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Robin Schmid1,2, Deegan Atha1, Frederik Schöller1,4, Sharmita Dey1,3, Seyed Fakoorian1, Kyohei Otsu1,
Barry Ridge1, Marko Bjelonic2, Lorenz Wellhausen2, Marco Hutter2, Ali-akbar Agha-mohammadi1

Abstract— Navigating off-road with a fast autonomous ve-
hicle depends on a robust perception system that differenti-
ates traversable from non-traversable terrain. Typically, this
depends on a semantic understanding which is based on
supervised learning from images annotated by a human expert.
This requires a significant investment in human time, assumes
correct expert classification, and small details can lead to
misclassification. To address these challenges, we propose a
method for predicting high- and low-risk terrains from only
past vehicle experience in a self-supervised fashion. First, we
develop a tool that projects the vehicle trajectory into the front
camera image. Second, occlusions in the 3D representation
of the terrain are filtered out. Third, an autoencoder trained
on masked vehicle trajectory regions identifies low- and high-
risk terrains based on the reconstruction error. We evaluated
our approach with two models and different bottleneck sizes
with two different training and testing sites with a four-
wheeled off-road vehicle. Comparison with two independent
test sets of semantic labels from similar terrain as training sites
demonstrates the ability to separate the ground as low-risk and
the vegetation as high-risk with 81.1% and 85.1% accuracy.

I. INTRODUCTION

Fast autonomous off-road and off-trail driving requires
robust and accurate perception and understanding of the
unstructured terrain in which the vehicle is navigating. It
also often necessitates traversing through different surface
types which could include different types of traversable
and non-traversable vegetation or surfaces with different
properties such as sand or soil. Therefore, it is crucial to
understand what surfaces pose a low risk to the vehicle and
which areas have a higher risk. However, many geometric-
based approaches [1], [2] typically require additional terrain
classification algorithms based on supervised learning to
capture the variety of terrain [3]–[5]. Semantic labeling
requires a significant investment of human time to manually
annotate the data. Additionally, the boundary between many
different classes, especially vegetation types, can be difficult
and laborious to determine for human annotators, since some
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Lab, Switzerland schmirob@ethz.ch

3University of Goettingen, Department of Computer Science, Germany
4Technical University of Denmark, Department of Electrical Engineering

and Photonics, Denmark
The research was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics
and Space Administration (80NM0018D0004), partial funded by the Jet
Propulsion Laboratory and partially funded by Swiss Federal Institute of
Technology, ETH Zürich.
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Fig. 1: Polaris RZR vehicle autonomy testing in Mojave
desert. Top left image and right image: Green indicates the
region traversed by the vehicle. Bottom left image: Predicted
traversable region by the model.

of the largest public data sets contain data from only a single
natural environment [5]–[7]. Therefore, it would be ideal to
learn which terrain in any environment is traversable and
which is non-traversable using only previous experiences of
the vehicle via a self-supervised approach [8]–[10]. Further-
more, to drive fast and with a highly capable vehicle such
as the Polaris RZR (Figure 1) in our case, different semantic
classes could pose different risks compared to other vehicles.
In order to scale a perception system to handle a wide variety
of natural terrains and vehicle risk tolerances, efficient self-
supervised learning techniques are needed.

A. Related Work

Current traversability analysis relies on geometric, seman-
tic, or proprioceptive features [11], [12]. The features depend
on the available sensor configuration and vary between
robots. Geometric traversability analysis can work for rigid
environments and analyzes the terrain based on obstacles,
slope, or roughness of the terrain [1]. The environment is
represented as a 2D, 2.5D [13] or 3D map [1]. Other sensor
modalities such as RGB, Near-Infrared (NIR) or RADAR
are used to enrich the information used for planning and
inferring semantic information.

