti; naučimo se jih na inkremen-
talen način v procesu, ki smo ga poimenovali hiper-gručenje. Gruče razredov, ki
se uporabljajo za več-modalno klasifikacijo, se oblikujejo v okviru ene modalnosti
v procesu meta-gručenja prototipov v tej modalnosti. Posamezne modalnosti so
povezane s Hebbianovimi preslikavami, ki se jih naučimo na inkrementalen način
z uporabo podatkov o sopojavnosti podatkov med posameznimi modalnostmi. Te
več-modalne preslikave se uporabljajo za projiciranje zaznav iz ene modalnosti
v drugo s procesom, ki ga poznamo pod imenom Hebbianova projekcija in ki
omogoča merjenje ujemanja med podatki iz različnih modalnosti. Ta proces je
deloma prikazan na Sliki B.3. V tem delu pokažemo kako lahko ob dani več-
modalni strukturi šifranta prototipov izpeljemo učna pravila, ki temeljijo tako
na Hebbianovi projekciji kot tudi na paradigmi učenja kvantizacije vektorjev, in
ki uporabljajo verjetnosti za posamezne razrede namesto dejanskih oznak. To
nam omogoča izvedbo inkrementalnega samo-nadzorovanega učnega procesa, če-
tudi razredi niso vnaprej poznani. To je pomembna lastnost našega pristopa in
pogosto zaželena lastnost nižje-nivojskih delov spoznavnih sistemov kot so avto-
nomni roboti, kjer se nizko-nivojski podatki sopojavljajo na inkrementalen način
v različnih modalnostih in kjer se višje-nivojski koncepti dinamično oblikujejo
[166].

B.3 Določanje ustreznosti značilnic 209

Slika B.3: Projekcija meta-gruč iz šifranta ene modalnosti v drugo z namenom
več-modalne klasifikacije. Najprej se naučimo šifranta obeh modalnosti (prika-
zana z Voronoijevo razdelitvijo prostora na zgornjem in spodnjem nivoju) ter
preslikav sopojavljanj (utežene rdeče linije). Nato se določijo oznake kategorij
z meta-gručenjem zgornjega šifranta z uporabo metode K povprečij (ang. K-
means). Te oznake se potem projicirajo na prototipe v spodnjem šifrantu z upo-
rabo Hebbianovih uteži sopojavljanj in se na ta način določijo oznake spodnjih
prototipov.

B.3 Določanje ustreznosti značilnic

V naši metodi za samo-nadzorovano več-modalno učenje je učenje realizirano
tako, da se najprej s premikanjem prototipov oblikujejo gruče znotraj modalno-
sti, nato se z uporabo dinamično oblikovanih kategorij označijo prototipi, na-
kar se nekateri prototipi, najbolj nekoristni v smislu natančnosti napovedovanja,
odstranijo iz nadaljnje obravnave. V tem postopku pa se ne upošteva koristno-
sti posamezne dimenzije v prostoru značilnic, to je koliko dejansko prispevajo
k uspešnemu napovedovanju kategorij, niti kako bi se takšna pomembnost oz.
ustreznost lahko določila. Klasičen pristop k temu problemu je predprocesiranje
podatkov z uporabo ene izmed metod za izbor značilnic ali redukcijo dimenzije

210 Appendix

prostora značilnic, toda tak pristop je velikokrat neprimeren ali nezadovoljiv, še
posebej v scenarijih, ki ne omogočajo shranjevanja podatkov in paketnega učenja,
temveč zahtevajo strogo uporabo inkrementalnih algoritmov. V primeru učenja
kvantizacije vektorjev lahko določanje ustreznosti značilnic implementiramo na
inkrementalen način. V tem delu predlagamo dva algoritma za določanje ustre-
znosti značilnic za algoritme LVQ, ki uporabljata pozicioniranje prototipov v
vhodnem prostoru značilnic za izračun ocen ustreznosti posameznih dimenzij po
Fisherjevem kriteriju in s tem oblikujeta adaptivno metriko. Prednost teh metod
pred sorodnimi metodami za učenje kvantizacije vektorjev z adaptivnimi metri-
kami, ki temeljijo na principu spuščanja po gradientu (ang. gradient descent),
je, da ne zahtevata nastavitve parametra stopnje učenja niti nastavitve drugih
parametrov. Poleg tega tudi vsebujejo pravila za inkrementalno osveževanje, ki
jih lahko uporabljamo tudi hkrati s standardnimi pravili učenja LVQ in se tako
lahko uporabita na kateremkoli algoritmu, ki temelji na paradigmi LVQ. V diser-
taciji tudi pokažemo kako lahko metodi uporabimo v primeru našega algoritma
za samo-nadzorovano več-modalno učenje, tako med učenjem, kot tudi med kla-
sifikacijo.

