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Cross-modal learning is an important characteristic of a system that is sup-
posed to be capable of self-extension. The system should exploit different
modalities and extend its current knowledge based on the information ob-
tained from different sources. In this deliverable we address the cross-modal
learning from different perspectives. We present methods that facilitate
learning in one modality by being supervised by another modality. We also
present approaches for self-supervised cross-modal learning on a lower level,
on the level of extracted features. And finally, we also address the problem
of high-level cross-modal learning, which is tightly related to the problem of
cross-modal binding.
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Executive Summary

An important characteristic of a robot that operates in a real-life environ-
ment is the ability to expand its current knowledge - and has to do so contin-
uously, in a life-long manner. The system has to create and extend concepts
by observing the environment while interacting with this environment as well
as with other cognitive agents and humans. Interactive continuous learning,
which is the main research topic of Workpackage 5, is therefore an essential
characteristic of a self-extending cognitive system. In this deliverable we
focus on continuous learning of cross-modal concepts.

Different types of cross-modality are addressed in this deliverable. Firstly,
we address the cross-modal learning between language and vision; linguistic
descriptions provide information, which drives learning in the visual sub-
system. Next, we present cross-modal learning of object affordances and
action effects; here the information arising from the visual subsystem is
combined with the information from the manipulation subsystem. Also, dif-
ferent derived modalities, or cues, from the visual subsystem are taken into
account: colour, depth (which is converted in 3D point cloud), and motion.
And finally, we also address an approach that finds associations between
higher-level modal concepts from different modalities and could be used for
binding.

We have integrated many of the developed methods in a multi-modal
cognitive system based on CAS. Continuous cross-modal learning is an im-
portant aspect of the George system we have been developing, so several
approaches presented in this report will be demonstrated in the George
scenario. Moreover, all the methods presented here were also individually
extensively evaluated on different problem domains.

Some of the work presented in this deliverable is a continuation of the
work performed in Year 1 and mostly presented in the deliverable DR.5.1.
Continuous learning of basic visual concepts, while this deliverable also
presents work that has been initiated in Year 2. In both cases, the nov-
elty and the value added in Year 2 are clearly exposed in the sections below.
This deliverable is also highly highly related to the DR.5.3 Representations of
gaps in categorical knowledge, since detection and representations of knowl-
edge gaps is an integral part of interactive continuous cross-modal learning.
While the deliverable DR.5.3 focuses on mechanisms for detection of incom-
pleteness in knowledge, this deliverable focuses on mechanisms for learning.

The work performed and described here addresses the problem of learn-
ing basic visual and cross-modal concepts in an interaction between a robot
and a tutor and between the robot and objects in the scene. The work has
been mainly performed as envisioned in the workplan and forms a solid ba-
sis for further research and extensions in the direction of more general and
more active interactive learning of cross-modal concepts.
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Role of Continuous learning of cross modal concepts
in CogX

In the process of continuous interactive cross-modal learning, the system
tries to understand what it does know and what it does not, and act or
update the current knowledge accordingly. Therefore, the main research
topic fits very well with the main motto of the project: to self-understand
to be able to self-extend.

Contribution to the CogX scenarios and prototypes

In order to monitor and show progress on interactive continuous learning,
we have designed the George scenario (Interactive cross-modal learning sce-
nario) [24, 25]. This scenario has been designed as a use case for guiding and
testing system-wide research and for demonstrating methods developed in
WP 5 (and also some other workpackages) in a working system. Therefore,
many of the methods presented in this deliverable have been integrated into
the overall system, which is used in the George scenario.

An active learning loop in which a robot semi-autonomously selects ac-
tions that improve its prediction abilities was implemented for the Dexter
scenario. These sensorimotor models encode the causal relationships be-
tween motor actions and the consequent object behaviour.
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1 Tasks, objectives, results

1.1 Planned work

This deliverable mainly tackles the problems addressed in Task 5.2 of Work-
package 5:

Task 5.2: Continuous learning of cross-modal concepts. Extend
the system to consider features of other modalities and to build
cross-modal category systems. Analyse the trade-offs between un-
supervised and supervised learning.

Therefore, the main goal was to develop the theory and methods to be
integrated into a robot capable of interactive continuous learning of cross-
modal concepts.

Before we begin with the concrete plans we had set for this deliverable,
let us first discuss some terminological issues. The terms related to cross-
modal learning are not consistently used in the literature. First, let us
cite, how we defined the term cross-modal learning (and modality) in our
contribution about cross-modal learning in the Encyclopedia of the Sciences
of Learning (see also Annex 2.6 [26]):

Cross-modal learning refers to any kind of learning that involves
information obtained from more than one modality. In the litera-
ture the term modality typically refers to a sensory modality, also
known as stimulus modality. A stimulus modality provides infor-
mation obtained from a particular sensorial input, for example
visual, auditory, olfactory, or kinesthetic information. Examples
from artificial cognitive systems (”robots”) include also infor-
mation about detected range (by sonar or laser range-finders),
movement (by odometry sensors), or motor state (by proprio-
ceptive sensors). We adopt here the notion of modality that in-
cludes both the sensorial data, and further interpretations of that
data within the modality. For example, from a pair of (depth-
calibrated) images, a cloud of points in 3-dimensional space can
be computed. We obtain both types of data (the image data, and
the 3D points) from the same visual sensor. At the same time,
they differ in what information they provide. We consider infor-
mation sources derived from sensorial data as derived modalities
that by themselves can be involved again in cross-modal learning.

We have, therefore, adopted a wider meaning of the term modality, and
also of the term cross-modal learning. We discuss in [26] several types of
cross-modal learning. In weakly-coupled cross-modal learning the models
are built within individual modalities, and the other modalities only super-
vise learning, by, e.g., providing a label or reinforcement signal. In closely-
coupled cross-modal learning, learning processes are more intertwined. A
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model is learnt by combining information from different modalities into a
common level of representation, and then using this level as a starting point
to build a common cross-modal classifier or predictor. We can identify also
a third type of cross-modal learning that is performed on a higher level
of abstraction. Here, a model is acquired that connects modal conceptual
structures from different modalities by learning associations between them.

Coarsely according to these division we also performed our work within
Task 5.2, which is reported here. In the following, we first present several
mutually dependent research lines related to different types of cross-modal
learning as depicted in Fig. 1. Here, three modalities or main sources of
information are presented: vison (2D and 3D), audio (language), and ma-
nipulation (action, proprioceptive data). The data that is captured in each
of these modalities is then further processed and can be even transformed
in ‘derived modalities’ (depicted as two light grey matrices in the vision
modality in Fig. 1 representing, e.g., colour and 3D information). All differ-
ent modalities continually provide a huge amount of information, much of
which is possibly highly redundant. This information is then processed and
different kinds of low-level features or other types of structured (the most
relevant) data are extracted (depicted as small blue vectors in Fig. 1). Based
on these features, high-level modality-specific concepts are then formed (de-
picted as red circles in Fig. 1); i.e., in vision this would mean that an ade-
quate representation of a visual concept has been learned, while in language
a logical form containing linguistic concepts has been formed. Based on this
description we can identify several different types of cross-modal learning,
which in different ways involve information from several modalities:

Self-supervised 
low-level 
cross-modal 
learning

Low-level uni-modal 
learning with high-level 
cross-modal supervision

High-level 
cross-modal learning

Figure 1: Different types of cross-modal learning.
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• Low-level uni-modal learning with high-level cross-modal su-
pervision. The primary goal was to learn associations between ex-
tracted low level features and modal concepts, in particular to learn
association between automatically extracted low-level visual features
and visual concepts, such as objects, object colour, and shape. The
learning was therefore performed within a single (visual) modality (al-
though considering several derived modalities like colour and 3D in-
formation), however this learning was driven by another modality or
source of information, namely language. The training samples are,
therefore, generated in interaction with the tutor.

• Self-supervised low-level cross-modal learning. The main goal
here was to learn associations between extracted low-level visual, mo-
tion, and action features and concepts of simple object affordances and
action effects. Here, the cross-modal learning takes place on a lower
level; the information from different modalities is combined on the fea-
ture level already. This learning process does not require any supervi-
sion from other modalities on a higher level. The training samples are
autonomously generated in interaction with an object by performing
actions.

• High-level cross-modal learning. This type of cross-modal learn-
ing is performed at a higher level of abstraction. The aim of the learner
is to learn associations between different high level modal representa-
tions (stemming from different modalities) of the same concepts and
in this way improve the system’s ability to relate different modal and
a-modal representations of perceived instances. This type of knowl-
edge is critical for the process of cross-modal binding. The training
samples are generated on the basis of the robot’s beliefs and successful
past bindings. An example: if the colour of an object is assigned to
the visual colour model 1 by the uni-modal learner and the tutor at-
tributes the colour of the same object to the linguistic concept of red,
a cross-modal association between visual colour model 1 and linguistic
concept of red is made.

