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Abstract— For a developmental robotic system to function
successfully in the real world, it is important that it be
able to form its own internal representations of affordance
classes based on observable regularities in sensory data. Usually
successful classifiers are built using labeled training data, but
it is not always realistic to assume that labels are available in
a developmental robotics setting. There does, however, exist an
advantage in this setting that can help circumvent the absence of
labels: co-occurrence of correlated data across separate sensory
modalities over time. The main contribution of this paper is an
online classifier training algorithm based on Kohonen’s learning
vector quantization (LVQ) that, by taking advantage of this co-
occurrence information, does not require labels during training,
either dynamically generated or otherwise. We evaluate the
algorithm in experiments involving a robotic arm that interacts
with various household objects on a table surface where camera
systems extract features for two separate visual modalities. It
is shown to improve its ability to classify the affordances of
novel objects over time, coming close to the performance of
equivalent fully-supervised algorithms.

I. INTRODUCTION

The term affordance, introduced by Gibson [1], is used
to characterise the action possibilities that an environment
offers an agent acting within that environment. In this
paper we address the issue of object affordance learning
in a developmental robotic system by developing a self-
supervised classifier that operates across two different sen-
sory modalities mediated by object interactions. The main
idea behind this is illustrated in Fig. 1 and Fig. 2(a). In our
scenario, a robotic arm is mounted on a table surface while
camera systems observe the scene. Objects are placed in the
workspace where the arm is allowed to interact with them
using pushing actions. Object features (e.g. shape features)
derived from image data taken prior to arm-object interaction
provide data for the first sensory modality, hereby referred
to as the input modality. After an action has been initiated
on an object, video footage is recorded of the object in
motion and effect features are extracted from the video
footage, forming the basis of the output modality. Often
when different sensory modalities (or stimulus modalities)
are discussed in the literature, they tend to be modalities
from different sensory systems, e.g. auditory and visual.
Here, instead, we consider two different sensory modalities
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Fig. 1. The main idea of our affordance learning framework.

from the same sensory system (visual) dealing with shape
and motion respectively. Though there is a temporal delay
when gathering data from each modality during an interactive
episode, for the purposes of our discussion here we consider
such data in each modality to be co-occurrences. Given a
series of interactive episodes, the learning task is to find
clusters in the output modality feature space that may be
identified as affordance classes, and use them to train a
classifier in the input modality space. Thus, when the system
encounters novel objects, it can predict their affordance
classes by observing their respective object features.

The main contribution of our algorithm is that it removes
the need for class labels of any kind during the training
stage by introducing a probabilistic heuristic based on the
co-occurrence information. When designing the algorithm,
we were subscribing to an online learning paradigm suitable
for developmental robotic systems. Requirements for such
an algorithm include: 1) No, or limited, access to previously
viewed training samples. 2) An incremental training mech-
anism. 3) Fixed, or limited, memory requirements. To meet
these criteria, we use a cross-modal neural network, as in
Fig. 2(b) consisting of two layers of codebook vectors fully
connected via a Hebbian weight mapping. The codebook
vector layers are of a fixed size, thus meeting the third online
learning criterion. The learning algorithm that we present,
through the use of Kohonen’s self-organizing map (SOM) [2]
method, as well as a variation of Kohonen’s learning vector
quantization (LVQ) [2], does not require access to previously
viewed training samples and can be trained incrementally,
thus satisfying the first and second criteria.
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(a) (b)

Fig. 2. (a) Experimental setup. (b) Our cross-modal neural network.
Two SOM networks operating in separate modalities, fully connected via a
weighted Hebbian mapping.

Perhaps the most closely related work in the literature with
respect to affordance learning to our work is by Fitzpatrick
et al. [3], [4]. The authors trained a humanoid robot to rec-
ognize “rolling” affordances of 4 household objects using a
fixed set of actions to poke the objects in different directions
as well as simple visual descriptors for object recognition.
There are two main differences between their method and
ours. Firstly, in [3], [4], the feature associated with the rolling
direction affordance was pre-determined, whereas in our
system, the learning algorithm is provided with a number of
different output features and it must determine for itself the
affordance classes within that feature space. Secondly, their
system used object recognition to identify the affordances
of individual objects, whereas our system determines the
affordance class of objects (grounded in output modality
features) based, not on their individual identity, but on a
broad set of input features (e.g. shape). In [5], the authors
used a humanoid robot to push objects on a table and used
a Bayesian network to form associations between actions,
objects and effects. Though quite similar to our approach,
their learning method may not be as amenable to full online
learning, as they have to gather a certain amount of data
initially to form categories within the various modalities
before the network can be trained.