B.4 Robotski sistem za učenje funkcionalnih lastnosti
predmetov

Razvoj (in raziskovanje) robotskega sistema za učenje funkcionalnih lastnosti
predmetov je težaven proces. Sistem mora namreč podpirati tako zaznavanje
okolice kot izvajanje akcij, tako da je potrebno razviti precej različnih podsiste-
mov in jih povezati med seboj. Na področju zaznavanja mora sistem implementi-
rati dovolj robustne module računalniškega vida, tako da lahko „vidi” okolico, ki
ga obkroža, in razpozna invariantne značilnice in pomembne vizualne dogodke.
Seveda mora biti sistem za učenje funkcionalnih lastnosti sposoben interakcije z
okoljem s svojim podsistemom za manipulacijo. Ta zmožnost lahko vključuje vse
od relativno enostavne robotske manipulacije, pa do kompleksne kinematike in
načrtovanja gibanja. Ena glavnih nalog pri našem delu je bila zasnova robotske
platforme, ki združuje dovolj funkcionalnosti iz vsakega izmed teh področij, kar
naj bi omogočilo raziskovalno učenje osnovnih funkcionalnih lastnosti predmetov.
V tej disertaciji torej obravnavamo strojno opremo, ki smo jo uporabili v sistemu,
in vključuje robotsko roko ter različne kamere. Robotska manipulacija, ki smo

B.4 Robotski sistem za učenje funkcionalnih lastnosti predmetov 211

&

Korespondence

3D podatki

Inicializacija
segmentacijskega

algoritma

Segmentirani
3D podatki

Segmentirani intenzitetni
in 3D podatki

Prileganje ravnine
površini mize z

algoritmom RANSAC

Odštej ravno
ploskev

Gručenje z algoritmom
Meanshift in

odstranjevanje
odstopajočih točk

Segmentacija z
algoritmom Graph cut

Končno čiščenje
podatkov

Slika B.4: Proces segmentacije predmeta.

jo preizkusili pri našem delu, implementira potiskanje predmetov, zato še pose-
bej izpostavimo ta scenarij kot tudi delovno okolje sistema in eksperimentalno
vrednotenje. Implementirali smo dve glavni kategoriji algoritmov s področja ra-
čunalniškega vida z namenom izločanja značilnic: značilnice lastnosti objektov
izločimo iz statičnih slik in 3-dimenzionalnih podatkov, značilnice učinkov akcij
pa izločimo iz video zapisov gibajočih se predmetov. V delu predstavimo dva
različna algoritma v obeh kategorijah. Prvi algoritem, prikazan na Sliki B.4,
uporablja informacijo iz 3D oblaka točk za postavljanje izhodiščnih točk za inici-
alizacijo segmentacijskega algoritma Graph cut z namenom ločevanja predmeta
od ozadja predno se pristopi k računanju značilnic oblike predmeta. Drugi algo-
ritem uporablja vzvratno projekcijo barvnih histogramov za izboljševanje rezul-
tatov sledilnika, ki deluje na principu filtra z delci, tako da zaznava spremembe
lokalnih sprememb izgleda predmeta (primer je prikazan na Sliki B.5).

212 Appendix

Slika B.5: Primer delovanja opisanega mehanizma za sledenje. Slike v prvi vrsti
prikazujejo zaporedne slikovne okvirje med sledenjem pločevinki, ki jo potiska
robotska roka. Zunanji pravokotnik ponazarja okno verjetja za lokacijo pred-
meta, ki ga zazna sledilnik delujoč na principu filtra z delci. Ta rezultat je nato
izboljšan z vzvratno projekcijo histograma, kar ponazarja notranji pravokotnik.
Spodnja vrsta prikazuje kako se spreminja izgled predmeta znotraj notranjega
pravokotnika med premikanjem.

