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Abstract. Two new feature relevance determination
algorithms are proposed for learning vector quanti-
zation. The algorithms exploit the positioning of the
prototype vectors in the input feature space to esti-
mate Fisher criterion scores for the input dimensions
during training. These scores are used to form online
estimates of weighting factors for an adaptive metric
that accounts for dimensional relevance with respect
to classifier output. The methods offer theoretical
advantages over previously proposed LVQ relevance
determination techniques based on gradient descent,
as well as performance advantages as demonstrated
in experiments on various datasets including a visual
dataset from a cognitive robotics object affordance
learning experiment.

1. Introduction

Learning vector quantization (LVQ) [9] provides
an intuitive, and often highly effective, means for
discriminative learning where prototype vectors are
used to quantize the input feature space and given
labels to form piecewise-linear classifiers using the
nearest neighbour rule. Since their introduction,
LVQ algorithms have undergone various analyses
and seen various improvements to their design. The
original formulations (LVQ1, LVQ2, LVQ3) [9] have
been shown to be divergent, inspiring the generalized
learning vector quantization (GLVQ) algorithm [14]
where prototypes are updated such that a stochastic
gradient descent is performed over an error function.
LVQ algorithms have also been shown to be a fam-
ily of maximum margin classifiers [3], thus provid-
ing excellent generalization for novel data with high-
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dimensional inputs. More recently, the nearest neigh-
bour rule of LVQ has been modified to a k-nearest
neighbours rule using a local subspace classifier [7].

Perhaps just as significantly, much attention has
also been paid in recent years to the role that the dis-
tance metric plays in the effectiveness of LVQ meth-
ods. LVQ ordinarily relies on the Euclidean metric to
measure the distance between data points, which pro-
vides equal weighting to all input dimensions. Many
of the input dimensions, however, may have little rel-
evance when considering the desired output function
and may even have a detrimental effect on the out-
put if considered with equal weighting in the metric
to the more important dimensions. One standard ap-
proach to this issue is to pre-process the data using
some form of feature selection or dimensionality re-
duction, but this can be infeasible in many learning
scenarios where the training data are not available in
advance, e.g. autonomous robotics. Various refor-
mulations of LVQ have been proposed that can ad-
just the metric during training such that the impact
of the individual input dimensions are dynamically
re-weighted during training in accordance with the
data under consideration. This can make a crucial
difference, both during training for more efficient ad-
justment of the prototypes, and when classifying test
samples where the undue consideration of irrelevant
dimensions can mean the difference between a cor-
rect and incorrect classification.

One early adaptation of LVQ3 known as distinc-
tion sensitive learning vector quantization (DSLVQ)
[11] achieves this by using a heuristic to adjust
weights along each of the input dimensions to modify
the Euclidean metric. An adaptation of LVQ1 known
as relevance learning vector quantization (RLVQ) [1]
uses Hebbian learning to do similar, by adjusting
weights for each of the input dimensions at every
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training step depending on whether they contributed
to the correct or incorrect classification of a train-
ing sample. RLVQ was subsequently adapted for
use with GLVQ producing a method known as gen-
eralized relevance learning vector quantization (GR-
LVQ) [6] such that the dimensional weight updates
also adhere to gradient descent dynamics in a similar
way to the prototype updates. Another modified ver-
sion of GLVQ [15] uses Fisher’s discriminant anal-
ysis to create an alternative metric to the weighted
Euclidean distance that employs a matrix transforma-
tion to reduce the feature space dimensionality. More
recently, an adaptive metric was used in combination
with training data selection for LVQ [10].

In this paper, two new algorithms for LVQ-based
relevance determination are presented. Both methods
exploit the positioning of the prototype vectors in the
input feature space to inform estimates of the Fisher
criterion score along the input dimensions, which are
then used to form online estimates of the relevance
of the input dimensions with respect to the classi-
fier output. Both methods provide online updates that
may be used alongside regular LVQ updates and nei-
ther method requires the specification of a learning
rate, as in stochastic gradient descent. The remain-
der of the paper is organized as follows. In Section
2 the background theory and related algorithms are
outlined. The new algorithms are described in Sec-
tion 3. Experimental results are provided in Section
4 and concluding remarks are provided in Section 5.