Saxena et al. [6], [7] used the same robotic arm used in
our work (see Sec. III-A) to attempt to grasp novel objects
based on a probabilistic model trained on synthetic images of
various other objects labeled with grasp points. What differs
in our work is that rather than training our learning algorithm
on synthetically generated object examples, we train on
interactions with real objects. Moreover, their two possible
affordances were specified in advance: graspable or non-
graspable, whereas our system generates its own affordance
classes through interaction with objects. In [8], the authors
describe a mobile robotic system equipped with a 3D laser
scanner that learns to perceive traversability affordances of
various objects, such as spheres, cylinders and boxes in a
room. The robot was provided with a set of seven possible
actions and used its range scanner to gather angle and
distance features aggregated over a grid-division of the range
image. It then learned mappings between environmental situ-
ations and the results of its actions by first selecting relevant
features from the full set, then using support vector machines
to classify the relevant features into affordance categories.

Though good results were acheived, the affordance categories
were, again, pre-defined: traversable or non-traversable.

With regard to our learning algorithm, one of the first ex-
amples of Hebbian-linked SOMs was provided in [9], where
they were used for developing an artificial neural network
model of the mental lexicon. The structure of the network
in [9] is identical to the one presented here: two SOMs fully
connected via weighted Hebbian mappings. Moreover, the
training scheme presented in [9] is the same as our phase
1 training (see Sec. II-B). However, this training scheme by
itself, is not optimized for classification purposes as we shall
see later in Sec. V, and the SOMs do not influence each
other during training. de Sa et al. [10], [11] greatly improved
upon this by creating a cross-modal neural network where
two competitive learning maps in each modality influenced
each others’ training by learning to agree upon common class
labels for co-occurring data samples. Similarly to us, they
employed LVQ to train the maps in each modality based on
the class information. One drawback, however, is that the
class labels have to be determined a priori and maintained
throughout the training process. A SOM with a Hebbian
learning mechanism called a Growing When Required (GWR)
network was used in [12] to aid a simulated mobile robot in
learning affordances of objects with survival values such as
nutrition and stamina so that it could prosper over time in its
environment. The SOM was used to cluster visual sensor data
in the input space where nodes were assigned weights based
on the success or failure of actions. While our method also
uses SOM training, in our case it is used on both the output
data, where the nodes are meta-clustered to form affordance
classes, and the input data, where at a certain point it is
swapped for a variation of LVQ which is better suited for
classification optimization.

II. THE LEARNING ALGORITHM

A classifier could be constructed in either of these modal-
ities by attaching class labels to the training data and
employing a supervised learning algorithm, but this is hardly
ideal for an autonomous cognitive system like a robot since
it assumes the existence of an external tutor who is willing to
label the data. However, once we have noted that in this type
of learning scenario correlated training data co-occur in each
modality, this opens up some alternative possibilities. For
example, k-means clustering or density estimation might be
possible in the joint feature space, however, as was discussed
in [11], these are not ideal solutions. The problem with
simple k-means clustering or competitive learning in the
joint space is that all feature dimensions would be required
for the classification of test samples; these methods would
not be able to marginalize over the missing dimensions
when trying to predict the outcome of one modality from
another. Density modeling would account for this problem,
but requires fitting many parameters which would become
infeasible in high dimensions. Moreover, neither approach
complies naturally to our online learning criteria. Thus, per-
haps a better approach would be to use the natural structure
of the data in one modality, as well as the co-occurrence
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information, to train a supervised classifier in the other
modality. This could be accomplished, for example, by using
an unsupervised clustering algorithm like k-means to derive
clusters in one modality which could be used as class labels
to train a supervised classifier in the other ([11] provides a
similar approach). However, it is computationally expensive
to cluster at every training step in an online algorithm.
One alternative, that of clustering early and maintaining the
clusters over time, could potentially introduce inaccuracies
as training progresses if the sample distribution changes
significantly. In the following we describe a cross-modal
neural network and a two-phased training scheme that aims
to address these issues.