B.5 Rezultati poizkusov

Rezultate poizkusov, ki jih predstavljamo v disertaciji, lahko v grobem razvr-
stimo v tri razdelke. V prvem smo ovrednotili predlagane algoritme za določanje
ustreznosti značilnic v popolnoma nadzorovanih metodah pri čemer smo upo-
rabili tako sintetično zgenerirane podatke kot tudi uveljavljene prosto dostopne
množice podatkov iz repozitorija UCI [58]. Na osnovi teh poizkusov lahko zaklju-
čimo, da igra določanje ustreznosti značilnic pomembno vlogo pri izboljševanju
zmogljivosti metod, ki temeljijo na algoritmu LVQ, še posebej na kratki rok, kar
je bil eden naših ciljev.

V drugem razdelku smo ovrednotili predlagani algoritem za samo-nadzorovano
več-modalno učenje na sintetični množici več-modalnih podatkov. Na inkremen-
talen način smo primerjali različne izvedbe predlaganega samo-nadzorovanega
algoritma, ki so uporabljale različna pravila za osveževanje, ter popolnoma
nadzorovani klasifikator LVQ pri čemer smo uporabljali navzkrižno vredno-
tenje. Na osnovi teh poizkusov smo analizirali različne aspekte algoritmov,
kot so nenadzorovano odkrivanje razredov v izhodni modalnosti, nenadzoro-
vano več-modalno diskriminantno učenje, primerjava med popolnoma nadzoro-
vanim in samo-nadzorovanim učenjem, določanje ustreznosti značilnic v samo-
nadzorovanem učenju ter primerjava med učenjem temelječim na algoritmoma

B.5 Rezultati poizkusov 213

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification Vanilla Comparison

(SOM −> SOM) <=> SOM

(SOM −> LVQ1) <=> SOM

(SOM −> RLVQ1) <=> SOM

(SOM −> FC2LVQ1) <=> SOM

(SOM −> GLVQ) <=> SOM

(SOM −> GRLVQ) <=> SOM

(SOM −> FC2GLVQ) <=> SOM

(a)

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC Comparison

(SOM −> SOM) <=> SOM with PC

(SOM −> LVQ1) <=> SOM with PC

(SOM −> RLVQ1) <=> SOM with PC

(SOM −> FC2LVQ1) <=> SOM with PC

(SOM −> GLVQ) <=> SOM with PC

(SOM −> GRLVQ) <=> SOM with PC

(SOM −> FC2GLVQ) <=> SOM with PC

(b)

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification FRC Comparison

(SOM −> SOM) <=> SOM with FRC

(SOM −> LVQ1) <=> SOM with FRC

(SOM −> RLVQ1) <=> SOM with FRC

(SOM −> FC2LVQ1) <=> SOM with FRC

(SOM −> GLVQ) <=> SOM with FRC

(SOM −> GRLVQ) <=> SOM with FRC

(SOM −> FC2GLVQ) <=> SOM with FRC

(c)

0 40 80 120 160 200 240 280
50

60

70

80

90

100

Training Steps

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

Self−Supervised Online Classification PC & FRC Comparison

(SOM −> SOM) <=> SOM with PC and FRC

(SOM −> LVQ1) <=> SOM with PC and FRC

(SOM −> RLVQ1) <=> SOM with PC and FRC

(SOM −> FC2LVQ1) <=> SOM with PC and FRC

(SOM −> GLVQ) <=> SOM with PC and FRC

(SOM −> GRLVQ) <=> SOM with PC and FRC

(SOM −> FC2GLVQ) <=> SOM with PC and FRC

(d)

SlikaB.6: Sprotno napovedovanje funkcionalnih lastnosti predmetov. Primerjava
med različnimi tipi samo-nadzorovanega učenja za dve učni epizodi. Vsaka slika
prikazuje rezultate za različne kombinacije odstranjevanja nekoristnih prototipov
(ang. prototype culling, PC) ter določanja ustreznosti značilnic ob klasifikaciji
(ang. feature relevance at classification time, FRC): (a) običajno, (b) s PC, (c) s
FRC ter (d) s PC in FRC.

LVQ1 in GLVQ. Pri analizi rezultatov smo prišli tudi do presenetljivega rezultata,
ko smo primerjali popolnoma nadzorovano in samo-nadzorovano učenje LVQ. Iz-
kaže se, da na kratki rok in v strogo inkrementalnih pogojih zaradi dodatne
informacije, ki jo zagotovi druga modalnost, samo-nadzorovana metoda prekaša
popolnoma nadzorovano metodo z vnaprej poznanimi pravimi oznakami.