Learning-based methods for terrain classification have
been investigated intensively in recent years. With the suc-
cess of semantic segmentation models [14], several data
sets and the corresponding supervised terrain segmentation
models have been released [5]–[7], [15]. AI4Mars [16] was
able to generate a large labeled data set for the segmentation
of Mars terrain, but the level of work required to collect a
data set this large is infeasible for many robotic applications.
Some such as [17] utilize both manual labels and self-
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Fig. 2: Self-supervised traversability pipeline: 1) In the data generation the wheel trajectory is projected into the front camera
image and occluded points are removed from the projected trajectory. 2) A set of training images automatically generated
is masked with the projected wheel trajectory and used for the training of an autoencoder. 3) During prediction the front
camera image is reconstructed and the reconstruction error is used as a measure of how traversable regions in the image are.

supervision. However, the corresponding data is focused on
one specific environment and still requires manual labels.

The performance of terrain classification significantly de-
pends on the size of the data set. Self-supervised methods
deal with this by leveraging data from past experience of
the robot. Recent work deployed self-supervised methods for
predicting terrain properties at distance from data close to
the robot. Proprioceptive data at future time instances were
associated with visual images in the data set to predict propri-
oceptive information from underneath the robot at a farther
distance using images. This approach was studied using IMU
[18], [19], force-torque sensors [8], or acoustic signals [9]
for the generation of proprioceptive data. In addition, [10]
took advantage of this by using a proximity sensor to learn
the traversability at distance. Whereas these approaches do
not handle occlusions during the labeling process, [20] dealt
with trajectories that were partially occluded.

Traversability classification algorithms are prone to over-
confident predictions on out-of-distribution samples. Addi-
tionally, negative samples are difficult to collect as they might
lead to catastrophic damage to the system. Autoencoders do
not have these issues because they can learn the appearance
of previously traversed terrain, only from positive samples.
Therefore, image regions with high reconstruction error are
likely to be novelties. Autoencoders are used for the detection
of non-traversable regions for a quadrupedal robot [21],
planetary exploration [22] or autonomous driving [23], [24].

B. Contribution

In this paper, we work towards the goal of self-supervised
perception of traversability by using the paths a robot pre-
viously successfully traversed in order to learn traversable
regions for future navigation. This is accomplished via a
developed projection tool that projects the wheel positions
of the vehicle’s future path into 2D images at previous
timestamps. This pipeline follows a similar approach [8] and
extends it in several key areas. First, the tool utilizes multiple
LIDAR scans at a single instance for 3D representation of
the terrain and second, it has the ability to filter occluded
regions that are prevalent within off-trail environments. This
tool generates 2D trajectory labels which we use to train
a model to predict which regions have low traversability
risk and which have high traversability risk. We demonstrate
that an autoencoder trained on the masked trajectory region
can identify low and high-risk terrains via differences in
predicted reconstruction error.

The key contributions can be summarized as follows:
• Creation of a wheel projection tool utilizing a 3D world

model from multiple LIDAR scans
• Occlusion filtering for trajectory masks
• An autoencoder model that can predict high- and low-

risk terrains based on the wheel projection labels

II. METHOD

Our approach for self-supervised traversability detection
is shown in Figure 2. To generate training labels the wheel
positions are projected into the camera images and filtered
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(a) (b) (c) (d)

Fig. 3: Data collection on different terrain: The vehicle trajectory is projected onto the front camera image. a) Arroyo with
gravel terrain, b) Arroyo with wood logs and rocks, c) Mojave with a sand trail, d) Mojave with hardpack and vegetation.

for occlusions. The masks generated are used to train an
autoencoder that learns to represent parts of the image within
this mask. During inference, we use the reconstruction error
of the autoencoder to determine traversable regions.

A. Projecting Wheel Tracks to Camera Image

In order to project the wheel positions into an image of the
camera, their positions with respect to the camera need to
be known. First, we need to find the pose of the vehicle
in the global frame. In order to do so, the open-source
state estimation framework, LIO-SAM [25] is used, which
provides a low-drift pose estimate at every timestamp with
respect to the body-frame (base link). We can then obtain the
wheel contacts from the base link coordinate through a static
transform. Therefore, for each of the two front wheels, we
compute the position of two contact points on either side of
the wheel with the ground and assume that the wheel contact
region is a line of length of the wheel width.