A. Cross-modal Neural Network

The structure of our cross-modal neural network is illus-
trated in Fig. 3 (a). Two codebook vector layers, one in
the input modality and one in the output modality, are fully
connected to each other via a weighted Hebbian mapping.
The idea is that the codebook vector layers are trained
to form a representation of the information contained in
their respective modalities, while the Hebbian mapping is
trained on the basis of the co-occurrence of data across these
modalities.

Learning proceeds in two phases. In the first phase of train-
ing, as training samples for each modality are concurrently
presented to the network, the codebook vector layers are
trained separately using the usual SOM algorithm (described
below). While training is ongoing, the Hebbian links that
connect the best-matching unit nodes in each of the codebook
vector layers are then updated appropriately based on co-
occurence. Though SOM training is good for producing low-
dimensional represenations of data distributions, it is not the
best solution for optimizing decision borders, thus we em-
ploy a second phase of training that exploits the co-occurence
information captured by the Hebbian mapping between the
codebook vector layers. In the second phase, the codebook
vector layer in the output modality continues to be trained
in the usual way, as does the Hebbian mapping, while the
codebook vector layer in the input modality is trained using
our variation of LVQ. Rather than using class labels, the LVQ
training rules are selected using a Hellinger distance-based
heuristic that exploits the cross-modal Hebbian mapping to
indicate whether a given codebook vector is of the “correct”
or “incorrect” class for a given training sample.

A classifier can then be formed after training by perform-
ing unsupervised meta-clustering over the output modality
nodes in order to form class labels, although it should be
emphasised that these class labels are not required during
training. It should also be noted that the algorithm, in largely
unmodified form, could also perform regression, though
results for this are not presented in this paper. The training
and classification processes are described in more detail in
the following sections.
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Fig. 3. Training and classification. In each figure, the bottom layer is the
input modality codebook & the top layer is the output modality codebook.
Arrows indicate node movement during training. (a) Phase 1 training: regular
SOM training performed in each modality while Hebbian links are also
updated. (b) Phase 2 training: Hellinger distance heuristic indicates correct
training sample classification based on activation distributions. Input best-
matching unit node (BMU) is moved towards the training sample. (c) Phase
2 training: heuristic indicates incorrect sample classification because the
activation distributions differ significantly. Input BMU is moved away from
the training sample. (d) Classfication: output nodes are meta-clustered and
the cluster with the strongest weighted connections to the input BMU wins.

B. Training: Phase 1
The following two sub-sections describe how both the

individual modality networks and the Hebbian mapping that
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connects them are trained in the first phase of training. Phase
1 training is illustrated in Fig. 3 (a).

1) Modality Codebook Vector Layers: In the first phase,
network training in each modality proceeds in accordance
with Kohonen’s original SOM formulation [2] which we
summarise here. The nodes of the network layers of each
modality contain codebook vectors mi = [mi1, . . . ,mid],
where d is the dimensionality of the modality feature vectors,
that are randomly initialized before training begins. At each
training step, a data vector x = [x1, . . . , xd] is is measured
against each codebook vector using the Euclidean distance
metric, as follows:

||x−mi||2 =

d∑

j=1

wj(xj −mij)
2, (1)

where wj is an element of weight vector w = [w1, . . . , wd]
which is used for a feature selection algorithm in the second
phase of training, described in Sec. II-C. The node that
is closest to the input data vector based on this metric is
called the best matching unit (BMU) and both it and its
neighbouring nodes are updated using the following update
rule

mi(t+1) =

{
mi(t) + αSOM(t) [x(t)−mi(t)] if i ∈ Nc,
mi(t) otherwise,

(2)
operating over all i ∈ [1, n], where αSOM(t) is the learning
rate at time t and Nc is the neighbourhood around the BMU
c.

2) Cross-modal Hebbian Mapping: The following Heb-
bian weight training procedure is taken from Miikulainen
[9]. In order to train the Hebbian mapping, we require a
measurement of the activation of a given modality layer node
ai, formulated as follows:

ai(t) =

{
1− ||x(t)−mi(t)||−dmin

dmax−dmin
if i ∈ Nc,

0 otherwise,
(3)

where dmin is the smallest and dmax the largest distance of
x(t) to a unit in the neighbourhood.