2. Related Algorithms

Let X = {(xi, yi) ⊂ Rn × {1, . . . , C} | i =
1, . . . , N} be a training set of n-dimensional vec-
tors and corresponding class labels. Let Xc ={

(xi, yi) ∈ X
∣∣yi = c

}
and N c = |Xc|. Simi-

larly, let W = {(wi, ci) ⊂ Rn × {1, . . . , C} | i =
1, . . . ,M} be a set of prototype vectors with
corresponding class labels, and let Wc ={

(wi, ci) ∈ W
∣∣ci = c

}
and M c = |Wc|. Given

a vector x ∈ Rn, denote its components as
(x1, . . . , xn). Letting x be an n-dimensional data
vector and w be an n-dimensional prototype vector,
then a weighted squared Euclidean distance between
both vectors may be defined as

d2(x,w) =

n∑

i=1

λi(xi − wi)
2, (1)

where the λi are weighting factors for each dimen-
sion. Adding such weights to the Euclidean metric

allows for the possibility of re-scaling each of the in-
put dimensions depending on their respective influ-
ences on the classification output. Moreover, it en-
ables the metric to be made adaptive such that the
weights are adjusted dynamically during training de-
pending on the data.

Prototype vectors have associated receptive fields
based on the metric and classification of samples
is performed by determining which receptive fields
those samples lie in, or alternatively, which proto-
type vectors are closest to the samples. The recep-
tive field of prototype wi is defined as: Ri = {x ∈
X | ∀(wj , cj) ∈ W, d2(x,wi) ≤ d2(x,wj)}. Given
a sample (x, y) ∈ X , we denote by g(x) a function
that is negative if x is classified correctly, i.e. x ∈ Ri

with ci = y, and is positive if x is classified incor-
rectly, i.e. x ∈ Ri with ci 6= y. We also let f be
some monotonically increasing function.

The goal of GLVQ [14] is to minimize

E =

m∑

i=1

f(g(xi)) (2)

via stochastic gradient descent. The update rules for
GLVQ and many other LVQ algorithms can be de-
rived using the above notation. In the following, the
LVQ1 [9], RLVQ [1], GLVQ [14] and GRLVQ [6]
algorithms will be reviewed, before introducing the
proposed relevance determination methods.

2.1. LVQ1

Given a training sample (x, y) ∈ X , by letting
f(x) = x and g(x) = ηdj where dj = d2(x,wj)
with wj being the closest prototype to x and {λi =
1}mi=1 (i.e. equal weights for regular Euclidean dis-
tance), with η = 1 if x is classified correctly (i.e.
cj = y) and η = −1 if x is classified incorrectly (i.e.
cj 6= y), the following stochastic gradient descent
update rule may be derived for LVQ1 [9]:

wj
t+1 =

{
wj

t + α(x−wj
t ), if cj = y

wj
t − α(x−wj

t ), otherwise,
(3)

where α is the learning rate and the t subscripts de-
note prototype states at different training steps. How-
ever, it should be noted that the error function as de-
fined here is highly discontinuous, and thus can lead
to instabilities in the algorithm. GLVQ, discussed
next, was designed to resolve this issue.
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2.2. GLVQ

Here, dj = d2(x,wj) is defined where wj is
the closest prototype to x with label cj = y and
dk = d2(x,wk) where wk is the closest prototype
to x with some other label. By letting

g(x) =
dj − dk
dj + dk

(4)

and
ft(g(x)) =

1

1 + exp−g(x)t
, (5)

which is a sigmoidal function that redefines the er-
ror function (Eq. 2) such that it is continuous over
borders between the receptive fields for wj and wk.
When minimized, the error function yields the fol-
lowing update rules for wj and wk [14]:

wj
t+1 := wj

t + αν
dk

(dj + dk)2
(x−wj

t ) (6)

wk
t+1 := wk

t + αν
dj

(dj + dk)2
(x−wk

t ) (7)

where

ν = f ′t(g(x)) = ft(g(x))(1− ft(g(x)). (8)

GLVQ, unlike LVQ1 or the rest of Kohonen’s origi-
nal LVQ formulations, has been shown to be conver-
gent [14, 6], although it is sensitive to the initializa-
tion of the prototype vectors. This is demonstrated in
the experimental results of Section 4.