V tretjem razdelku smo prikazali rezultate poizkusov učenja funkcionalnih
lastnosti predmetov s predstavljenim robotskim sistemom. Sistem uporablja ro-

214 Appendix

botsko roko za potiskanje osmih različnih predmetov, ki so se bodisi kotalili ali
drsali po površini mize. Na osnovi zbranih podatkov o učinkih akcij sistem od-
krije ti dve kategoriji funkcionalnih lastnosti ter se nauči napovedati ti kategoriji
na osnovi lastnosti predmetov. Izvedli smo poizkuse pri katerih se je sistem učil
na sedmih predmetih, poizkusil pa napovedati funkcionalne lastnosti osmega. Re-
zultati (nekaj jih je prikazanih na Sliki B.6) potrjujejo učinkovitost predlaganega
samo-nadzorovanega več-modalnega algoritma in prikazujejo dobro delovanje v
primeru odkrivanja razredov funkcionalnih lastnosti, napovedovanja funkcional-
nih lastnosti in razločevanja pomembnih lastnosti objektov z namenov napove-
dovanja funkcionalnih lastnosti.

B.6 Zaključek

V disertaciji se ukvarjamo s problemom učenja osnovnih funkcionalnih lastnosti
predmetov z robotskim sistemom. Upoštevajoč ideje z različnih raziskovalnih po-
dročij smo oblikovali problem in postavili zahteve tako, da gre rešitev, ki smo
jo razvili, v smeri nekaterih idealov razvojnega učenja kot so sprotno učenje in
samo-nadzorovano učenje. Naš scenarij za učenje funkcionalnih lastnosti predme-
tov vključuje robotsko roko, pritrjeno na vodoravno ravno površino, ki potiska
vsakdanje predmete, kamere pa opazujejo dogajanje. Glavni namen je bil zgraditi
sistem, ki bi se znal naučiti razlikovati predmete glede na njihovo obnašanje in bi
torej znal na osnovi oblike predmeta predvideti, kaj se bo z njim zgodilo, če ga
bo robotska roka potisnila v določeni smeri.

Kot del rešitve tega problema smo predlagali algoritem za samo-nadzorovano
več-modalno učenje, ki temelji na idejah nenadzorovanega gručenja, Hebbiano-
vega učenja ter učenja vektorske kvantizacije. V tem algoritmu šifranti proto-
tipov predstavljajo posamezne modalnosti, zgradijo pa se na inkrementalen na-
čin s konkurenčnim učenjem. Posamezne modalnosti so med seboj povezane z
več-modalnimi Hebbianovimi povezavami, ki so ravno tako zgrajene na inkre-
mentalen način z uporabo podatkov o sopojavnosti podatkov iz različnih mo-
dalnosti. Gruče, ki predstavljajo posamezne kategorije, se kreirajo v eni modal-
nosti na dinamičen način z meta-gručenjem prototipov, nakar se več-modalne
povezave uporabijo za preslikavo teh kategorij v drugo modalnost z uporabo He-
bbianove projekcije, kar omogoča neke vrste več-modalno klasifikacijo. V tem
delu smo pokazali kako lahko ob dani več-modalni strukturi šifranta prototipov

B.6 Zaključek 215

izpeljemo učna pravila, ki temeljijo tako na Hebbianovi projekciji kot tudi na
paradigmi učenja kvantizacije vektorjev, in ki uporabljajo verjetnosti za posame-
zne razrede namesto dejanskih oznak. To nam omogoča izvedbo inkrementalnega
samo-nadzorovanega učnega procesa, četudi razredi niso vnaprej poznani.

Predlagali smo tudi dva nova algoritma za določanje pomembnosti posame-
znih značilnic pri učenju kvantizacije vektorjev. Uporabljata Fisherjev kriterij za
ocenjevanje pomembnosti posameznih dimenzij ter upoštevata položaj prototipov
v vhodnem prostoru in na ta način tvorita adaptivno Evklidovo metriko, ki uteži
vsako posamezno dimenzijo glede na izračunano pomembnost. Obe metodi sta
inkrementalni, in tako izpolnjujeta naše zahteve po inkrementalnem učenju, lahko
pa jih apliciramo na katerikoli algoritem, ki temelji na splošni paradigmi učenja
vektorske kvantizacije. Lahko se uporabita tudi v algoritmu za sprotno samo-
nadzorovano več-modalno učenje, ki ga predlagamo, tako med samim učenjem,
kot med klasifikacijo, in pri tem pomembno vplivata na izboljšanje rezultatov.