For each type of cross-modal learning we now briefly describe the con-
crete goals we had set were to be performed under the Task 5.2. The actual
work performed is then described in the following section.

• Low-level uni-modal learning with high-level cross-modal su-
pervision.

Our algorithm for learning visual concepts (by being supervised by
language) is based on generative representations modelled by Kernel
Density Estimation. The aim was to further investigate the method-
ology for estimation of generative models from streams of data. We
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had planned to evaluate in detail the properties of the multivariate
online Kernel Density Estimation (DR.5.1, Annex 2.3), which we had
proposed in the previous year. Based on this analysis we planned to
extend the framework and improve it for the task of learning genera-
tive models, but this time explicitly for the task of classification. In
this way, we aimed at online generative discriminative models. Once
the theory for the online discriminative models would be laid out, we
planned to address the detection of uncertainties in the discriminative
models in relation with the question of online learning in the ”open
world”.

• Self-supervised low-level cross-modal learning.

When the robotic system is interacting with objects in its environ-
ment, it is continuously gathering feature information in several sen-
sory modalities. With regard to object affordance learning, one of
our goals was to design a learning mechanism that could harness the
statistical information in the data stream of a particular modality in
order to recognise emerging affordance categories on-the-fly, and to
use this information to train classifiers in other modalities. In particu-
lar, if one of the sensory modalities represents the effects of actions on
objects, then effect categories, e.g. rolling versus non-rolling objects,
could be discovered therein by clustering motion-specific features, e.g.
object velocity or the distance traveled by the object after an action.
Meanwhile, as co-occurring information is being gathered in a sepa-
rate modality that represents the properties of objects, e.g. 2D and
3D shape features, the category information from the effect modality
as well as the inter-modality co-occurrence information could be used
to efficiently train a classifier. Given a number of interactive episodes
with objects, the goal was to enable the system to predict from ob-
served object properties the affordance classes of novel objects based
on its own self-generated object affordance categories grounded in the
effect modality.

An additional goal is the acquisition of generative regression models
through semiautonomous learning. Following the work in the first
year, the specific objective was the incorporation of active learning ex-
periments in the context of affordance learning with recurrent neural
networks in a robot arm scenario. In the previous year, offline exper-
iments were performed and some statistics were collected to analyse
the generalisation abilities of LSTM machines for these tasks [19]. We
planned to use the Intelligent Adaptive Curiosity method [16] for ac-
tive selection of samples for learning. This algorithm was already used
in our previous experiments [18], but we planned to adapt it for the
problem of object trajectory prediction after a pushing action. This
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problem involves sequences of features in a time-series prediction set-
ting, where the neural network represents a model of the underlying
dynamical system.

• High-level cross-modal learning.

The aim was to first define the problem of High-level cross-modal learn-
ing and the problem of binding, then implement a prototype system
that would allow further investigation and experiments on synthetic
data. If possible, the cross-modal learner would be integrated into the
overall system as part of the binding subsystem. Once integrated, it
would be possible to perform experiments on real-world objects and
with real low level learners.

1.2 Actual work performed

In this section we briefly describe the main achievements related to the
topic of this deliverable. For detailed descriptions of the work performed
the reader is referred to the papers attached in the annex of this deliverable.

1.2.1 Low-level uni-modal learning with high-level cross-modal
supervision.

We have analysed the properties of the oKDE and successfully extended the
methodology to the class of online discriminative classifiers, which can also
operate in the ”open worlds”.

• We have revised the theory behind the oKDE and simplified its math-
ematical formulation. In addition, we extensively analysed the per-
formance of the oKDE. Specifically,(i) we have analysed the influence
of the parameters and the data order, (ii) we have analysed the per-
formance of non-stationary distribution estimation and (iii) we have
performed the analysis of the discriminative performance of the oKDE.

• We have extended the oKDE theory by considering the problem of on-
line learning as estimation of probability density function for building
classifiers. The new approach is called the online discriminative Ker-
nel Density Estimator (odKDE). The extensive analysis of the recently
proposed multivariate online Kernel Density Estimators showed that
it is possible to build probabilistic models from streaming data and
these models perform very well in classification tasks, although they
are not built in consideration for discrimination properties. While the
oKDE builds a separate class model for each class, the new odKDE
takes into account all classes while updating a particular class model.
In this way the adaptation of a single class model is weakly supervised
by other, uncertain, class models.
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• We have derived a distance function that measures distance between
the classifiers. This allows us to better compress the generative models
such that their discrimination properties do not significantly decrease.

• The odKDE was successfully implemented within the concept of a
probabilistic knowledge model, that allows detection of gaps in knowl-
edge and explicitly accounts for the possibility of yet undiscovered
classes (the open world question).

The analysis, along with the new methodology described in Annex 2.1 [9]
and Annex 2.2 [10], showed that since the odKDE builds models that are
complex just so much to retain their discrimination quality, these models
tend do be significantly less complex than those built using the oKDE. On
the one hand, less redundant (complex) models allow faster learning and
inference of the concepts that we are dealing with. On the other hand, these
models retain their generative properties, which is also central for knowledge
gap detection, which we address in DR.5.3 .

1.2.2 Self-supervised low-level cross-modal learning.

With regard to object affordance learning, the following main developments
have been made:

• We have developed a cross-modal competitive learning neural network
based on Kohonen’s self-organizing map (SOM) and learning vector
quantisation (LVQ) paradigms. Sensory modalities are represented
by layers of codebook vectors that are trained in either an unsuper-
vised manner (SOM-based) or a self-supervised manner (LVQ-based)
depending on the modality in question. The modality codebook vector
layers are connected to each other via a Hebbian mapping which mod-
els the co-occurrence of data between modalities and serves as a mem-
ory of how well nodes in one modality correspond to nodes in another
modality over time. The layer doing the unsupervised learning, typi-
cally representing the effect modality in our experiments, finds modes
in the data distribution that represent potential categories. Mean-
while, the layer undergoing self-supervised learning, typically repre-
senting the object property modality in our experiments, compares
the mode matching the sample in the effect layer to the corresponding
Hebbian mapping in order to determine if the sample is being classified
as expected. This training process proceeds without any class labels,
self-generated or otherwise. Class labels are generated via clustering
the effect layer nodes after training, or when required.

• Feature selection may be regarded as almost being a requirement if a
classifier is to be trained successfully using a small number of training

EU FP7 CogX 10



DR 5.2: Continuous learning of cross modal concepts D. Skočaj et. al.

samples; a typical scenario in robotic learning. Therefore, to augment
the cross-modal learner, we have developed a feature relevance deter-
mination method for LVQ-based algorithms that uses the structure of
the codebook vectors, as well as statistics gathered during training to
apply Fisher’s linear discriminant to individual feature dimensions in
an online manner. This allows the system to determine during training
that, for example, the object curvature feature is the most important
feature in determining whether the object will roll or not.

• The above methods have been evaluated on a real-world dataset of
a robotic arm performing pushing actions on eight household objects
on a table surface. Four of the objects rolled across the table when
pushed and the other four did not roll when pushed, thus forming two
natural affordance classes of rolling versus non-rolling objects. Our
self-supervised learning method performed favourably when trained
on this data, even under the tough condition of leave-one-object-out
cross-validation. It also produced performances close to those of fully-
supervised LVQ methods.

This work is summarised in Annex 2.3 [17]. It mainly focuses on self-
supervised learning of affordance classes. The main goal is to build a system
that is able to assign an object into one of several previously autonomously
learned affordance classes based only on its observation (2D and 3D) and by
knowing the action that is to be performed. A pushing action and several
household objects have been used in this experiment.

The second line of research on affordance learning focuses on a different
aspect of this problem. Here, the main emphasis is on learning the dy-
namics of actions that are being performed and the effects of these actions.
The main goal is to learn to predict what will happen with an object that
has been pushed in terms of regression (what the resulting trajectory of its
movement will be). We have continued our work on this problem that we
have initiated (and reported) last year. To begin with, we improved the
neural network treatment of features. This allowed the machines to achieve
convergence when solving the regression problems they are tackling. Based
on improved offline experiments, we used the same features in an active
learning setting. The Intelligent Adaptive Curiosity algorithm was imple-
mented and adapted for sequence prediction. In summary, the partition of
the sensorimotor space into regions was added. We implemented a variance
measure to split these regions, taking into account the temporal sensori-
motor space or manifold formed after a whole sequence of object poses is
obtained.

The results can be seen in the Annex 2.4 [20]. The experiments show that
the active learning procedure forms regions that are statistically properly
split. The selection of samples from a specific sensorimotor region is based
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on the learning progress measure, that allows the selection of actions that
are more likely to improve the learning performance.