2.3. RLVQ and GRLVQ

The LVQ prototype update equations can be ac-
companied by updates that also alter the λi in Eq.
(1) dynamically during training, hence allowing for
an adaptive Euclidean metric. In RLVQ [1], LVQ1
training is adjusted such that the following weight-
ing factor update rule is applied alongside Eq. (3):

λl :=

{
λl − β(xl − wj

l )
2 if cj = y

λl + β(xl − wj
l )

2 otherwise,
(9)

for each l-th dimension where β ∈ (0, 1) is a learn-
ing rate for the weighting factor adjustments. The
weights are normalized at each update such that∑n

i=1 λi = 1. The motivation for the above comes
from Hebbian learning, the idea being that when
wj classifies the sample x correctly, the weights
for the dimensions that contributed to the classifica-
tion the most are increased, whereas the weights of

those that contributed the least are decreased. When
wj incorrectly classifies x, the weights for dimen-
sions that contributed most are decreased, whereas
the weights for dimensions that contributed the least
are increased. GRLVQ [6] is an application of the
above idea to GLVQ, such that the updates for the
weights for the metric also follow a stochastic gradi-
ent descent on the error function defined by GLVQ.

One disadvantage of both RLVQ and GRLVQ is
that they require the specification of an additional
learning rate, β, which can be difficult to specify ap-
propriately with respect to its α counterpart in the
prototype updates. Another disadvantage is that they
fail to take into consideration the additional statis-
tical information provided by the remaining proto-
types other than the ones currently being updated at a
given training step when making relevance estimates.
These issues are addressed with the following two
proposed LVQ relevance determination algorithms.

3. Proposed Algorithms

The Fisher criterion, while ordinarily associated
with Fisher’s discriminant analysis [4], can also serve
as an effective means for relevance determination
when applied across individual data dimensions. Let-
ting xA = 1

N

∑
xi∈A x

i be the mean of a set of points
A with cardinality N , the Fisher criterion score for a
given individual dimension l is defined as

F (l) =
SB(l)

SW (l)
, (10)

where

SB(l) =

C∑

c=1

N c
(
xX

c

l − xXl
)2

(11)

is the between-class variance and

SW (l) =
C∑

c=1

∑

x∈Xc

(
xl − xX

c

l

)2
(12)

is the within-class variance over the l-th dimension.
With regard to relevance determination for LVQ,

F (l) could be calculated for each dimension over the
entire training set X in advance of LVQ training and
applied to the weighting factors in Eq. (1) by set-
ting λl = F (l) for all l to form a weighted metric.
However, for many applications it is more desirable
to have an online feature relevance training mecha-
nism that is not reliant on having access to the en-
tire training set at once. Two such online algorithms
where estimation of the Fisher criterion score is inte-
grated into the training scheme are presented next.
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Figure 1. A simple 2D, 2-class example of how the Fisher criterion score (see Eq. (10)) can fail as a feature relevance
metric over multi-modal distributions. (a) shows uni-modal class data distributions, linearly separable in the x-dimension,
but with large overlap in the y-dimension. The score reflects the relevance of each dimension to class discrimination. (b)
by comparison, shows the same number of data points, but with a multi-modal distribution (yet still linearly separable in
x). The score is significantly lower for the x-dimension in this case. (c) shows the improvement provided by calculating
the score between pairs of clusters with centers at points A1, B1, A2 and B2. See Section 3 for more details.

3.1. Algorithm 1

With the first algorithm, rather than calculating
F (l) over the data in X , at a given timestep t the
score is estimated over the values of the prototype
vectors in W . This is plausible since the distri-
bution of the prototype vectors should approximate
the distribution of the data over time. During train-
ing, certain prototypes will quantize more significant
modes of the distribution than others, thus to account
for this, weighted means and variances are calcu-
lated for each class based on the classification accu-
racy of each of the prototypes of that class, then the
Fisher criterion score is calculated over the weighted
means and variances for all classes. Firstly, the def-
inition of W is altered to W = {(wi, ci, pi) ⊂
Rn×{1, . . . , C}×R | i = 1, . . . ,M } where, given
random variable (x, y), pi = p(x ∈ Ri|y = ci) is the
conditional probability of x lying in receptive field
Ri of prototype wi given that wi correctly classifies
x. The pi form probability distributions over class
prototypes such that

∑
pi∈Wc pi = 1 for each class

c. A definition of the estimated Fisher criterion score
may now be formed as

F (l) ' F̂ (l) =
ŜB(l)

ŜW (l)
, (13)

where

SB(l) ' ŜB(l) =
C∑

c=1

N c

N

(
ŵW

c

l − ŵWl
)2

(14)

is the estimated between-class variance over the l-th
dimension,

SW (l) ' (15)

ŜW (l) =
C∑

c=1

N c

N

∑

(wi,ci,pi)∈Wc

pi
(
wl − ŵW

c

l

)2

(16)

is the estimated within-class variance over the l-th
dimension, and

ŵW
c

l =
∑

(wi,ci,pi)∈Wc

piwi
l (17)

is a weighted mean over the l-th dimension of proto-
types in a given setWc ⊆ W .