During training, the link weight changes are made propor-
tional to the product of the activation of the two nodes in
each modality that are being associated, as follows:

∆hkl(t) = αHEB(t)ak(t)al(t), (4)

where ∆hkl is the unidirectional associative weight leading
from node k in the input modality layer to node l in the
output modality layer, αHEB(t) is the Hebbian learning rate,
and ak(t) and al(t) are the activations on the two nodes
at time t. Each link weight hkl is then updated using the
following normalization equation:

hkl(t+ 1) =
hkl(t) + ∆hkl(t)√∑
l [hkl(t) + ∆hkl(t)]

2
. (5)

The Hebbian mapping, when trained as above, provides
a type of memory of previous training experience in terms
of modality co-occurrences, or of what one modality “looks
like” from the perspective of the other. As we shall see,

this information can be effectively employed to augment
classifier training.

C. Training: Phase 2

After Phase 1 training has proceeded for a reasonable
amount of time, i.e., long enough to provide a robust
Hebbian mapping, Phase 2 training may be initiated. In the
algorithm presented in this paper, the network layer in the
output modality continues to be trained with the usual SOM
algorithm in Phase 2. The network layer in the input modality
however, switches to a modified version of learning vector
quantization (LVQ) [2] training that employs a probabilistic
heuristic. In order to develop this heuristic, we require the
Hellinger distance metric which we discuss next. Phase 2
training is illustrated in Figs. 3 (b) and 3 (c).

1) Hellinger Distance Heuristic: Using the definition
from [13], for a countable state space Ω, given probability
measures µ and ν,

dH(µ, ν) :=

[∑

ω∈Ω

(√
µ(ω)−

√
ν(ω)

)2
] 1

2

. (6)

We use the Hellinger distance metric as defined above to
create a heuristic that allows us to measure the similarity
between nodes in the input modality layer and the output
modality layer with respect to the Hebbian mapping. The
Hellinger distance takes values in the bounded interval
[0,
√

2], making it amenable to statistical analysis, e.g. cal-
culating mean distance. Given input modality node k, we
define

fk(t) = {hkl(t) : ∀l in the output modality layer} , (7)

or all the Hebbian link weights that connect node k in the
input modality layer to the nodes in the output modality layer
at time t. We define

g(t) = {al(t) : ∀l in the output modality layer} , (8)

or all the node activations in the output modality layer at
time t.
fk can be thought of as a distribution of the Hebbian map

activity from node k in the input layer projected onto the
output layer. Loosely put, this gives us a picture of what
the output map looks like from the perspective of node k
in the input map based on previous training experience. g,
on the other hand, gives us a distribution of the output map
activity with respect to the current training sample. Thus,
when given a training sample for the input modality, if we
employ the metric dH(fk(t), g(t)), we can get an impression
of how well its best matching unit node in the input modality
layer predicts the activity of the output modality layer given
its co-occurring training sample. This heuristic can of course
be used in the opposite direction, from the output modality
layer to the input modality layer, but for the algorithm we
present in this paper it is employed strictly in the above way
to augment the training of the input modality layer. Now
that we have the necessary tools in place, we may proceed
to present our modified LVQ algorithm.
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Fig. 4. Examples of image and range data taken with the stereo camera for two different types of objects: a book which slides when pushed by the robotic
arm, and a Pepsi can which rolls when pushed by the arm. From left to right: intensity image, range data of the scene, segmented object, segmented object
range data, object range data with a fitted quadric surface.

2) Learning Vector Quantization Without Class Labels:
In traditional LVQ training [2], codebook vectors are given
fixed class labels a priori. Subsequently, as training sam-
ples are presented with accompanying class labels, the best
matching codebook vectors are updated according to a set
of rules. If the best matching codebook vector class label
matches that of the training sample, the codebook vector is
moved towards the sample. If the labels do not match, the
codebook vector is moved away from the sample.

In the modified form of LVQ we present here, which is the
main contribution of this paper, we refrain from labeling the
codebook vectors altogether. Codebook vectors are updated
based on the heuristic presented in the previous section.
Given the best matching node c in the input modality layer
for a given input modality training sample x, we apply the
following update rule:

mc(t+ 1) =





mc(t) + (1− γ)αLVQ c [x(t)−mc(t)]
if dH(fc(t), g(t)) < ε

mc(t) + (γ − 1)αLVQ c [x(t)−mc(t)]
otherwise,

(9)
where, assuming dH(fc(t), g(t)) is normalised, ε is usually
set to its mean value over all t, and γ is set to either 0 or
2dH(fc(t), g(t)) if the rule is to be applied in either a binary
or fuzzy fashion respectively.