1.2.3 High-level cross-modal learning.

The high-level cross-modal learning problem is closely related to the associa-
tion rule learning problem in data mining, which was first defined by Agrawal
et al., therefore, we based our learning problem definition on Agrawal’s def-
inition. First we introduced the notion of modality and restrict the associ-
ation rule to cross-modal associations. Then we defined percepts as subsets
of features from one modality and unions as collections of percepts from
different modalities. Percepts are uni-modal representations of perceived in-
stances, while unions are multi-modal, shared representations of the same.
We also defined the binding function as a function that maps a set of current
percepts (percept configuration) into a set of unions (union configuration)
and the measure of binding confidence, which expresses the confidence in
a union configuration based on the accumulated cross-modal knowledge.
Finally, we defined binding as finding the union configuration with the max-
imal confidence, given the current percept configuration, the set of possible
binding functions and the current cross-modal knowledge.

We implemented a prototype of the high-level cross-modal learner and
a prototype of the binding in Markov logic networks (MLNs). The MLN
combines first-order logic and probabilistic graphical models in a single rep-
resentation. This enables a smooth translation of the formal definitions of
binding and cross-modal learning into MLN on the one hand, while retain-
ing the ability of probabilistic knowledge representation and probabilistic
inference based on graphical models on the other hand. In addition, the rep-
resentation of cross-modal learning a set of weighted semi-grounded rules is
also more suitable for online learning (we limited the learning to the weight
learning, while we based the rule structure on a subset of possible association
rules from the definition). Experiments have shown that with the growing
number of samples the binding rate tends to grow and converge, though
with some oscillations. This work is reported in Annex 2.5 [29].

1.3 Relation to the state-of-the-art

In this section we discuss how our work is related to, and goes beyond the
current state-of-the-art.

1.3.1 Low-level uni-modal learning with high-level cross-modal
supervision.

The analysis of the oKDE in [9] and the methodology therein were our basis
for deriving online generative/discriminative models. The revised method-
ology and the extensive benchmark experiments have shown that in order to
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allow online adaptation, a model needs to hold sufficient information for it
to adapt to future data (sufficient complexity), while at the same time it has
to generalise the past observations well for good prediction (prediction ca-
pacity). This means that we require general methods that possibly allocate
new components as new observations arrive as well as revise the components
estimated in the previous time-steps. A model with a small number of com-
ponents will generalise past observations, but might also underestimate the
distribution by modeling it too smoothly (over-smoothing). Then as new
data-points arrive, the model may lack the information required to increase
its complexity. On the other hand, a drawback of keeping a very large num-
ber of components in the model is that the model might overfit the data
which results in poor generalisation (under-smoothing). By definition, the
oKDE adds new data to increase the generative properties and compresses
the model, by trying not to lose those. Therefore, the only place where the
oKDE might lose information (over-smooth) is the compression step. By
proposing a new cost function, that measures the loss of discrimination in
the compression, we derived an online discriminative Kernel Density Esti-
mator (odKDE) [11, 10], that combines generative properties required for
proper updates with the discriminative properties to simplify models with-
out compromising the resulting classification performance. While there are
many batch approaches to building classifiers, e.g., [15, 4, 5, 1], the odKDE
allows online adaptation from as little as single data-point at a time, and
since it is based on the oKDE, it produces models with generative properties,
which are important when considering discovering gaps in knowledge. The
approach has been compared to batch methods [15, 4, 5, 1] and an online
method [9]. Results (see Annex 2.2 [10]) demonstrate that the proposed
odKDE produces comparable classification performance to the state-of-the-
art, and produces models of significantly lower complexity while allowing
online adaptation.

1.3.2 Self-supervised low-level cross-modal learning.

With regard to object affordance learning, perhaps the most closely related
work in the literature to our work is by Fitzpatrick et al. [3, 13]. The
authors trained a humanoid robot to recognise “rolling” affordances of 4
household objects using a fixed set of actions to poke the objects in different
directions as well as simple visual descriptors for object recognition. There
are two main differences between their method and ours. Firstly, in [3,
13], the feature associated with the rolling direction affordance was pre-
determined, whereas in our system, the learning algorithm is provided with
a number of different output features and it must determine for itself the
affordance classes within that feature space. Secondly, their system used
object recognition to identify the affordances of individual objects, whereas
our system determines the affordance class of objects (grounded in output
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modality features) based, not on their individual identity, but on a broad set
of input features (e.g. shape). In [14], the authors used a humanoid robot
to push objects on a table and used a Bayesian network to form associations
between actions, objects and effects. Though quite similar to our approach,
their learning method may not be as amenable to full online learning, as
they have to gather a certain amount of data initially to form categories
within the various modalities before the network can be trained.

The selection of samples is a crucial problem in machine learning and
specially in robotics [12]. Robots should be able to identify situations that
are new or informative. Active Learning has been studied specially for clas-
sification tasks [23] but there is little work in that respect for generative
models. Moreover, the state spaces considering in a robotic scenario are
very high dimensional, considering also the temporal aspect of object be-
haviour prediction. This aspect even concerns scenarios where features are
obtained from a simulator, in which case we are reducing to a big extent the
dimensionality of the task, but the complexity of the state space of possible
behaviours remains a challenge.

1.3.3 High-level cross-modal learning.

Many of the past attempts of binding information within cognitive systems
were restricted to associating linguistic information to lower level perceptual
information. Roy et al. tried to ground the linguistic descriptions of objects
and actions in visual and sound perceptions and to generate descriptions
of previously unseen scenes based on the accumulated knowledge [21, 22].
This is essentially a symbol grounding problem as first defined by Harnad
[6]. Chella et al. proposed a three-layered cognitive architecture around the
visual system with the middle, conceptual layer bridging the gap between
linguistic and sub-symbolic (visual) layers [2]. Related problems were also
often addressed by Steels [27].

Jacobsson et al. approached the binding problem in a more general way
[8, 7] developing a cross-modal binding system that could associate between
multiple modalities and could be part of a wider cognitive architecture.
The cross-modal knowledge was represented as a set of binary functions
comparing binding attributes in pair-wise fashion. A cognitive architecture
using this system for linguistic reference resolution was presented in [28].
This system was capable of learning visual concepts in interaction with a
human tutor. Recently, we have developed a probabilistic binding system
that encodes the cross-modal knowledge into a Bayesian graphical model
[30].

The need for a more flexible, but still probabilistic representation of the
cross-modal knowledge motivated our work and led our research efforts in
the direction of Markov graphical models. Using Markov logic networks as a
template, the cognitive system can construct a specialised graphical model
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for each specific situation online. Since the cross-modal knowledge is learnt
online on the MLN (template) level, the situated graphical models offer more
flexibility than the static graphical models (e. g. Bayesian).
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2 Annexes

2.1 Kristan and Leonardis “Multivariate Online Kernel Den-
sity Estimation with Gaussian Kernels”

Bibliography M. Kristan and A. Leonardis: “Multivariate Online Kernel
Density Estimation with Gaussian Kernels” Submitted for journal publica-
tion, 2010

Abstract We propose a novel approach for online estimation of proba-
bility density functions. Our approach is based on the kernel density esti-
mation (KDE) and produces models that enable online adaptation, which
at the same time maintain a low (or bounded) complexity that scales sub-
linearly with the observed samples. During online adaptation, we main-
tain a non-parametric model of the data itself and use this model to cal-
culate the corresponding KDE. The dominant parameter in the KDE is
the kernel bandwidth and we propose an automatic bandwidth selection
rule, which can be computed directly from the non-parametric model of the
data. Low complexity of the model is maintained through a novel com-
pression/revitalization scheme. We analyze the properties of the proposed
online KDE and compare it to the state-of-the-art approaches on examples
of estimating stationary and non-stationary distributions, and on examples
of classification. The results show that the online KDE outperforms the
state-of-the-art online Gaussian mixture model, and achieves a comparable
performance to the batch approaches, while producing models with a signif-
icantly lower complexity and allowing online updating by using only a single
observation at a time.

Relation to WP This paper extends the theory of the multivariate on-
line Kernel Density Estimation (oKDE) and simplifying the mathematical
formulation behind the approach. In addition, we extensively analyse the
performance of the oKDE. Specifically, we (i) analyse the influence the pa-
rameters and the data order, (ii) we analyse performance of non-stationary
distribution estimation and (iii) we perform the analysis of the discrimina-
tive performance of the oKDE. This analysis is important for proper use of
the oKDE within the WP5 and to determine limitations and advantages of
the approach.
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2.2 Kristan and Leonardis “Online Discriminative Kernel
Density Estimation”

Bibliography M. Kristan and A. Leonardis: “Online Discriminative Ker-
nel Density Estimation” Accepted at International Conference on Pattern
Recognition ICPR 2010, Istambul, Turkey, 23-26 August 2010.