The λm relevance factors may then be updated at
each timestep by taking a running mean of the nor-
malized estimated Fisher criterion score:

λl,t+1 := λl,t +

F̂ (l)∑n
l=1 F̂ (l)

− λl,t
t+ 1

. (18)

While the Fisher criterion score is suitable for fea-
ture relevance determination in many cases, its main
drawback is that it does not cope well with multi-
modal feature distributions. An example of this is
shown in Figure 1. This problem remains in the esti-
mation proposed above, since Eq. (14) and Eq. (16)
are calculated over all class prototypes. The second
proposed algorithm was designed to account for this.

3.2. Algorithm 2

The second proposed algorithm is based on the
idea of calculating the Fisher criterion score between
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single prototype vectors of opposing classes, where
the assumption is made that each class prototype vec-
tor may be quantizing different modes of the under-
lying class distribution. During training, Gaussian
kernels are used to maintain estimates of the accu-
racies of each of the prototypes over the parts the
data distribution accounted for by each of their re-
ceptive fields. At a given training step, the nearest
single prototypes of each class to the training sam-
ple are found, and their Gaussian kernels are used to
calculate an estimate of the Fisher criterion score for
that local portion of the distribution, which is subse-
quently averaged over the entire training period.

The definition ofW is this time altered to accom-
modate a Gaussian estimate of the accurate portion
of the receptive field for each prototype, such that

W = {
(
wi, ci,N (x;µi,Σi)

)
⊂ Rn × {1, . . . , C}×

(Rn × Rn×n) | i = 1, . . . ,M } , (19)

where N approximates R̃i =
{
x ∈ Ri|y = c

}

with mean µi and covariance matrix Σi =
diag([si1, . . . , s

i
n]) where the

{
sil
}n
l=1

are variances
along each l-th dimension. During LVQ training,
given a random sample (x, y) ∈ X at training step
t, if the closest prototype wj classifies x correctly,
i.e. cj = y, then µjl and sjl are updated in each l-th
dimension as follows [8]:

µjl,t := µjl,t−1 +
xl − µjl,t−1

t
(20)

ŝjl,t := ŝjl,t−1 + (xl − µjl,t−1)(xl − µ
j
l,t) (21)

where µjl,t is the running mean estimate and sjl,t =

ŝjl,t
t−1 is the running variance estimate for the l-th di-
mension at training step t. If cj 6= y, then the above
updates are not performed. Assuming a sufficient
number of updates have been performed on the rel-
evant prototypes up until step t, a Fisher criterion
score estimate may be calculated between

W ′ = {ωk =
(
wk, ck,N (x;µk,Σk)

)
∈ W

| ∀wi, ci = ck, d(x,wk) ≤ d(x,wi) } ,
(22)

the closest prototypes of different classes (including
wj), as follows:

F (l) ' F̃ (l) =
S̃B(l)

S̃W (l)
, (23)

where

SB(l) ' S̃B(l) =
1

C

C∑

c=1

(µcl − µl)2 (24)

is the between-class variance estimate in the l-th di-
mension with

µl =
1

C

∑

ωk∈W ′
µkl , (25)

and
SW (l) ' S̃W (l) =

∑

ωk∈W ′
skl (26)

is the within-class variance estimate in the l-th di-
mension. The relevance factors may then be updated
in a similar way to Eq. (18), this time using the new
estimates:

λl,t+1 := λl,t +

F̃ (l)∑n
l=1 F̃ (l)

− λl,t
t+ 1

. (27)

Since each prototype carries an accompanying Gaus-
sian kernel that estimates its accuracy, it is now pos-
sible to estimate the Fisher criterion score using only
single prototypes from each class, as opposed to
the previous algorithm where multiple prototypes in
each class have to be considered to achieve variance
estimates. Though the model is made more complex,
it is more capable of successfully handling the multi-
modal distribution issue described in Fig. 1 as shown
by the experimental results in the next section.