Za izvajanje poizkusov smo razvili robotski sistem, ki vključuje robotsko roko
in sitem kamer. Robotski sistem potiska predmete ter opazuje kaj se z njimi
pri tem dogaja. Pri tem posname dogajanje s kamerami ter izloči značilnice iz
vizualnih podatkov. S tem namenom smo predstavili dva algoritma računalni-
škega vida – algoritem za izločanje značilnic lastnosti predmetov iz statičnih slik
predmetov in 3-D podatkov ter algoritem za izločanje značilnic učinkov iz video
zapisov predmetov v gibanju.

Vse razvite metode smo tudi izdatno ovrednotili v velikem številom poizku-
sov. Poizkuse lahko razdelimo na tri dele. Najprej smo želeli ovrednotiti samo
predlagana algoritma za določanje ustreznosti značilnic, zato smo ju preizku-
sili v popolnoma nadzorovanem algoritmu z uporabo v naprej poznanih pravih
oznak vhodnih vzorcev in to tako na sintetičnih podatkih, kot tudi na podatkih
iz različnih priljubljenih javnih množic podatkov. Ti poizkusi so pokazali, da
lahko predlagane metode za določanje ustreznosti značilnic bistveno izboljšajo
učenje kvantizacije vektorjev, še posebej na kratki rok v pogojih inkremental-
nega učenja. Ti pogoji nas v kontekstu inteligentne avtonomne robotike tudi
najbolj zanimajo, saj ne zahtevajo učenja v večih epizodah oz. učenja v paketu.
V drugem delu našega eksperimentalnega dela smo ovrednotili predlagani algori-
tem za samo-nadzorovano več-modalno učenje ter ga primerjali z ekvivalentnim
popolnoma nadzorovanim algoritmom. Poizkuse smo izvedli na umetno zgene-
riranih več-modalnih podatkih, da bi lahko ocenili zmožnosti algoritma za uče-

216 Appendix

nje funkcionalnih lastnosti predmetov. Analizirali smo različne vidike algoritma,
kot so nenadzorovano odkrivanje razredov, zmožnost več-modalnega diskrimi-
nantnega napovedovanja kategorij, primerjava med popolnoma nadzorovanim in
samo-nadzorovanim učenjem, ter uporabnost določanja ustreznosti značilnic v
samo-nadzorovanem učenju. Ti poizkusi so postregli z zanimivim rezultatom,
ki kaže, da na kratki rok in v strogo inkrementalnih pogojih zaradi dodatne in-
formacije, ki jo zagotovi druga modalnost, samo-nadzorovana metoda prekaša
popolnoma nadzorovano metodo z vnaprej poznanimi pravimi oznakami. V za-
dnjem delu naših poizkusov smo uporabili robotsko platformo, ki smo jo razvili,
za zajem podatkov o interakciji med robotsko roko in vsakdanjimi predmeti med
poizkusi s potiskanjem predmetov. Nekateri objekti so bili okrogle oz. valjaste
oblike in so se po površini kotalili, medtem, ko so bili drugi ploščati ter se tako
niso zakotalili po površini. Cilj algoritma za samo-nadzorovano učenje je bil lo-
čiti ti dve kategoriji funkcionalnih lastnosti ter se naučiti pravilno napovedati
kategorijo. Zdi se, da so rezultati potrdili učinkovitost našega algoritma, saj so
se na naši, sicer omejeni, učni domeni približali optimalnim rezultatom tako pri
odkrivanju razredov in pri napovedovanju razreda funkcionalnih lastnosti predme-
tov, kot tudi pri določanju pomembnih značilnosti predmetov za napovedovanje
funkcionalnih lastnosti predmetov.

Prevedel: Danijel Skočaj

Published Work

Journal Articles

B. Ridge, A. Leonardis, A. Ude, M. Deniša, and D. Skočaj. Self-supervised online
learning of basic object push affordances. International Journal of Advanced
Robotic Systems, 2014.

Conference Papers

B. Nemec, F. Abu-Dakka, B. Ridge, A. Ude, J. Jorgensen, T. Savarimuthu,
J. Jouffroy, H. Petersen, and N. Kruger. Transfer of assembly operations to
new workpiece poses by adaptation to the desired force profile. In 2013 16th
International Conference on Advanced Robotics (ICAR), pages 1–7, November
2013.