Abstract We propose a new method for online estimation of probabilis-
tic discriminative models. The method is based on the recently proposed
online Kernel Density Estimation (oKDE) framework which produces Gaus-
sian mixture models and allows adaptation using only a single data point
at a time. The oKDE builds reconstructive models from the data, and we
extend it to take into account the interclass discrimination through a new
distance function between the classifiers. We arrive at an online discrimina-
tive Kernel Density Estimator (odKDE). We compare the odKDE to oKDE,
batch state-of-the-art KDEs and support vector machine (SVM) on a stan-
dard database. The odKDE achieves comparable classification performance
to that of best batch KDEs and SVM, while allowing online adaptation, and
produces models of lower complexity than the oKDE.

Relation to WP The paper casts the problem of online learning into esti-
mation of probability density function for building classifiers. The extensive
analysis of the recently proposed multivariate online Kernel Density Estima-
tors showed that it is possible to build probabilistic models from streaming
data and these models perform very well in classification tasks, although
they are not build with considering discrimination properties. We have
shown in this paper that the oKDE can be extend by explicitly account-
ing for its discrimination properties, thus leading to models that perform
similarly to oKDE, but are significantly less complex. This is achieved by
directly building a classifier (not each class model separately from the oth-
ers), therefore in adaptation of a single class model is weakly supervised
by other, uncertain, class models. The paper thus provides the necessary
methodology for building probabilistic models for classification in the WP5.
The new methodology is called the online discriminative Kernel Density Es-
timation (odKDE), and since it is derived from the oKDE, it not only allows
building classifiers from positive examples but also from negative examples,
which is central for the learning tasks in WP5.
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2.3 Ridge et al. “Self-supervised Cross-Modal Online Learn-
ing of Object Affordances for Developmental Robotic
Systems”

Bibliography B. Ridge and D. Skočaj and A. Leonardis: “Self-supervised
Cross-Modal Online Learning of Object Affordances for Developmental Robotic
Systems” Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, USA, May 2010

Abstract For a developmental robotic system to function successfully in
the real world, it is important that it be able to form its own internal repre-
sentations of affordance classes based on observable regularities in sensory
data. Usually successful classifiers are built using labeled training data,
but it is not always realistic to assume that labels are available in a de-
velopmental robotics setting. There does, however, exist an advantage in
this setting that can help circumvent the absence of labels: co-occurrence
of correlated data across separate sensory modalities over time. The main
contribution of this paper is an online classifier training algorithm based
on Kohonens learning vector quantization (LVQ) that, by taking advantage
of this co- occurrence information, does not require labels during training,
either dynamically generated or otherwise. We evaluate the algorithm in
experiments involving a robotic arm that interacts with various household
objects on a table surface where camera systems extract features for two
separate visual modalities. It is shown to improve its ability to classify the
affordances of novel objects over time, coming close to the performance of
equivalent fully-supervised algorithms.

Relation to WP This paper presents a self-supervised cross-modal com-
petitive learning neural network that can be trained online to form a clas-
sifier where the categories are automatically generated by the algorithm
based on the statistical properties of the data. Therefore, it addresses the
requirements of WP5 on multiple levels, primarily in the areas of continu-
ous learning and the representation of cross-modal concepts. The algorithm
can be trained online from scratch, without any prior model being in place,
thereby addressing one of the main facets of continuous learning. Moreover,
while at the beginning of training the algorithm doesn’t have any concept
or model of affordance categories, by the end of training it has developed its
own affordance categories based on the statistics of the data it has observed
during training, thus developing on another idea from continuous learning;
the ability to form novel concepts over time. It is inherently cross-modal, in
that separate learning layers that initially are trained independently, over
time conspire to influence each other during training via cross-modal con-
nectivity.
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2.4 Roa and Kruijff. “Offline and active gradient-based learn-
ing strategies in a pushing scenario”

Bibliography Roa, S. and Kruijff, G.-J.M.: “Offline and active gradient-
based learning strategies in a pushing scenario”. In ERLARS, 2010 (To
appear).

Abstract When operating in the real world, a robot needs to accurately
predict the consequences of its own actions. This is important to guide its
own behavior, and in adapting it based on feedback from the environment.
The paper focuses on a specific problem in this context, namely predicting
affordances of simple geometrical objects called polyflaps. A machine learn-
ing approach is presented for acquiring models of object movement, resulting
from a robot performing pushing actions on a polyflap. Long Short-Term
Memory machines (LSTMs) are used to deal with the inherent spatiotem-
poral nature of this problem. An LSTM is a gradient-based model of a
Recurrent Neural Network, and can successively predict a sequence of fea-
ture vectors. The paper discusses offline experiments to test the ability of
LSTMs to solve the prediction problem considered here. Cross-validation
methods are applied as a measure of convergence performance. An active
learning method based on Intelligent Adaptive Curiosity is also applied for
improving the learning performance of learners trained offline, generating a
combination of learners specialized in different sensorimotor spaces after the
knowledge transfer.

Relation to WP This work is related to Tasks 5.2 and 5.3. Task 5.2 is
related to cross-modal learning of visiomotor concepts. Task 5.3 is related
to active learning. We design a feedback loop between sensing and acting
for the robot to select actions on the basis of an intrinsic motivation. This
work is also related to the WP 5, specifically task 2.10.
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2.5 Vrečko et al. “Binding and Cross-modal Learning in
Markov Logic Networks”

Bibliography A. Vrečko, D. Skočaj, A. Leonardis: “Binding and Cross-
modal Learning in Markov Logic Networks”. Submitted, 2010

Abstract Binding the ability to combine two or more modal representa-
tions of the same entity into a single shared representation is vital for every
cognitive system operating in a complex environment. In order to success-
fully adapt to changes in an dynamic environment the binding mechanism
has to be supplemented with cross-modal learning. In this paper we define
the problems of high-level binding and cross-modal learning. By these defi-
nitions we model a binding mechanism and a cross-modal learner in Markov
logic network and test the system on a synthetic object database.

Relation to WP The paper addresses the problems of high-level cross-
modal binding and learning, as defined in Task 5.2. It defines both problems
and shows, using the Markov logic networks, how can high-level cross-modal
associations be learned in this framework.
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2.6 Skočaj et al. “Cross-modal learning”

Bibliography D. Skočaj, G.-J. Kruijff, A. Leonardis: “Cross-modal learn-
ing”. Submitted to Encyclopedia of the Sciences of Learning, 2010

Abstract Cross-modal learning refers to any kind of learning that involves
information obtained from more than one modality. In the literature the
term modality typically refers to a sensory modality, also known as stim-
ulus modality. A stimulus modality provides information obtained from a
particular sensorial input, for example visual, auditory, olfactory, or kines-
thetic information. Examples from artificial cognitive systems (”robots”)
include also information about detected range (by sonar or laser range-
finders), movement (by odometry sensors), or motor state (by proprioceptive
sensors). We adopt here the notion of modality that includes both the sen-
sorial data, and further interpretations of that data within the modality.
For example, from a pair of (depth-calibrated) images, a cloud of points in
3-dimensional space can be computed. We obtain both types of data (the
image data, and the 3D points) from the same visual sensor. At the same
time, they differ in what information they provide. We consider information
sources derived from sensorial data as derived modalities that by themselves
can be involved again in cross-modal learning.

Relation to WP In this contribution to the Encyclopedia of the Sciences
of Learning we define and discuss the term ”cross-modal learning”, which is
the central research topic of WP5 and Task 5.2.
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[26] D. Skočaj, G.J. Kruijff, and A. Leonardis. Encyclopedia of the Sciences
of Learning, chapter Cross-modal learning. Springer, 2010. Submitted.

[27] L. Steels. The Talking Heads Experiment. Volume 1. Words and Mean-
ings. Laboratorium, Antwerpen, 1999.
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Multivariate Online Kernel Density Estimation with
Gaussian Kernels

Matej Kristan,Member, IEEEand Alěs Leonardis,Member, IEEE

Abstract—We propose a novel approach for online estimation
of probability density functions. Our approach is based on the
kernel density estimation (KDE) and produces models that enable
online adaptation, which at the same time maintain a low (or
bounded) complexity that scales sublinearly with the observed
samples. During online adaptation, we maintain a non-parametric
model of the data itself and use this model to calculate the
corresponding KDE. The dominant parameter in the KDE is
the kernel bandwidth and we propose an automatic bandwidth
selection rule, which can be computed directly from the non-
parametric model of the data. Low complexity of the model is
maintained through a novel compression/revitalization scheme.
We analyze the properties of the proposed online KDE and
compare it to the state-of-the-art approaches on examples of
estimating stationary and non-stationary distributions, and on
examples of classification. The results show that the online KDE
outperforms the state-of-the-art online Gaussian mixture model,
and achieves a comparable performance to the batch approaches,
while producing models with a significantly lower complexity and
allowing online updating by using only a single observation at a
time.