4. Experiments

The proposed algorithms were evaluated over sim-
ulated data, datasets from the UCI repository, and a
real-world dataset from a cognitive robotics object
affordance learning experiment. In the following, the
datasets are described in more detail and experimen-
tal results are provided in Section 4.1. Two simu-
lated datasets were proposed in [1, 6], the first of
which was replicated for the experiments here. The
data is composed of three classes, each separated
into two clusters with some small overlap to form
multi-modal class data distributions in the first two
dimensions. Eight further dimensions are generated
from the first two dimensions as follows: assuming
(x1, x2) is one data point, x3 = x1 + η1, . . . , x6 =
x1 + η4 is chosen where ηi comprises normally-
distributed noise with variances 0.05, 0.1, 0.2, and
0.5 respectively. The remaining x7, . . . , x10 com-
ponents contain pure noise uniformly distributed in
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[−0.5, 0.5] and [−0.2, 0.2]. This dataset is multi-
modal for each class in the two relevant dimensions
and thus provides a good test for the potential differ-
ence between the two proposed algorithms.

Dataset # Features # Samples # Classes
Simulated 10 90 3
Iris 4 150 3
Ionosphere 34 351 2
Wine 13 178 3
Soybean 35 47 4
WBC 30 569 2
Affordance 11 160 2

Table 1. An attribute list for the datasets in Section 4.

Five different datasets from the UCI repository
[5] were tested: Fisher’s Iris dataset, the ionosphere
dataset, the wine dataset, the soybean dataset (small),
and the Wisconsin breast cancer (WBC) dataset. A
dataset from a cognitive robotics object affordance
learning experiment [13] was also tested. It con-
sists of eight household objects separated into two
classes, four rolling objects and four non-rolling ob-
jects, and labeled as such, accompanied by eleven
different shape features, two of which measure the
curvature of 3D points from stereo images of the ob-
jects and the remainder of which were derived from
2D silhouettes of the objects.

4.1. Results

The primary goal of the investigation was to eval-
uate whether or not the new algorithms when applied
to standard LVQ methods such as LVQ1 and GLVQ
offer performance improvements over those methods
in their original form, as well as over other relevance
determination techniques for LVQ, such as RLVQ
and GRLVQ. The results of these comparisons are
outlined in Table 2 and are discussed in more detail
in the following. In the results, the proposed Fisher
criterion score-based relevance determination algo-
rithms are referred to as FC1LVQ1 and FC2LVQ1
respectively when applied to LVQ1, and FC1GLVQ
and FC2GLVQ when applied to GLVQ.

A secondary consideration was to test the meth-
ods under the duress of various different conditions.
GLVQ, for example is known to perform poorly if the
prototype vectors are not initialized within the data
distribution [12], thus in our evaluations, both ran-
dom prototype initializations as well as initializations
where the prototypes are placed at the mean points
of class clusters were considered. Note that random
prototype initialization in this case refers to selecting

random values for each prototype dimension scaled
within the data range. K-means clustering was used
to determine class clusters in the latter case.

The performance of LVQ algorithms over short
training periods is not often considered in the liter-
ature, which tends to favour evaluations of the al-
gorithms over several hundred training epochs un-
til convergence is reached. Given that LVQ algo-
rithms have online training mechanisms, and that the
relevance determination techniques proposed above
were explicitly developed to also function online,
sample-by-sample without access to the rest of the
training set, such short-term training evaluations are
important if the methods are to be considered useful
in real-world online settings, e.g. cognitive robotics
[13], where the entire training set is often unavailable
at any given point during training.

Thus, the results in Table 2 are divided into four
main evaluations: both 1 epoch and 300 epochs of
training from random initialization, and both 1 epoch
and 300 epochs of training from class cluster mean
initialization. The 300 epoch sessions used the rel-
atively slow learning rates of α = 0.1 for the pro-
totype updates (cf. Eq. (3), Eq. (6) & Eq. (7))
and β = 0.01 for the dimensional relevance updates
where required (cf. Eq. (9)), whereas the 1 epoch
training sessions used the faster rates of α = 0.3 and
β = 0.1. Note that the FC1 and FC2 methods do not
require the additional β learning rate. In each of the
1 epoch evaluations, 20 trials of ten-fold cross val-
idation were performed with random data orderings
in each trial, and results were averaged over test data
performance, whereas in the 300 epoch evaluations,
5 trials were performed. 10 prototypes were used for
every dataset and the data dimensions were scaled
prior to training.