In more simple terms, the effect of applying the above
rule is that, when the output modality appears to have the
same activity distribution as predicted by the best matching
node in the input modality based on past experience, the best
matching node in the input modality is moved closer to the
training sample. Conversely, if the output modality appears to
have a significantly different activity distribution, it is moved
away from the training sample. These two alternative cases
are visualised in Figs. 3 (b) and 3 (c).

Note that the above also incorporates optimized-learning-
rate learning vector quantization (OLVQ), where separate
αLVQ c are stored and updated for each node. See [2] for
more details.

3) Feature Selection: As alluded to in Sec. II-B.1, we
also employ a feature selection method to boost classifier
training. We use the relevance determination learning vector
quantization (RLVQ) algorithm from [14] to do this. Given
the best matching node c in the input modality layer for a
given input modality training sample x at time-step t, we
perform the following operation on the wj from (1). For
each feature dimension j:

wj(t+ 1) =





max {wj(t)− αF(t)|x(t)−mc(t)|, 0}
if dH(fc(t), g(t)) < ε

wj(t) + αF(t)|x(t)−mc(t)|
otherwise.

(10)
We then normalise, as follows: for all j, wj := wj/|w|.

D. Classification

After training, a classifier may be formed from the network
by performing unsupervised meta-clustering over the nodes
of the output modality codebook layer. To this end, we used
k-means with automatic selection of k based on votes from
the following validity indices: Davies-Bouldin [15], Calinski-
Harabasz [16], Dunn [15], Krzanowski-Lai [16] and the
silhouette index [16], [15]. These clusters define the output
modality categories to be used for classification purposes.
Given an input modality test sample to be classified, the
best matching node in the input modality layer is found and
its Hebbian weight links are mapped to the output modality
layer. The weights for the links connecting to each cluster
are summed, and the cluster with the highest score is deemed
to be the winning class for that input test sample.

III. SYSTEM ARCHITECTURE & SETUP

A. Robotic Arm

In our system, we use a Neuronics Katana 6M robotic
arm which features 5 DC motors for main arm movement,
as well as a 6th motor to power a 2 fingered gripper that
houses both infrared and haptic sensors (note: these sensors
are not used in the experiment presented here). The base of
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Fig. 5. An example of the object tracking mechanism described in Sec. IV-B using the images in the first row show a progression of frames tracking
a Sprite can being pushed by the arm. The outer rectangle is a likelihood window around the object obtained using the particle filter tracker. The inner
rectangle is the result of using histogram back-projection within that window to localise the object. The second row of close-up images shows how the
appearance of the object within the inner rectangle changes during the course of object motion.

the arm is mounted on a flat table with a wooden laminate
surface, and the arm is allowed to move freely in the area
above the table surface, avoiding collisions with the table
through the use of specialized control software. The arm
control software that was used for this work is a modified
version of Golem 1, control software for the Katana arm.
Given desirable parameters, Golem uses forward kinematics
to generate arm joint orientations and motion paths, then
uses cost functions and searches to select the ones that most
closely fit the parameters. In order to ensure that the actions,
and by extension the object affordances, that are available
to the system are as consistent and learnable as possible, we
optimized for a linear end-effector motion trajectory when
moving between workspace positions.

B. Camera Systems

2 Point Gray Research cameras- the Flea monocular
camera (640x480 @ 60FPS or 1024x768 @ 30FPS) and the
Bumblebee 2 grayscale stereo camera (640x480 at 48FPS or
1024x768 at 20FPS) were used to gather intensity images,
range data and video for the experiment listed in Sec. V.

IV. VISUAL FEATURE EXTRACTION

A. Input Modality Feature Extraction

With regard to the input modality features, for the purposes
of this particular affordance learning scenario, we are mostly
interested in extracting features that describe the global shape
of an object as they are likely to be most relevant for
determining how the object will behave. However, in theory,
any types of features that describe properties of the objects
under consideration could be used here.

1) Range Data: We have developed a method for seg-
menting the object from range images that uses RANSAC
(RANdom SAmple Consensus) [17] to fit a plane to the
table surface for removal, then mean-shift clustering [18]
as well as a graph-cut segmentation in the corresponding

1Golem was developed by researchers at the University of Birmingham
who kindly provided us with a copy for our research. More information can
be found at: http://www.cs.bham.ac.uk/˜msk/ .

intensity image to isolate the object range data with minimal
noise. The graph-cut segmentation method we used was from
[19], which uses the min-cut/max-flow algorithms oulined in
[20], [21], [22] to apply the standard graph cut technique to
segmenting multimodal tensor valued images. A quadratic
surface may then be fitted to the object range data to derive
curvature features from the object surface. We derive 2
curvature features in this way from the coefficients of the
polynomial of the fitted quadratic surface that provide a good
description of the global curvature of the object. This surface
fitting technique is illustrated on the two objects shown in
Fig. 4.