Index Terms—Online models, probability density estimation,
Kernel density estimation, Gaussian mixture models.

I. I NTRODUCTION

M ANY tasks in machine learning and pattern recognition
require building models from observing sequences of

data. In some cases all the data may be available in advance,
but processing all data at once (i.e., batch processing) becomes
computationally infeasible for large data-sets. This was,for
example, a major motivation for extending the batch algo-
rithms such as the principal component analysis (PCA) to its
incremental variants, e.g., [6], [25], [41]. Incrementlization
allowed building models from large data-sets without being
bounded by the computer’s memory limitations. Furthermore,
in many real-world scenarios all the data may not available
in advance, or we even want to observe some process for
an indefinite duration, while continually providing the best
estimate of the model from the data observed so far. These
scenarios are, for example, central for the problems in de-
velopmental and cognitive robotics [2], [35], [36], [43], in
which a cognitive agent learns gradually from observing and
interacting with its tutor or environment (e.g. [24]). A common
point in applications of learning from large data-sets and

M. Kristan is with the Faculty of Computer and Information Science,
University of Ljubljana and with the Faculty of Electrical Engineering,
University of Ljubljana

A. Leonardis is with the Faculty of Computer and Information Science,
University of Ljubljana

applications of learning from sequences of data is that they
all require a type of online construction of the models.

A popular approach to generating models from data is
to model the probability density function (pdf) associated
with the observed data. Traditionally, parametric models based
on Gaussian mixture models (GMM) [27], [28] have been
applied with some success in estimation of the pdf when all
data are observed in advance. The parametric mixture models
typically require specifying the number of components (or
an upper bound on the number) in advance [28], [50] or
implementing some data-driven criteria for selection of the
appropriate number of components (e.g. [12], [48]). Improper
choice of the number of components may lead to models
which fail to capture the complete structure of the underlying
pdf. Non-parametric methods such as Parzen kernel density
estimators (KDE) [15], [31], [49] alleviate this problem by
treating each observation as a component in the mixture model
and assuming all components have equal bandwidths. In case
of using Gaussian kernels, for example, the bandwidth is
the kernel’s covariance. The problem of KDE is then how
to automatically set the kernel bandwidth. Indeed, efficient
bandwidth estimation is a difficult problem which has been
studied extensively in the literature (e.g., [10], [39], [40], [44],
[47]). Usually, the approaches for the bandwidth estimation
focus on one-dimensional or low-dimensional problems (see,
e.g. [8], [11], [21], [44], [47]) and approximations in the
case of multivariate application (see, e.g., [8], [17], [38],
[39]). Recently Murillo and Rodriguez [30] have proposed an
efficient cross-validation-based method which iteratively cal-
culates the multivariate bandwidth. One drawback of the KDEs
is that their complexity (number of components) increases
linearly with the number of the observed data. To remedy this
increase, methods have been proposed to reduce the number
of components (compress) either to a predefined value [15],
[49], or to optimize some data-driven criteria. Examples ofthe
latter approach are reduced-set-density estimators [13] which
minimize an approximateL2 distance between the unknown
density and the model, and MDL-based radial-basis-function
(RBF) networks [26] which gradually remove the RBF units
by optimizing a minimum-description-length criterion [37].
Alternatively, Pawlak and Stadm̈uller [32] have investigated
estimation of one-dimensional KDEs from a pre-binned data
(histograms) with a preset binning to reduce the model’s
complexity.

In an online scenario, we are faced with several difficulties
when trying to estimate a compressed mixture model. The
main difficulty is that the model has to maintain a sufficient
information to adapt to future data (sufficient complexity),
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while at the same time it has to generalize well the past
observations for a good prediction (prediction capacity).This
means that we require generally methods that possibly allocate
new components as new observations arrive as well as revise
the components estimated in the previous time-steps. A model
with a small number of components will generalize the past
observations, but might also underestimate the distribution as
too smooth (over-smoothing). Then as new data-points arrive,
the model may lack the information required to increase its
complexity. On the other hand, a drawback of keeping a very
large number of components in the model is that the model
might overfit the data which results in poor generalization
(under-smoothing).

There have been several attempts to address the problems of
online estimation in the context of merging the non-parametric
quality of the kernel density estimators with the Gaussian
mixture models in online applications. Typically, authorscon-
strain their models by imposing various assumptions about the
distributions to be estimated, leading to various algorithms for
online adaptation. Arandjelović et.al. [1] proposed a scheme
for online adaptation of the Gaussian mixture model which
can be updated by observing as little as a single data-point
at a time. However, a strong restriction is made that data is
temporally coherent in feature space, which prevents its use
in general applications. In particular, the smoothness of their
model depends heavily on the distance between successive
data points. If the distance is smaller than assumed, the
model will likely be over-smoothed. On the other hand, if
the distance is greater than assumed, the model will be under-
smoothed resulting in a poor prediction capacity. Priebe and
Marchette [34] proposed an online EM algorithm, called active
mixtures, which allows adaptation from a single observation
at a time, assumes the data is radnomly sampled from the
underlying distribution, and includes a heuristic for allocat-
ing new components, which makes it less sensitive to data
ordering. Song et. al. [42] aimed to alleviate the restrictions
on data orderings by processing data in large blocks. Bischof
and Leonardis [5] use an RBF-based network and apply
an MDL-based procedure for basis function allocation and
deletion – they assume a predefined initial RBF size. Deleclerq
and Piater [9] assume each data-point is a Gaussian with a
predefined covariance. All data are stored in the model and
a heuristic is used to determine when a subset of the data
(Gaussians) can be replaced by a single component. Han et.
al. [18] proposed an online approach inspired by the kernel
density estimation in which each new observation is added to
the model as a Gaussian kernel with a predefined bandwidth.
The model’s complexity is maintained through the assumption,
that the underlying probabilty density function can be approx-
imated sufficiently well by retaining only its modes. They
therefore implement compression by searching for the modes
of the distribution and approximating them by Gaussians.
This approach deteriorates in situations when the assumed
predefined bandwidths of kernels are too restrictive, and when
the distribution is locally non-Gaussian. Such examples are a
skewed distribution, a heavy tailed distribution and the uniform
distribution. In general, a major problem with those methods
which assume a predefined (known) kernel bandwidth, or intial

RBF, is that they likely lead to over/under-smoothing problems
when the bandwidth is not estimated (or guessed) properly.
Recently, we [24] have proposed an incremental kernel density
estimator, which uses the least assumptions in comparison to
the related methods. The only assumption is that the target
distribution is sufficiently smooth, which is a common assump-
tion in the kernel density estimation framework. The method
implements a variant of a recursive kernel density estimator
(see, e.g., [10]) for bandwidht estimation and implements an
optimization to compress the distribution. A drawback of that
method is that it requires computationally intensive iterative
optimization, it is applicable only to one-dimensional data,
and can suffer from poor initialization in cases of a small
number of samples. Generally, a positive side of imposing
assumptions on the distribution, which we want to estimate,
is that we can better constrain the problem of estimation and
design efficient algorithms for the task at hand. A downside
is that once the assumptions are violated, the algorithms will
likely break down and deteriorate in performance. In this paper
we therefore aim at an algorithm, which would be applicable
to multivariate cases, would be minimally constrained by the
assumptions and therefore efficiently tackle the difficulties of
online estimation.

A. Our approach

We propose a new multivariate online version of the ker-
nel density estimator, which enables adaptation from only
a single observation at a time. Our approach is grounded
in the following two key ideas. The first key idea is that,
unlike the related approaches, we do not attempt to build a
model of the target distribution directly, but rather maintain
a non-parametric model of the data itself in a form of a
sample distribution– this model can then be used to calculate
the kernel density estimate of the target distribution. The
sample distribution is constructed by online clustering ofthe
data-points. The second key idea is that we treat each new
observation as a distribution in a form of a Dirac-delta function
and we model thesample distributionby a mixture of Gaussian
and Dirac-delta functions. During online operation the sample
distribution is updated by each new observation in essentially
the following three steps (Figure 1a): (1) In the first step, we
update the sample model with the observed data-point. (2)
In the second step, the updated model is used to recalculate
the optimal bandwidth for the KDE – here, the main issue
is how to calculate the bandwidth without having access to
the previously observed individual samples. (3) In the third
step, the sample distribution is refined and compressed. This
step is required because, without compression, the number of
components in our model would increase linearly with the
observed data. However, it turns out that a valid compression at
one point in time might become invalid later, when new data-
points arrive. The result of these invalid compressions is that
the model misses the structure of the underlying distribution
and produces significantly over-smoothed estimates (see, e.g.,
Figure 10). We therefore require a refinement algorithm to
detect such events and to recover from them. The main issues
here are: (i) how to devise an optimization which would
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Fig. 1. A three-step summary of the online KDE iteration (a). The sample modelS(t−1) is updated by a new observationzt and compressed into a new
sample modelS(t). An illustration of the new sample modelS(t) (sample distributionps(x) along with its detailed model{qi(x)}i=1:4) is shown in (b).

efficiently compress the sample model, (ii) how to determine
the extent of the allowed compression and (iii) how to recover
from the early compressions. To allow the recovery from
the early compression, we keep for each component in the
sample distribution another model of the data that generated
that component. This detailed model is in a form of a mixture
model with at most two components (Figure 1b). The rationale
behind constraining the detailed model to two components is
that this is the simplest detailed model that allows detection
of early over compressions. After the compression and refine-
ment step, the KDE can be calculated as a convolution of
the (compressed) sample distribution with the optimal kernel
calculated at step 2 (see Figure 2).