The results in Table 2 show that when trained over
a single epoch from random initialization, of the al-
gorithms tested FC2LVQ1 and FC2GLVQ achieved
higher mean classification scores than their counter-
parts in many cases. Over long-term training of 300
epochs from random initialization, the results for all
algorithms aside from GLVQ, tend to improve with
FC2LVQ1 and FC2GLVQ again tending to be com-
petitive with their counterparts. It is worth noting
here the impact relevance determination has on im-
proving the results of GLVQ when exposed to poor
prototype initialization. When the prototypes are ini-
tialized optimally at the class cluster mean points the
results tend to improve dramatically across all of the
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Dataset LVQ1 RLVQ1 FC1LVQ1 FC2LVQ1 GLVQ GRLVQ FC1GLVQ FC2GLVQ
Random Initialization, 1 Epoch of Training, 20 Trials

Sim 53± 18% 64± 22% 54± 19% 69± 18% 37± 17% 63± 22% 51± 20% 70± 19%
Iris 90± 8% 91± 9% 93± 9% 95± 5% 63± 24% 89± 13% 83± 19% 88± 15%
Iono 81± 8% 75± 11% 85± 6% 84± 7% 66± 13% 80± 9% 82± 7% 84± 7%
Wine 93± 6% 79± 13% 92± 9% 94± 6% 52± 19% 92± 8% 85± 14% 94± 7%
Soy 89± 17% 83± 24% 89± 18% 85± 21% 34± 27% 84± 22% 83± 21% 85± 20%
WBC 92± 4% 86± 8% 93± 4% 93± 3% 71± 19% 93± 5% 90± 10% 94± 3%
Afford 97± 7% 93± 10% 98± 4% 99± 3% 78± 22% 96± 9% 84± 20% 98± 6%

Random Initialization, 300 Epochs of Training, 5 Trials
Sim 79± 14% 79± 13% 77± 16% 87± 12% 38± 17% 96± 7% 90± 12% 94± 9%
Iris 92± 7% 92± 8% 95± 5% 96± 5% 47± 24% 96± 5% 91± 16% 96± 4%
Iono 85± 7% 80± 10% 86± 8% 85± 7% 60± 16% 90± 5% 90± 6% 89± 6%
Wine 95± 5% 77± 11% 95± 5% 96± 5% 42± 18% 96± 5% 97± 4% 98± 3%
Soy 99± 6% 97± 10% 100± 4% 98± 7% 33± 26% 97± 8% 97± 7% 96± 9%
WBC 93± 3% 87± 7% 94± 3% 94± 3% 62± 20% 96± 3% 96± 3% 96± 2%
Afford 99± 2% 95± 7% 99± 2% 99± 3% 67± 24% 99± 2% 99± 2% 99± 2%

Class Cluster Mean Initialization, 1 Epoch of Training, 20 Trials
Sim 82± 12% 98± 5% 78± 17% 93± 8% 90± 9% 91± 9% 85± 13% 93± 8%
Iris 96± 5% 96± 5% 96± 5% 96± 5% 95± 5% 95± 5% 95± 5% 96± 5%
Iono 87± 6% 80± 10% 88± 6% 88± 6% 90± 5% 88± 6% 89± 5% 90± 5%
Wine 95± 5% 86± 11% 96± 5% 96± 5% 97± 4% 97± 5% 97± 5% 97± 5%
Soy 100± 2% 95± 10% 100± 3% 99± 5% 100± 2% 99± 4% 100± 2% 99± 5%
WBC 95± 3% 88± 7% 94± 3% 94± 3% 96± 3% 96± 3% 97± 3% 95± 3%
Afford 99± 2% 98± 4% 99± 2% 99± 2% 99± 2% 99± 2% 99± 2% 99± 2%

Class Cluster Mean Initialization, 300 Epochs of Training, 5 Trials
Sim 84± 11% 86± 16% 87± 12% 91± 10% 90± 9% 97± 6% 90± 10% 96± 8%
Iris 96± 5% 95± 6% 96± 4% 96± 5% 96± 6% 95± 5% 97± 4% 96± 4%
Iono 88± 5% 82± 9% 89± 5% 88± 5% 89± 5% 90± 5% 90± 5% 91± 5%
Wine 96± 5% 82± 12% 97± 4% 96± 5% 97± 4% 98± 3% 98± 3% 98± 3%
Soy 100± 0% 94± 11% 99± 6% 98± 7% 100± 0% 98± 8% 99± 5% 99± 6%
WBC 96± 2% 89± 5% 95± 3% 95± 3% 96± 3% 96± 3% 97± 2% 97± 2%
Afford 99± 2% 98± 3% 99± 2% 99± 2% 99± 3% 99± 2% 99± 2% 99± 2%