B. Ridge and A. Ude. Action-grounded push affordance bootstrapping of un-
known objects. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2791–2798, November 2013.

B. Ridge, A. Leonardis, and D. Skočaj. Relevance determination for learning
vector quantization using the fisher criterion score. In Proceedings of the Sev-
enteenth Computer Vision Winter Workshop (CVWW), Mala Nedelja, Slovenia,
February 2012.

B. Ridge, D. Skočaj, and A. Leonardis. Self-supervised cross-modal online learn-
ing of basic object affordances for developmental robotic systems. In Proceedings
of the 2010 IEEE International Conference on Robotics and Automation (ICRA),
pages 5047–5054, Anchorage, USA, May 2010. IEEE.

217

218 Published Work

B. Ridge, D. Skočaj, and A. Leonardis. Unsupervised learning of basic object
affordances from object properties. In Proceedings of the Fourteenth Computer
Vision Winter Workshop (CVWW), pages 21–27, Eibiswald, Austria, 2009.

B. Ridge, D. Skočaj, and A. Leonardis. Towards learning basic object affordances
from object properties. In Proceedings of Eight International Conference on
Epigenetic Robotics (EpiRob), 2008.

B. Ridge, D. Skočaj, and A. Leonardis. A system for learning basic object
affordances using a self-organizing map. In Proceedings of First International
Conference on Cognitive Systems (CogSys)), 2008.

D. Skočaj, A. Vrečko, M. Kristan, B. Ridge, G. Berginc, and A. Leonardis. In-
teraktiven sistem za kontinuirano učenje vizualnih konceptov. In Proceedings of
the Sixteenth Electrotechnical and Computer Science Conference, pages 167–170,
Portorož, Slovenia, 2007.

D. Skočaj, G. Berginc, B. Ridge, A. Štimec, M. Jogan, O. Vanek, A. Leonardis,
M. Hutter, and N. Hawes. A system for continuous learning of visual concepts.
In Proceedings of Fifth International Conference on Computer Vision Systems
(ICVS), Bielefeld, Germany, 2007.

D. Skočaj, B. Ridge, G. Berginc, and A. Leonardis. A framework for continuous
learning of simple visual concepts. In Proceedings of Computer Vision Winter
Workshop (CVWW), St. Lambrecht, Austria, 2007.

D. Skočaj, B. Ridge, and A. Leonardis. On different modes of continuous learning
of visual properties. In Proceedings of Fifteenth International Electrotechnical and
Computer Science Conference (ERK), Portorož, Slovenia, 2006.

Technical Reports

D. Skočaj, M. Kristan, A. Vrečko, B. Ridge, A. Leonardis, S. Roa, and G.-J.
Kruijff. DR 5.2 continuous learning of cross-modal concepts. EU FP7 CogX
project year 2 deliverable, University of Ljubljana, DFKI Saarbrücken, 2010.

D. Skočaj, M. Kristan, A. Vrečko, G. Berginc, B. Ridge, A. Leonardis, H. Ja-
cobsson, N. Hawes, G.-J. M. Kruijff, E. Seemann, M. Fritz, and B. Schiele. DR
5.6 framework for continuous learning with different levels of supervision: cogni-

Published Work 219

tive systems for cognitive assistants. EU FP6 CoSy project year 3 deliverable,
University, Ljubljana, 2007.

Theses

B. Ridge. Techniques for Computing Exact Hausdorff Measure with Application to
a Sierpinski Sponge in R3. M.Phil. thesis, School of Mathematics and Statistics,
University of St Andrews, 2006.

220 Published Work

Declaration

I undertake that all the material presented for examination is my own work,
produced independently under the guidance of my supervisors prof. dr. Aleš
Leondardis and doc. dr. Danijel Skočaj, and has not been written for me, in
whole or in part, by any other person. I also undertake that any quotation or
paraphrase from the published or unpublished work of another person has been
duly acknowledged in the work which I present for examination.

Ljubljana, December 10, 2014.

Barry Ridge B.Sc. M.Phil.