At each time instance t at which an image from the front
camera is captured, the contact points of the wheel in the
global frame pt ∈ R3 and the time-dependent transformation
from the wheel to the camera T t

cw are stored. Denoting
the camera intrinsic calibration matrix K and the extrinsic
calibration matrix P the wheel image points in homogeneous
coordinates it =

[
u v 1

]T
are computed with

it = PKT t
cwp

t. (1)

This projection is computed from t to t + τ with τ as
the projection horizon, which projects the wheel trajectory
pt:t+τ to the wheel image points it:t+τ . These points are
then connected to a quadrilateral resulting in the connected
trajectory in Figure 3.

B. Occlusion Filtering

The terrain on which we operate can be unstructured and
contain obstacles such as boulders, vegetation, or ditches.
Since the goal is to learn from pairs of visual and propri-
oceptive data, only parts in the image which represent the
corresponding ground patch of the collected data should be
visible. Parts of the trajectory behind an occlusion may yield
misleading information and need to be filtered. This occlu-
sion filtering takes into account the geometric information in
form of a point cloud.

At time instance t at which the image is taken the point
cloud ct is projected into image coordinates. The wheel

points trajectory and point cloud are then converted into
spherical coordinates. A potential occlusion point o that
occludes a point on the wheel is found by a nearest neighbor
search in the azimuthal and radial dimension for each wheel
point over all points of the point cloud. This finds the point
in the point cloud that is closest to the ray from the camera
to the wheel point.

A wheel point is treated as occluded if the relative radial
distance of this potential occluded wheel point is less than
a radial distance threshold ρ. This threshold allows to adjust
the size of the obstacles filtered out. The occluded points are
then removed from the wheel trajectory.

Algorithm 1 Occlusion Filtering

Initialization: pt:t+τ , ct

for p in pt:t+τ do
o← nearestNeighbor([pθ, pϕ], [ctθ, c

t
ϕ])

if or−pr

pr
< ρ then

p← is occluded
else

p← is not occluded

C. Traversability Learning
In order to predict whether a region is traversable, we use

an autoencoder model. The model is optimized against the
mean squared error (MSE) loss between an input image, x
and its reconstruction, x̂. The loss is multiplied element-wise
with a binary mask, m, that is, 1 within the trajectory region
and 0 outside the region and on vehicle parts

L(x̂) = 1

wh

w∑
i=0

h∑
j=0

mi,j(x̂i,j − xi,j)
2 (2)

where w, h is the width and height of the input image
x. Therefore, the region outside of the masked region is
ignored during loss calculation. Using this approach, the
reconstruction error will be minimized for regions that have
been successfully traversed only. During inference, areas
within the model output that have a large reconstruction error
are unlikely to have been seen within the training set of
traversable regions. These high reconstruction error regions
are considered high-risk terrain and low reconstruction error
regions correspond to low-risk terrain.

We use a standard variational autoencoder with Resnet
[26] backbone to evaluate this approach. The model contains
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Fig. 4: Underfoot projections without and with occlusion filtering. The parts of the trajectory which are occluded by vegetation
are removed using a 3D representation of the scene.

an encoder that takes an image as input and compresses it
into a latent space consisting of a n-dimensional mean and
variance vector, n being the size of the bottleneck layer.
The decoder then attempts to reconstruct the image from
the latent vector.

III. EXPERIMENTS AND RESULTS

A. Label Generation Details

1) Data Generation: The data was collected from the
four-wheeled Polaris S4 1000 RZR platform. This rugged,
autonomous-ready off-road vehicle is equipped with various
sensors including RGB stereo cameras and 3x LIDARs
(Velodyne VLP-32C). We collected data from different test
sites in the Arroyo Seco near the Jet Propulsion Lab in
Pasadena, California, and the Mojave Desert. The data con-
tains different terrain types such as gravel, small bushes,
sand, waterbed and logs as shown in Figure 3. Vegetation,
slopes, and boulders generate positive obstacles and need to
be filtered out. In total, 4000 images of size 960x594 were
collected with 2000 in the Arroyo Seco and 2000 in the
Mojave Desert, which corresponds to a driving distance per
site of around 20 km.

