
Robotic Affordance Learning: Old Ideas, Recent

Developments, and Potential Paths Forward

Barry Ridge1

1Humanoid and Cognitive Robotics Lab, Department of Automatics, Biocybernetics
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1 Introduction

The notion of affordances as a concept originated in the late 70’s in the field
of ecological psychology as founded by Gibson and others [1], and attempts
to enable robots to autonomously learn the affordances in their environments,
as recent survey papers reveal [2, 3], emerged not long after in the early 90’s,
reaching a particularly vibrant zenith in recent years. While many of these
works have borne fruit in restricted experimental settings, where the environ-
ment and robotic interactions can be controlled and guided towards certain
goals, the abiding concern of designing robots capable of general and continu-
ous affordance learning remains elusive. Meanwhile, recent experiments using
deep neural networks in the fields of machine learning and computer vision
[4, 5] have demonstrated that given sufficient data, computational resources,
and algorithmic proficiency, impressive results can be achieved when it comes
to general representations and inference. This naturally raises many questions
regarding the current state of the field of robotic affordance learning and how
best to push it forward.

2 Recent Developments

In recent years, many angles of attack have been exploited in the assault on the
affordance learning problem, including, but not limited to, learning affordance-
predictive object properties, learning to represent affordances via the effects of
actions, learning affordances that emerge from different types of actions such
as pushing and grasping, learning multi-object affordance relations, and so on.
Many of these approaches are comprehensively discussed in the recent survey
paper of Jamone et al. [3]. Our own recent work in the area of object push
affordance learning has focused on designing object representations that marry
robot trajectory information to object shape features derived from 3D point
clouds, in what we refer to as action-grounded features. The main idea behind
this approach, which relies on dynamically defining local shape features with
respect to a reference frame defined by the pushing action, is that affordance
learning can benefit from representations that intrinsically encode differences
between objects depending on how they are interacted with.
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2.1 Action-Grounded Viewpoint Feature Histogram

To this end, we have recently developed a modified form of the viewpoint feature
histogram by Rusu et al. [6] specifically designed for object affordance prediction,
which we call the action-grounded viewpoint feature histogram (AGVFH). We
make two key changes to the original VFH descriptor, modifying both the shape
component and the viewpoint component respectively, in order to ground the
descriptor with respect to a pushing action that can either come from recorded
training data of robotic object pushes or planned pushes. In the case of the
shape component, instead of using the object centroid as the central point for
the SPFH computation as in the original descriptor, we now use the push contact
point. In addition, we use the push direction normal as the basis for forming
the Darboux frame as visualised in Figure 1.

Figure 1: Action-grounded Darboux frame construction example for the shape
component of AGVFH.

2.2 Action-Grounded Octree Shape Features

We have also developed an action-grounded octree shape features (AGOSF) rep-
resentation that is similar to our original action-grounded shape feature descrip-
tor as proposed in [7], but uses octrees to decompose the point cloud into part
cells instead of separately subdividing along the axes via partitioning planes.
Thus, an arbitrary level of detail may be encapsulated by the representation de-
pending on the octree depth level. This octree subdivision process is illustrated
for a segmented object point cloud sample in Figure 2. The octree subdivision
is similar in nature to that of the OMS-EGI descriptor by Mar et al. [8], but our
proposed method differs in the types of features which are encoded in each of
the octree cells. In each of the cells, we derive local surface normal estimates,
centroid components, point counts and local curvature estimates.

Figure 2: Action-grounded octree shape feature (AGOSF) 3-level octree decom-
position of a sample segmented object point cloud.
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Table 1: 10-Fold CV Random Forests Classifier Results
Features F-Score

VFH (contact point as viewpoint) [6] + action features 0.4725
AGVFH (cf. Sec. 2.1) 0.8889
OMS-EGI [8] 0.6480
AGOSF (cf. Sec. 2.2) 0.9526

2.3 Results

Table 1 shows some recent results comparing the two feature descriptors de-
scribed above against the original VFH descriptor [6] and the recently proposed
OMS-EGI descriptor [8] on an expanded version (one additional object) of the
object push affordance learning dataset described in [7]. These results are en-
couraging in the sense that they appear to support the idea that tight coupling
of actions and object properties in feature representations may, in turn, be ad-
vantageous to affordance representation and learning, which is an idea that is
promulgated in many affordance formalisms [3].

3 Looking to the Future

Although the above methods provide an interesting basis for the development
and evaluation of certain ideas as they pertain to affordance learning, e. g.
action-grounding and multi-scale representation via octrees, there are clear
possibilities for improvement going forward. For instance, rather than hand-
designing the features, as was the case in the above, it would likely be ben-
eficial to take a more data-driven approach to the feature representation us-
ing deep neural networks, particularly convolutional neural networks (CNNs),
which would learn to represent features inherent in the data at multiple scales.
This would, however, present the challenge of using a sufficient amount of the
right kind of data to train these networks, and given the additional complica-
tion of requiring both object point cloud data and robot trajectory data in the
action-grounded setting described above, such data could prove to be difficult
to acquire.

3.1 Deep Learning

Although there have been a number of high-profile recent successes in the de-
velopment and application of deep learning approaches both in vision [4] and
robotics [5], most of these have been restricted to 2D image domains. Thus,
given the fact that affordance learning occurs in a 3D world where the rela-
tionships between actions, objects and effects might best be described using 3D
representations, perhaps one of the most promising recent developments comes
in the guise of volumetric shape representations via CNNs such as 3DShapeNets
[9]. If such representations could be effectively action-grounded in a similar way
as described above, they have the potential to be quite powerful, not least be-
cause they allow for the recovery of full 3D shape from partial views of objects,
thus potentially alleviating problems with pushes coming from occluded object

3

Author’s version — provided for personal and academic use. Do not redistribute.



sides.

3.2 Alleviating the Dearth of Data

The high cost of entry in terms of engineering expertise, hardware resources
and time, invariably restricts the capacity of researchers to gather the quanti-
ties of data of the appropriate nature that might be required to push the field
of affordance learning forward beyond potential stagnation. This situtation is
changing however. The advent of multi-robot data-gathering farms means that
unprecedentedly large datasets that include RGB, depth, and trajectory data
of robots performing exploratory grasps and pushes are now becoming available
to researchers worldwide [10, 5]. Encouraging the gathering and use of such
large-scale datasets could be of significant benefit if the field wishes to move
forward beyond the more simplified, restricted experimental settings in which
it found its origins.
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