221

	Ridge
	1 Introduction
	1.1 Motivation
	1.1.1 What is an Affordance?
	1.1.2 Cognitive and Developmental Robotics

	1.2 An Object Affordance Learning Scenario
	1.3 Contributions
	1.4 Thesis Outline

	2 A History of Affordances
	2.1 Affordances in Ecological Psychology
	2.1.1 Formalising Affordances

	2.2 Affordances in Studies on Humans and Animals
	2.2.1 Studies on Humans
	2.2.2 Studies on Non-Human Animals

	2.3 Affordances in Artificial Intelligence
	2.3.1 The Symbol Grounding Problem
	2.3.2 Constructivist Learning

	2.4 Affordances in Vision
	2.4.1 Function-Based Object Recognition
	2.4.2 Object Categorisation

	2.5 Affordances in Robotics
	2.5.1 Pushing and Pulling Objects
	2.5.2 Grasping Objects
	2.5.3 Other Forms of Affordances in Robotics

	2.6 Chapter Summary

	3 Framing the Object Affordance Learning Problem
	3.1 Formalising the Problem
	3.2 Framing the Problem within Machine Learning
	3.2.1 Supervised Learning or Unsupervised Learning?
	3.2.2 Continuous/Online Learning

	3.3 Requirements for Our Affordance Learner
	3.4 Chapter Summary

	4 Self-Supervised Multi-View Learning
	4.1 Multi-View Learning
	4.1.1 Representing a Data View or Sensory Modality
	4.1.2 Connecting Data Views
	4.1.3 Training an Unsupervised Multi-View Learner

	4.2 Unsupervised Multi-View Discriminative Learning
	4.2.1 Regression
	4.2.2 Classification

	4.3 Self-Supervised Multi-View Discriminative Learning
	4.3.1 Learning Vector Quantization
	4.3.2 Training LVQ Classifiers with Probabilities instead of Labels
	4.3.3 Measuring Similarity Between Data Views
	4.3.4 Self-Supervised Online Multi-View Training Algorithm

	4.4 Chapter Summary

	5 Feature Relevance Determination
	5.1 Relevance Determination for LVQ
	5.1.1 RLVQ
	5.1.2 GRLVQ

	5.2 Relevance Determination for LVQ using Fisher Criterion Score
	5.2.1 First Proposed Algorithm: FC1
	5.2.2 Second Proposed Algorithm: FC2

	5.3 Applying Relevance Determination to the Self-Supervised Multi-View Learner
	5.3.1 During Training
	5.3.2 At Classification Time

	5.4 Chapter Summary

	6 Robot and Vision Systems
	6.1 Experimental Platforms
	6.1.1 Katana/Camera Setup
	6.1.2 KUKA-LWR/Kinect Setup

	6.2 Visual Feature Extraction
	6.2.1 Object Features
	6.2.2 Object Effect Features

	6.3 Chapter Summary

	7 Experimental Results
	7.1 Experiments on Feature Relevance Determination Algorithms
	7.1.1 Data
	7.1.2 Evaluation Procedure
	7.1.3 Algorithm Setup
	7.1.4 Results
	7.1.5 Summary

	7.2 Experiments on Self-Supervised Multi-View Learning Algorithms
	7.2.1 Data
	7.2.2 Evaluation Procedure
	7.2.3 Experiments
	7.2.4 Results: Three-Class Synthetic Dataset
	7.2.5 Results: Five-Class Synthetic Datasets Follow-up Study
	7.2.6 Summary

	7.3 Object Push Affordance Experiments with Katana/Camera Setup
	7.3.1 Data
	7.3.2 Evaluation Procedure
	7.3.3 Experiments
	7.3.4 Results: 3-D + 2-D Object Features Dataset
	7.3.5 Results: 3-D + 2-D Object Features Dataset Follow-Up Study
	7.3.6 Results: 3-D Object Features Dataset
	7.3.7 Summary

	7.4 Object Push Affordance Experiments with KUKA-LWR/Kinect Setup
	7.4.1 Data
	7.4.2 Staged Feature Relevance Determination
	7.4.3 Results
	7.4.4 Summary

	7.5 Chapter Summary

	8 Conclusion
	8.1 Thesis Summary
	8.2 Summary of Contributions
	8.3 Future Work

	References
	Appendix A
	Appendix B
	B.1 Uvod
	B.1.1 Motivacija
	B.1.2 Scenarij za učenje funkcionalnih lastnosti predmetov
	B.1.3 Prispevki

	B.2 Samo-nadzorovano več-modalno učenje
	B.3 Določanje ustreznosti značilnic
	B.4 Robotski sistem za učenje funkcionalnih lastnosti predmetov
	B.5 Rezultati poizkusov
	B.6 Zaključek

	Published Work
	Declaration