2) Point Cloud Filters: To generate a geometric 3D
representation of the terrain, three LIDARs are used. The
processed point clouds run through the filtering and merging
pipeline developed in previous work [27]. The point clouds
are spatially merged and dust particles are filtered. For
consistency, spacial merging is performed. The points are
then segmented into surface, obstacle and ground class, from
which outlier points are removed to build a smooth ground
surface.

3) Wheel Trajectory Generation: The wheel points are
projected at a rate of 10Hz, 4 s ahead of the robot. Maintain-
ing an average constant driving speed of 30 km/h results in
trajectories of around 35m without removing occluded parts.
This covers the front camera image to a large extent.

The occlusion filtering was tested on unstructured terrain
with positive obstacles such as the vegetation shown in
Figure 4. The radial distance threshold ρ is determined

empirically to 0.35 based on the size of the obstacles present.
The number of occlusions on the wheel trajectory increases
significantly with a longer wheel projection horizon.

B. Training

To evaluate the performance of the autoencoder, the model
is trained on both the Arroyo and Mojave data sets separately.
These data sets were sampled randomly with an 80% training
and 20% validation split. The models are trained for 100
epochs and are saved based on validation error. All models
are trained with a learning rate of 10−4, a batch size of 4
and an image size of 224x224.

C. Evaluation Against Semantic Labels

In order to further test the performance of the models, each
model is compared to independent test sets from Mojave and
Arroyo. The Mojave data set contains 955 labeled images of
size 960x594 with ground and vegetation segmented. The
ground class is a collection of different flat surface terrains,
mainly soil and gravel. This data set was collected with
our Polaris RZR in separate GPS locations to maintain the
independence of the test set. The Arroyo test data contains
1816 labeled images of size 640x480 with ground and
vegetation segmentations and is from the MAARS project
[12]. This data set was collected at a location similar to our
Arroyo training data; however, the images are from an Intel
RealSense and from a different season. The autoencoder is
evaluated with two different backbone sizes and bottleneck
dimensions. The metric for comparison is the MSE between
risk class prediction and semantic class normalized between
0 and 1. This gives a measure where 0 is low risk and
1 is high risk. The receiver operating characteristic curves
(ROC) for this experiment are shown in Figure 5. For the
Arroyo data set, 0.106 and for Mojave, 0.436 are chosen as
a threshold θ∗ for low- and high-risk regions for comparison
to semantic labels. This threshold is found by optimizing the
true positive rate (TPR) and false positive rate (FPR):

θ∗ = argmin(
√

(1− TPR)2 + FPR2) (3)
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TABLE I: Percent intersection between high- and low-risk predictions and ground truth semantic labels of ground and
vegetation.

Model Bottleneck Train Arroyo Mojave
Dataset Ground % Vegetation % AUROC Ground % Vegetation % AUROC

Resnet18 256 Arroyo 78.6 74.7 0.825 58.2 48.7 0.541
Resnet18 512 Arroyo 78.7 75.4 0.826 59.9 56.6 0.596
Resnet50 256 Arroyo 78.7 74.6 0.821 58.2 48.4 0.541
Resnet50 512 Arroyo 76.6 74.8 0.816 57.6 49.4 0.541
Resnet18 256 Mojave 82.6 79.9 0.860 67.8 74.6 0.730
Resnet18 512 Mojave 85.1 81.1 0.888 67.1 77.1 0.737
Resnet50 256 Mojave 78.2 79.9 0.730 67.2 76.4 0.760
Resnet50 512 Mojave 84.5 79.2 0.840 63.1 76.0 0.712

The overall test results are presented in Table I. Each
model, regardless of the training set, is tested on both test
sets to assess for overfitting. The Mojave trained model
generalizes well, demonstrated by its similar performance
on the two test sets. However, the Arroyo trained model
shows a lower performance on the Mojave test set. While
these semantic labels are not a direct match to traversability
risk since they do not capture the vehicle’s capabilities, they
are a good approximation, as vegetation ideally would have
higher risk regardless, due to potential unknown hazards
and tire puncture risk. Interestingly, the Arroyo has more
non-traversable vegetation and the models predict a higher
percentage of this vegetation as high-risk compared to the
Mojave data set which contains more traversable vegetation.
One of the primary sources of error within the predictions
are the shadowed regions on the ground that are predicted
with around 60% as high-risk.
Additionally, we observe that in this case the use of a bigger
bottleneck size had slightly better results. Due to the size of
our training data set, there is likely some overfitting to the
specific training terrain using a larger model. Furthermore,
using a deeper model, such as the Resnet50, does not appear
to have a strong impact on the results.