Fig. 2. Calculation of the KDEpKDE(x) through a convolution of the
sample distributionps(x) with a kernel (Dirac-deltas are depicted by upward
arrows).

Our main contribution is the approach for multivariate
online kernel density estimation (oKDE), which enables con-
struction of a multivariate probability density estimate by ob-
serving only a single sample at a time and which can automat-
ically ballance between its complexity and generalizationof
the observed data points. In contrast to the standard bandwidth
estimators, which require access to all observed data, we derive
a method which can use a mixture model (sample distribution)
instead and can be applied to multivariate problems. To
enable a controlled compression of the sample distribution, we
propose a compression scheme which maintains low distance
between the KDE before and after compression. To this end,
we propose an approximation to the multivariate Hellinger
distance on mixtures of Gaussians. Since over-compressions
occur during online estimation, we propose a revitalization
scheme, which detects over-compressed components and re-
fines them, thus allowing efficient adaptation.

The remainder of the paper is structured as follows. In
Section II we define our model. In Section III we derive
a rule for automatic bandwidth selection. We propose the
compression scheme in Section IV, where we also address
the problem of over-compression. The online KDE (oKDE)

algorithm is presented in Section V. In Section VI we analyze
the recostructive and discriminative properties of the oKDE.
We analyze how the parameters, the data ordering and the
revitalization scheme affect the oKDE’s performance and we
compare the oKDE to existing online and batch state-of-the-
art algorithms on examples of estimating distributions andon
classification examples. We conclude the paper in Section VII.

II. T HE MODEL DEFINITION

In this section we define our model. As stated in the
introduction, we aim at maintaining a (compressed) model of
the observed data-points in a form of a distribution model,
and use this model to calculate the KDE when required.
We therefore start with the definition of the distribution of
the data-points. Each separate data-point can be presented
in a distribution as a single Dirac-delta function, with its
probability mass concentrated at that data-point. Noting that a
Dirac-delta can be generally written as a Gaussian with zero
covariance, we define the model of (potentially compressed)d-
dimensional data as anN -component Gaussian mixture model

ps(x) =
N∑

i=1

αiφΣsi
(x− xi), (1)

where

φΣ(x− µ) = (2π)−
d
2 |Σ|− 1

2 e(−
1
2 (x−µ)T Σ−1(x−µ)) (2)

is a Gaussian kernel centered atµ with covariance matrix
Σ. We call ps(x) a sample distributionand a kernel density
estimate (KDE) is defined as a convolution ofps(x) by a
kernel with a covariance matrix (bandwidth)H (see Figure 2):

p̂KDE(x) = φH(x) ∗ ps(x) =
N∑

i=1

αiφH+Σsi
(x− xi). (3)

To maintain a low complexity of the KDE during online
operation, the sample distributionps(x) is compressed from
time to time by replacing clusters of components in theps(x)
by single Gaussian components. Details will be explained later
in section IV. As noted in the introduction, compressions
at some point in time may later become invalid as new
data arrive. To detect and recover from these early over-
compressions, we keep an additional model of data for each
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component in the mixture model. We therefore define our
model of the observed samplesas

Smodel = {ps(x), {qi(x)}i=1:N}, (4)

whereps(x) is thesample distributionandqi(x) is a mixture
model (with at most two components) for thei-th component
in ps(x) (Figure 1b). To obtain a KDE, we need to compute
the optimal bandwidth from all the observed samples, which
are now summarized in the sample modelps(x) (step 2
in Figure 1a). In the following we propose a method for
calculating this bandwidth.

III. E STIMATION OF THE BANDWIDTH

If we retained (did not compress) all the observed samples
in the sample model, then the sample distributionps(x)
would contain only components with zero covariances (i.e,
Σsi = 0 for all i) and the KDE (3) would be defined
as p̂KDE(x) =

∑N
i=1 αiφH(x− xi). The goal of all KDE

methods is to determine the kernel bandwidthH such that the
distance between thêpKDE(x) and the unknown pdfp(x),
that generated the data, is minimized. A classical measure
used to define the closeness of the estimatorp̂KDE(x) to
the underlying pdf is theasymptotic mean integrated squared
error (AMISE), defined as ( [47], pp.95-98),

AMISE = (4π)−
d
2 |H|− 1

2N−1
α +

1
4
d2

∫
tr2{HGp(x)}dx,

(5)
wheretr{·} is the trace operator,Gp(x) is a Hessian ofp(x),
andNα = (

∑N
i=1 α

2
i )
−1. If we rewrite the bandwidth matrix

in terms of scaleβ and structureF, i.e.,H = β2F, and assume
for now thatF is known, then (5) is minimized at scale

βopt = [d(4π)
d
2NαR(p,F)]−

1
d+4 , (6)

where the term

R(p,F) =
∫

tr2{FGp(x)}dx (7)

is a functional of the second-order partial derivatives,Gp(x),
of the unknown distributionp(x). In principle, this functional
could be estimated using the plug-in methods [47], however,
these are usually numeric, iterative, assume we have accessto
all the observed samplesand often suffer from numerical insta-
bilities. In our case, we maintain only a (compressed) mixture
model of the samples, and we require an approximation to the
functional using this mixture model.

We first note (see, eg., [47]) thatR(p,F) can be
written in terms of expectations of the derivatives
ψr =

∫
p(r)(x)p(x)dx. We can then use the sample

distributionps(x) to obtain the following approximations

p(x) ≈ ps(x) ; p(r)(x) ≈ p(r)
G (x), (8)

where we approximate the derivative ofp(x), p(r)
G (x), through

the following kernel density estimate

pG(x) = φG(x) ∗ ps(x) =
N∑

j=1

αjφΣgj
(x− µj). (9)

The estimatepG(x) plays a role of the so-calledpilot distri-
butionwith covariance termsΣgj = G+Σsj andG is called
the pilot bandwidth. Using the approximations in (8) and the
derivation in Appendix A, we can approximateR(p,F) by

R̂(p,F,G) =
∫

tr{FGpG
(x)}tr{FGps

(x)}. (10)

Sinceps(x) andpG(x) are both Gaussian mixture models,
we can calculate the functional (10) using only matrix algebra:

R̂(p,F,G) =
N∑

i=1

N∑

j=1

αiαjφΣgi+Σsj
(µgi − µsj)×

[2tr(FAijFBij) + tr2(FCij)], (11)

where for each pair(i, j) we have used the following defini-
tions

Aij = (Σgi + Σsj)−1,

Bij = Aij{I− 2(µgi − µsj)(µgi − µsj)T Aij},
Cij = Aij{I− (µgi − µsj)(µgi − µsj)T Aij}. (12)

Derivation of (11,12) is rather laborious, and is based on the
M. P. Wand’s [46] study of an integral similar to (10). For
convenience, we have removed the required derivations into
the Appendix B.