2) Image Data: The segmentation technique produces
reasonably good intensity image segmentations of objects.
These are then used to calculate the following 10 shape
features: area, convex area, eccentricity, equivalent cicular
diameter, Euler number, extent, filled area, and the major
axis length.

B. Output Modality Feature Extraction

After an arm action has been performed on an object, the
resulting videos of the interaction are processed for output
modality features. This is primarily acheived by tracking the
object in motion using a probabilistic tracker from [23].
This tracker is in essence a colour-based particle filter,
which also makes use of background subtraction using a pre-
learned background image. Background subtraction by itself
is insufficient to localise the object in our experimental setup
due to changes in lighting and the motion of the arm, but
it is helpful in reducing ambiguities for the tracker. Object
shapes are approximated by elliptical regions, while their
colour is encoded using colour histograms. The dynamics
of objects are modeled using a dynamic model from [24],
which allows for tracking with a smaller number of particles,
and consequently, near real-time tracking performance.

1) Global Object Motion Features: The following 9 fea-
tures are calculated from the particle filter tracker output
data: total distance traveled in x-axis, total distance traveled
in y-axis, total Euclidean distance traveled, mean velocity in
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x-axis, mean velocity in y-axis, velocity variance in x-axis,
velocity variance in y-axis, final x position, final y position.

2) Object Appearance Changes: To estimate how the
appearance of the objects change during motion, we chose
to calculate the average difference of both colour and edge
histograms between video frames of the objects, the aim
being to detect both motion blur and the texture changes
characteristic of many rotating objects. This required an
extension to the particle filter tracker previously described.
The tracker by itself is sufficient for tracking the motion of
objects, but it is slightly inaccurate at times. For example, if
an object is rolling and stops suddenly, the tracker sometimes
briefly overshoots the object before returning to it a few
frames later. To avoid this, we use the output of the tracker
to define a broad window around the object in the video
frames, before using colour histogram back-projection [25]
to localise the object within the window. Histogram differ-
ence averages are then calculated from the start of object
motion until the end. See Fig. 5 for sample frames from
an interaction with an object that illustrates this technique
at work. We derive 3 output modality features from this
procedure: average colour histogram difference, average edge
histogram difference, and the product of these two values.

V. EXPERIMENTS

To test our affordance learning system, the experimental
environment was set up as previously described and as shown
in Fig. 2(a). During experiments, objects were placed at a
fixed starting position prior to interaction. Two cameras were
used to provide both sufficiently detailed close-up range data
of the object surfaces and a sufficiently wide field of view to
capture object motion over the entire work area. To achieve
this, the stereo camera was positioned above the object start
position, while the monocular camera was positioned at a
higher position in front of the workspace.

We selected 8 household objects to be used in the ex-
periments: 4 flat-surfaced objects; a book, a CD box, a box
of tea and a drink carton, and 4 curved-surfaced objects;
a box of cleaning wipes, a Pepsi can, a Sprite can and a
tennis ball box. Each of these objects was placed centred
at the start position with a consistent orientation, and the
robotic arm pushed the object at a fixed speed using a fixed
pushing action. During trials, the curved objects would tend
to roll after being pushed, whereas the flat objects would stop
suddenly after the push. Before an action was performed on
an object, both intensity and range images were gathered
from the stereo camera. This data was then processed to
produce the 12 input modality features discussed in Sec. IV-
A. After an action was performed on an object, images were
gathered and passed to the tracking system described in Sec.
IV-B to produce 12 output modality features.