Further analysis based on a histogram of MSE per image
of the Resnet18 model with 256 bottleneck is show in
Figure 6. From this we observe that the ground often
contains lower MSE compared to the vegetation. There
is some overlap within these values especially within the
Mojave test set. This is due to small traversable vegetation
having low error, and some shadowed regions on the ground
leading to a higher error. Observing the sample images,
reconstructions, and scaled error images in Figure 7, we
see a good qualitative performance of the model. These
samples are from a model with a Resnet18 backbone with
a bottleneck size of 256. Next to shadows some small
rocks and some of the texture of the sand have a large
reconstruction error. The model shows a strong response for
large vegetation and a smaller response for small vegetation,
which is an interesting side effect of the color of the
different types of vegetation.

IV. CONCLUSION AND FUTURE WORK

We present a novel pipeline with automated wheel pro-
jection and occlusion filtering which generates images to

(a) Arroyo trained, Resnet18 (b) Arroyo trained, Resnet50

(c) Mojave trained, Resnet18 (d) Mojave trained, Resnet50

Fig. 5: ROC plots for the Resnet18 and Resnet50 model
trained on Arroyo and Mojave data with 256 (blue) and 512
(orange) bottleneck sizes evaluated on Arroyo (solid line)
and Mojave (dashed line).

predict high and low-risk traversable terrain. We trained a
variational autoencoder with a Resnet backbone and evalu-
ated the generalizability of our model with data from a test
site not seen during training. In our approach, we used the
reconstruction loss as a measure of traversability. Based on
our results of being able to identify 81% of the vegetation
in the Arroyo and 77% of the vegetation in Mojave as high-
risk while maintaining around 85% of the ground as low-risk,
our model was able to successfully learn to separate high and
low traversability risk. This was a promising result for future
usage onboard for autonomous off road driving. For a vehicle
such as the Poloris RZR, which has a high risk tolerance, the
lack of manual labeling offers the ability to quickly scale a
perception system to many different complex environments.

In future work, we want to use our tool to not only pre-
dict traversable and non-traversable terrain but other sparse
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(a) Arroyo model, Arroyo test (b) Mojave model, Arroyo test

(c) Arroyo model, Mojave test (d) Mojave model, Mojave test

Fig. 6: Histograms of MSE within labeled ground region
(green) and vegetation region (red) for Arroyo and Mojave
test sets using Resnet18 and 256 bottleneck size.

terrain properties from proprioceptive data such as speed,
vibration, wheel slip, etc. Further we want to investigate
techniques for better handling shadows. To further increase
the performance of the model for out-of-distribution samples,
negative samples can also be added. Negative samples do not
necessarily need to come from driving on non-traversable
areas but from driver feedback such as sudden steering or
breaking in front of obstacles.
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(a) Original image (b) Reconstructed image (c) Reconstruction error

Fig. 7: Sample images, reconstructions, and scaled error images for both Arroyo (top two rows) and Mojave (bottom three
rows) data. The top two rows were trained with Arroyo training data and bottom three rows with Mojave training data. The
first row shows an example where the vehicle shadow is successfully reconstructed, whereas in row two the vehicle shadow
is predicted as high-risk terrain. This is one of the main limitations of the model. Row three shows that some structures
in the sand which are represented darker because of shadows are predicted with a higher risk than similar terrain. Row
three and row four show differences of the predicted risk of traversable and non-traversable vegetation. The vegetation in
row three is large and non-traversable and is predicted with a higher risk than the small traversable vegetation in row four.
This is an interesting side effect due to the different color of the vegetation. Row five shows that some small rocks can be
predicted as high-risk.
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