Note that we still have to determine the pilot bandwidth
G of pG(x) and the structureF of the bandwidth matrix
H. We use the empirical covariance of the observed samples
Σ̂smp to approximate both. First we resort to a practical as-
sumption [11], [47] that thestructureof the bandwidthH can
be reasonably well approximated by the structure of the co-
variance matrix of the observed samples, i.e.,F = Σ̂smp. We
estimate the pilot bandwidthG by a normal-scale rule [47].
Note that the normal-scale provides a bandwidth that is
optimal in AMISE sense if the unknown distributionp(x) is in
fact normal. While this assumption is too restrictive to directly
estimateH, it is admissable in practice for estimation of the
bandwidths for the derivatives (see, eg. [47] page 71). The
pilot bandwidth using the multivariate normal-scale rule for
the derivative ( [47], page 111) is given by

G = Σ̂smp(
4

(d+ 2)Nα
)

2
d+4 . (13)

IV. COMPRESSION OF THE SAMPLE MODEL

Having approximated the optimal bandwidth, the next step
is to compress and refine the resulting model (step 3 in
Figure 1a). The objective of the compression is to approximate
the originalN -component sample distribution

ps(x) =
N∑

i=1

wiφΣsi
(x− µi) (14)

by aM -component,M < N , equivalentp̂s(x)

p̂s(x) =
M∑

j=1

ŵjφΣ̂sj
(x− µ̂j), (15)

such that the resulting (compressed) KDE does not change
significantly. Since a direct optimization (e.g., [24]) of the
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parameters in̂ps(x) can be computationally prohibitive, and
prone to slow convergence even for moderate number of
dimensions, we resort to a clustering-based approach. The
main idea is to identify clusters of components inps(x), such
that each cluster can be sufficiently well approximated by a
single component in̂ps(x). Let Ξ(M) = {πj}j=1:M be a
collection of disjoint sets of indexes, which clusterps(x) into
M sub-mixtures. The sub-mixture corresponding to indexes
i ∈ πj is defined as

ps(x;πj) =
∑

i∈πj

wiφΣsi
(x− µi) (16)

and is approximated by thej-th componentŵjφΣ̂sj
(x− µ̂j)

of p̂s(x). The parameters of thej− th component are defined
by matching the first two moments (mean and covariance) [4]
of the sub-mixture:

ŵj =
∑

i∈π(j)
wi , µ̂j = ŵ−1

j

∑
i∈π(j)

wiµ̂i

Σ̂j = ŵj

∑
i∈π(j)

wi(Σi + µiµ
T
i )− µ̂j µ̂

T
j . (17)

For better understanding, we illustrate in Figure 3 an
example in which components of a sample distributionps(x)
are clustered to form another (compressed) sample distribution
p̂s(x) with a smaller number of components. We also show the
KDEs corresponding to the original and the compressed KDE.
While the number of components in the sample distribution is
reduced, the resulting KDE does not change significantly.

original compressed

Fig. 3. The images illustrate a compression of a four-componentsample dis-
tribution ps(x) into a three-component counterpartp̂s(x) using the clustering
assignmentΞ(3) = {πj}j=1:3. The left and right columns show the sample
distribution (upper row) and the corresponding KDE (lower row) before and
after compression, respectively.

As indicated in Figure 3 the compression seeks to identify
the clustering assignmentΞ(M), along with the minimal
number of clustersM , such that the error induced by each
cluster is sufficiently low, i.e., it does not exceed a prescribed
thresholdDth,

M̂ = arg min
M

E(Ξ(M)) , s.t. E(Ξ(M̂)) ≤ Dth, (18)

where we defineE(Ξ(M)) as the largest local clustering error
Ê(ps(x;πj),Hopt) under the clustering assignmentΞ(M),

E(Ξ(M)) = max
πj∈Ξ(M)

Ê(ps(x;πj),Hopt). (19)

The local clustering error̂E(ps(x;πj),Hopt) tells us the error
induced under the KDE with bandwidthHopt, if the cluster
ps(x;πj) is approximated by a single Gaussian. We define this
error next.

A. The local clustering error

Let Hopt be the current estimated bandwidth, and let
p1(x) = ps(x;πj) be a cluster, a sub-mixture of the sample
distribution defined by (16), which we want to approximate
with a single Gaussianp0(x) according to (17). We define the
local clustering error as the distance

Ê(p1(x),Hopt) = D(p1KDE(x), p0KDE(x)), (20)

between the correspondingKDEs

p1KDE(x) = p1(x) ∗ φHopt(x)
p0KDE(x) = p0(x) ∗ φHopt(x).

In particular, we can quantify the distance between distribu-
tions using the Hellinger distance [33], which is defined as

D2(p1KDE(x), p0KDE(x))∆=
1
2

∫
(p1KDE(x)

1
2 − p0KDE(x)

1
2 )2dx. (21)

Note that, while the Hellinger distance is a proper metric
between distributions and is bounded to interval[0, 1] (see,
e.g., [33]), it cannot be calculated analytically for the mixture
models. We therefore calculate its approximation using the
unscented transform[22], which has been recently applied
in [14] for approximating the Kullback-Liebler divergence
between mixture models. For convenience, the derivation of
the unscented approximation of the Hellinger distance is given
in the Appendix C.

B. Compression by hierarchical error minimization

In principle, the global optimization of (18) would require
evaluation of all possible cluster assignmentsΞ(M) for the
number of clustersM ranging from one toN , which becomes
quickly computationally prohibitive. A significant reduction
in complexity of the search can be obtained by ahierarchi-
cal approach to cluster discovery. Similar approaches have
been previously successfully applied for speeding up the EM
algorithm [29], online visual category discovery [16] and
controlled data compression with Gaussian mixture models to
a predefined number of clusters [15], [19].

In our implementation, the hierarchical clustering proceeds
as follows. We start by splitting the entire sample distribution
ps(x) into two sub-mixtures using the Goldberger’s [15] K-
means algorithm for mixture models1 with K = 2. Each sub-
mixture is approximated by a single Gaussian and the sub-
mixture which yields the largest local error̂E(ps(x;πj),Hopt)

1Note that to avoid the singularities associated with the components in
the sample distribution with zero covariance, the K-means algorithm for the
Gaussian mixtures is carried out on the corresponding KDE.
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is further splitted into two sub-mixtures. This process is
recursively continued until the largest local error is sufficiently
small and the conditionE(Ξ(M)) ≤ Dth in (18) fulfilled.
This approach generates a binary tree withM̂ leafs among
the components of the sample distributionps(x), in which
the leafs of the tree represent the clustering assignments
Ξ(M̂) = {πj}j=1:M . Once the clusteringΞ(M̂) is found, the
compressed sample distribution̂ps(x) (15) is calculated using
(16) and (17). An illustration of the hierarchical clustering on
a one-dimensional example is shown in Figure 4.

Fig. 4. Illustration of the hierarchical clustering. The components of the
sample distributionps(x) are hierachically clustered to form a tree. Each leaf
of the tree is replaced by a single Gaussian and together formthe compressed
sample distribution̂ps(x).

Recall that we keep track of a detailed model for each com-
ponent in the sample distribution (see, e.g., Figure 1b). The
detailed model̂qj(x) of thej-th component in the compressed
modelp̂s(x) is calculated as follows. If the setπj contains only
a single index, i.e.,πj = {i}, then thej-th component of the
compressed sample distribution is equal to thei-th component
in the original sample distribution and therefore the detailed
model remains unchanged, i.e.,q̂j(x) = qi(x). On the other
hand, ifπj contains multiple indexes, then the detailed models
corresponding to these indexes are first concatenated into a
singleextendedmixture model

q̂jext(x) =
∑

i∈πj

qi(x). (22)

Then the required two-component detailed modelq̂j(x) is
generated by splittinĝqjext(x) into two sub-mixtures again
using the Goldberger’s K-means and each sub-mixture is
approximated by a single Gaussian using (17). Note that the
detailed model is constrained to at most two components, since
this is the least complex model which enables detection of the
early over compressions as discussed next.

C. Revitalizing the sample distribution

The compression identifies and compresses those clusters
of components whose compression does not introduce a sig-

nificant error into the KDE with the bandwithHopt estimated
at the time of compression. However, during online operation,
new samples arrive, the sample distribution andHopt change,
and so does the estimated KDE. Therefore, a compression
which may be valid for a KDE at some point in time, may
become invalid later on. This is illustrated in Figure 5.

Fig. 5. Illustration of the early over compression. The left,middle and the
right columns show the sample distribution, the bandwidth andthe resulting
KDEs, respectively. The first and the second row of left columnshow the
sample distribution and its compressed counterpart, respectively. Note that the
compressed counterpart is valid, since the KDE does not change significantly
(right column). The third row illustrates a time-stept + n, in which the
bandwidth changes and so does the KDE (right column). The lastrow shows
the KDE calculated from the non compressed sample distribution using the
bandwidthHt+n. This KDE is significantly different from its compressed
version, which makes the early compression at time-stept invalid under the
bandwidth at time-stept + n.

The over compression can be detected through inspection of
the detailed modelof each component in the sample distribu-
tion ps(x). The local clustering error̂E(qi(x),Hopt) (19) of
each componentwiφΣsi

(x) in the sample distribution can be
evaluated against its detailed modelqi(x) to verify whether the
global clustering error from (18) exceeds the thresholdDth.
Those components inps(x) for which Ê(qi(x),Hopt) > Dth

are removed from the sample distribution and replaced by the
two components of their detailed model. A detailed model is
then created for each of the new components. For example,
let wiφΣi

(x − µi) be one of the new components. If the
determinant ofΣi is zero, then this component corresponds
to a single data-point and therefore its detailed model is just
the component itself. However, in case the determinant is
nonzero, it means that the component has been generated
through clustering of several detailed models in the previous
compression steps. Its detailed model is then initialized by
splitting φΣi

(x − µi) along its principal axis into a two-
component mixture, whose first two moments match those of
the original component. More precisely, letUDUT = Σi be
a singular value decomposition ofΣi with eigenvalues and
eigenvectors ordered by the descending eigenvalues. Then the
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new detailed mixture model is defined as

qi(x) =
2∑

k=1

αkφΣk
(x− µk), (23)

µ1 = FM + µi ; µ2 = FM− µi,

Σk = FCFT ; αk =
1
2
wi,

where C = diag([3/4,01×(d−1)]), M = [0.5,01×(d−1)]T,
F = U

√
D and 01×(d−1) is all-zeros row vector of length

(d−1). An example of revitalization is illustrated in Figure 6,
and the entire compression procedure along with the revital-
ization routine is summarized in the Algorithm 1.