To evaluate the algorithm, we first collected a dataset as
follows. 20 object push tests were carried out for each of
the 8 objects listed previously and the resulting data was
processed, leaving 160 data samples. The samples were then
hand-labeled with two ground truth labels: rolling and non-
rolling. In the following evaluations, leave-one-out cross

validation was performed by splitting the dataset into a
training set of 140 samples consisting of all data for 7 of
the objects and a test set of 20 samples consisting of all
data for the remaining object. The classification task was
then to train on 7 objects, find the affordance classes in
the output modality and try to classify the remaining object
on that basis. In the experiments for this paper, the training
set was doubled and randomized, effectively allowing for 2
epochs of training over the training set, i.e. training over 280
samples. Cross validation was performed by using each of the
8 objects in turn as the test object and averaging classification
scores across all 8 subsequent training and test sets and the
20 test samples contained therein. Fig. 6 shows the results of
incrementally cross-validating 6 algorithms every 20 training
steps and averaging over 40 trials. In 4 of the algorithms,
each of the two codebook vector layers in the input and
output modalities contained 100 nodes arranged in a 10×10
hexagonal lattice with a sheet-shaped topology. In the other
2 algorithms, the codebook vector layers contained 5 nodes
arranged in a 1× 5 linear topology.

The goal of the evaluation was to compare the performance
of our self-supervised algorithm to fully-supervised learning
using ground truth labels. In the case of the self-supervised
algorithms, classification of a test sample was deemed to
be correct if the output modality meta-cluster (c.f. Sec. II-
D) matched the ground truth (c.f. [26] for more details
on matching the meta-clusters to ground truth labels). Of
the 6 algorithms evaluated, 2 were variations on fully-
supervised LVQ1, OLVQ1 with 100 nodes and OLVQ1 with
5 nodes, while the remaining 4 were variations of self-
supervised cross-modal learning. Of the 4 variations of cross-
modal learning, one was cross-modal SOM training as in
[9] with 100 nodes and the other 3 were modifications of
our proposed heuristic-based LVQ algorithm: fuzzy heuristic
OLVQ1 with RLVQ feature selection (HeurORLVQ), binary
HeurORLVQ with 100 nodes, and binary HeurORLVQ with
5 nodes. For each of these, the initial αSOM learning rate in
each modality was set to 1 with a linear profile descending
to 0 over the 280 timesteps in the output modality and 140
timesteps in the input modality. The RLVQ αF learning rate
was set to a constant 0.1. Training shifted from Phase 1 to
Phase 2 halfway through the training set (140 timesteps), In
Phase 2, αLVQ was set to a constant 0.3. These learning rates
were selected both through trial and error, and as advised by
[2].

As can be seen in Fig. 6, the fully supervised algorithms
performed the best, as expected, with the 5-node OLVQ
reaching a correct classification rate of 97.11% by the end
of training, and the 100-node OLVQ reaching a score of
93.53%. Of the self-supervised cross-modal classifiers, 100-
node Fuzzy HeurORLVQ performed the best, reaching a cor-
rect classification rate of 91.64%, while 100-node HeurOR-
LVQ and 5-node HeurORLVQ reached rates of 90.16% and
86.67% respectively. The cross-modal SOM finished with
a score of 81.91%, thus justifying our two-phased learning
approach. Our algorithm works best when there are enough
nodes in the network to give a decent approximation of the
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Fig. 6. Incremental leave-one-out cross-validation evaluation averaged over
40 trials (c.f. Sec. V). The switch from Phase 1 training to Phase 2 training
(c.f. Sec. II) is indicated by the vertical dotted line.

sample density in the output modality, thus providing a more
accurate Hellinger distance heuristic. The results show that,
when evaluated with such a number of nodes, our algorithm
performs almost as well as fully-supervised OLVQ1 using the
same number of nodes. On the other hand, OLVQ1 works
best when the number of training steps is 30 to 50 times the
number of codebook vectors [2], i.e. for our small training
set size of 280 samples, the number of codebook vectors
should be low, e.g., 5. However, even when using such a
small number of nodes, in this 2-class learning scenario
our algorithm performed robustly, and still produced better
results than the 100-node cross-modal SOM.

VI. CONCLUSION

In conclusion, we have presented a robotic system that
uses a novel self-supervised cross-modal online classifier
training algorithm to learn basic object affordances. We have
shown that it can be successfully trained to learn affordances
of household objects by interacting with them, and subse-
quently predict the affordance classes of novel objects by
observing their object features, e.g. shape. The experimental
results also demonstrated how the system, through the use
of the proposed novel algorithm, can start learning with
little or no experience, and improve results over time to the
point where the classification rate is close to that of a fully-
supervised system. Although the results presented here only
account for one type of action, multiple classifiers may be
trained to account for different types of actions. We aim to
improve on this in future work by modifying the algorithm
such that actions may be parameterized, perhaps in a separate
modality. We would also like to test the algorithm on more
challenging problems where there are more than two classes
present in the training data.
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