Table 2. 10-Fold cross validation, 10 prototypes. Highest scores for LVQ1 & GLVQ based algorithms are shown in bold.

classifiers in short-term training, with both FC1 and
FC2 relevance determination doing well over both
short-term and long-term training periods, with FC1
out-performing FC2 in some cases and vice versa.
Over all the evaluations, FC1GLVQ and FC2GLVQ
trained over 300 epochs with class cluster mean ini-
tialization tended to score well when compared with
the other methods. It should also be noted that, when
the class distribution in the data is multi-modal, as is
the case with the simulated dataset, FC2-based meth-
ods tend to be a better choice than FC1-based meth-
ods, as predicted.

A third consideration was to compare the new
methods to a state-of-the-art batch method such as
the support vector machine (SVM). Batch methods,
as opposed to online methods that are trained sample-
by-sample, have access to the entire training set dur-
ing training, and therefore usually provide superior

results. Table 3 shows the results of a compar-
ison between FC1GLVQ, FC2GLVQ and a multi-
class SVM trained with a radial basis function (RBF)
kernel [2]. For this comparison, the results for
FC1GLVQ and FC2GLVQ from the 300 epoch, class
cluster mean-initialized evaluation described previ-
ously were used, while ten-fold cross validation over
five trials was also used for the SVM, where the test
data results were averaged over the five trials and
SVM parameters were optimized using cross valida-
tion over the training data prior to training. The re-
sults show both FC1GLVQ and FC2GLVQ perform-
ing well when compared with SVM over the vari-
ous datasets, particularly in the case of the simulated
multi-modal dataset.

It is difficult to evaluate the performance of the
algorithms with respect to the estimation of the λl
weighting factors themselves, but examples of the
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Dataset FC1GLVQ FC2GLVQ SVM
Simulated 90±10% 96±8% 78±14%
Iris 97±4% 96±4% 96±6%
Ionosphere 90±5% 91±5% 94±4%
Wine 98±3% 98±3% 98±3%
Soybean 99±5% 99±6% 100±0%
WBC 97±2% 97±2% 98±2%
Affordance 99±2% 99±2% 99±3%

Table 3. FC1GLVQ & FC2GLVQ versus SVM. Highest
mean scores are shown in bold.

mean values for certain datasets are provided here.
For the simulated dataset, λFC1GLVQ = {0.10, 0.42,
0.07, 0.06, 0.10, 0.06, 0.04, 0.03, 0.07, 0.04} and
λFC2GLVQ = {0.40, 0.43, 0.06, 0.01, 0.01, 0, 0, 0, 0,
0}, thus demonstrating that FC2GLVQ does indeed
do a better job of handling the multi-modal distri-
bution. For the Iris dataset, λFC1GLVQ = {0.02, 0.02,
0.55, 0.40} and λFC2GLVQ = {0.03, 0.07, 0.37, 0.53}.
For the object affordance dataset, λFC1GLVQ = {0.04,
0.56, 0.05, 0.05, 0.03, 0.05, 0.04, 0.04, 0.01, 0.09,
0.05} and λFC2GLVQ = {0.05, 0.34, 0.07, 0.07, 0.07,
0.08, 0.01, 0.08, 0.06, 0.12, 0.06}, where one of the
3D curvature features is favoured in each case.

5. Conclusion

In conclusion, two new relevance determination
algorithms have been proposed for LVQ that ex-
ploit the positioning of prototypes in the input fea-
ture space to calculate Fisher criterion score esti-
mates in the input dimensions for an adaptive met-
ric. An advantage provided by these methods over
other metric-adaptive LVQ methods based on gra-
dient descent, is that they do not require a learning
rate or other parameters to be specified. Moreover,
they provide incremental update rules that operate
alongside regular LVQ update rules and can therefore
be applied to any algorithms based on the general
LVQ paradigm. Experimental evaluations were pro-
vided under various stress conditions and over vari-
ous datasets and the proposed methods were shown
to perform competitively against various other LVQ-
based methods, and against SVM. With regard to fu-
ture work, it would be interesting to apply the pro-
posed techniques to prototype-based methods other
than LVQ, such as supervised neural gases.
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