Fig. 6. Illustration of the revitalization procedure. The left column shows the
sample distributioñps(x) along with its detailed model{q̃(x)}i=1:3 prior to
revitalization. TheÊ > Dth indicates that an over compression was detected
for the third component (from left to right) in the sample distribution. The
revitalized sample distribution and new detailed model are shown in the right
column, where the third component was replaced by its detailedmodel.

V. ONLINE KERNEL DENSITY ESTIMATION

A key point of the online kernel density estimation is the
ability to properly update the sample distribution and to re-
calculate the bandwidth as new samples arrive. Furthermore,
if the samples arrive from a non-stationary process, then
a forgetting factor should be taken into account since the
recently observed samples are better representatives of the
current underlying distribution. In this section, we describe
an iteration of the proposed online kernel density estimation
algorithm, whose steps were outlined in the introduction
(Figure 1a).

Let us denote the model of the samples observed up to
time-step(t− 1) as

Smodel(t−1) = {ps(t−1)(x), {qi(t−1)(x)}i=1:Mt−1}, (24)

whereps(t−1) is aMt−1-component sample distribution,

ps(t−1)(x) =
∑Mt−1

i=1
αiφΣsi

(x− µi). (25)

Let Nt−1 denote theeffective numberof observations2 up to
time-step(t − 1), let Nα(t−1) be the value of the parameter
for bandwidth calculation (Nα in equation 6) and letf be a
forgetting factor.

2Note that if there is no forgetting involved then all the data-points are
equally important, regardless of the order in which they arrive. In this case the
effective number of observations is just the number of all observed samples.

Algorithm 1 : Compression of the sample model
Input:

S̃model = {p̃s(x), {q̃i(x)}i=1:M̃} . . . the M̃ -component
sample model.
Hopt . . . the current optimal bandwidth.
Dth . . . the maximal allowed local compression error.

Output:
Ŝmodel = {p̂s(x), {q̂j(x)}j=1:M}, . . . the compressedM -
component sample model.
Procedure:

1: Revitalize each i-th component in p̃s(x) for which
Ê(q̃i(x),Hopt) > Dth according to Section IV-C and re-
place the sample model with theN -component revitalized
model:Smodel ←− {ps(x), {qi(x)}i=1:N}.

2: Initialize the cluster set:
Ξ(M) = {π1}, π1 = {1, . . . , N}, M = 1

3: while Dth < max
πj∈Ξ(M)

Ê(ps(x;πj)) do

4: Select the cluster with the maximum local error:
πj = arg max

πj∈Ξ(M)

Ê(ps(x;πj))

5: Split the sub-mixtureps(x;πj) into two sets using the
Goldberger’sK-means:πj −→ {πj1, πj2}.

6: Update the cluster set:
M ←−M + 1, Ξ(M)←− {{Ξ(M) \ πj}, πj1, πj2}.

7: end while
8: Regroup the components ofps(x) according to clustering

Ξ(M) and construct the compressed sample modelp̂s(x).
9: For eachj-th component in̂ps(x) create its detailed model
q̂j(x) from the reference detailed models{qi(x)}i=1:N

according to the clusteringΞ(M).

At time-stept we observe a samplext and reestimate the
sample modelSmodel(t) = {ps(t)(x), {qi(t)(x)}i=1:Mt

} (and
hence the KDE) in the following steps.

Step 1: Update the sample model.The effective number
of observed samples is augmented using the forgetting factor,
Nt = Nt−1f+1 and the weightw0 = N−1

t of the new sample
is computed. The sample distribution is updated by the new
observation3 as

p̃s(t)(x) = (1− w0)ps(t−1)(x) + w0φ0(x− xt). (26)

The detailed model̃qM̃t
(x) = φ0(x−xt) corresponding toxt

is added to the existing set of detailed models

{q̃i(t)(x)}i=1:M̃t
= {{qi(x)}i=1:Mt−1 , q̃M̃t

(x)}, (27)

Thus yielding an updated sample model

S̃model(t) = {p̃s(t)(x), {q̃i(t)(x)}i=1:M̃t
}. (28)

Step 2: Reestimate the bandwidth.The empirical co-
variance of the observed sampleŝΣsmp is calculated by
approximating̃ps(t)(x) by a single Gaussian using the moment
matching (17) and the parameter for bandwidth calculation
is updated asNαt = (N−1

α(t−1)(1 − w0)2 + w2
0)
−1. The

3Note that(̃·) denotes the updated model before the compression.
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new optimal bandwidth is then approximated according to
Section III as

Ht = F[d(4π)d/2NαtR̂(p,F,G)]
−1

d+4 (29)

with F = Σ̂smp, G = Σ̂smp( 4
(2+d)Nαt

)
2

d+4 , and with the

functional R̂(p,F,G) calculated according to (11).
Step 3: Refine and compress the model.After the current

bandwidthHt has been calculated, the sample modelS̃model(t)

is refined and compressed, using the Algorithm 1, into

Smodel(t) = {ps(t)(x), {qi(t)(x)}i=1:Mt
}. (30)

In our implementation, the compression is called after some
threshold on number of componentsMthc has been exceeded.
Note that this threshold does not determine the number of com-
ponents in the final model, but rather influences thefrequency
at which the compression is called. To avoid too frequent calls
to compression, the threshold is also allowed to vary duringthe
online operation using a simple hysteresis rule: If the number
of componentsMt still exceedsMthc after the compression,
then the threshold increasesMthc ← 1.5Mthc, otherwise, if
Mt <

1
2Mthc, then it decreasesMthc ← 0.6Mthc.

Recalculate the KDE: After the three steps of the
online update have finished, the sample distribution is a
Mt-component mixture model

ps(t)(x) =
Mt∑

i=1

αiφΣsi
(x− µt), (31)

and the current KDE is calculated from the sample distribution
according to (3):

pKDEt(x) = ps(t)(x) ∗ φHt
(x)

=
Mt∑

i=1

αiφΣsi+Ht
(x− µi). (32)

A. Preprocessing by removing the null-space

Since the samples used to build the oKDE model may not
span the entire data space but rather lie on a lower-dimensional
manifold, the updates in the oKDE may suffer from singular
covariances. For example, this is usually true for the first few
updates when we initialize the oKDE using smaller number
of samples than the sample dimensionality. To avoid these
pathologies, the oKDE and the new data-point are first (priorto
update) projected into a subspace using a principal component
analysis, the updates are carried out there, and then the oKDE
is backprojected into the original space.

VI. EXPERIMENTAL STUDY

A significant difference between the online and batch al-
gorithms is that the batch algorithms have access to all data
during the learning, while the online algorithms observe only
portions of the data at a time, discard the old observations
and retain only the models derived from them. Another dif-
ference is that the online approaches my deal with only a
single data-point (or a few) at time, and thus different data
orderings may affect the model’s quality. To analyze the effects
of these differences, the experiments were divided into five

parts. In the first four parts, we have analyzed the oKDE’s
reconstructive performance, while the last experiment analyzed
the oKDE’s discriminative performance. In the first experiment
(section VI-A) we have analyzed how the parameters and data
orderings affect the reconstructive performance of the oKDE.
An important part of the proposed oKDE algorithm is the
revitalization of the sample distribution, which allows recovery
from early over-compressions (as discussed in section IV-C)
and helps to correctly adapt the model’s structure as new data
arrive. The second experiment (section VI-B) was therefore
dedicated to the analysis of the revitalization effects. Inthe
third experiment (section VI-C) we have compared the oKDEs
reconstructive performance to the related state-of-the-art batch
and online methods in estimating stationary distributions.
In the fourth experiment (section VI-D) we have analyzed
the oKDE’s reconstructive performance in estimating a non-
stationary distribution. In the last experiment (section VI-E)
we have analyzed the oKDE’s discriminative performance in
application of online construction of a Bayes classifier. In
all the experiments, except for the fourth which involved
estimating a non-stationary distribution, the forgettingfactor
in the oKDE was set tof = 1. This effectively assigned equal
importance to all data, regardless of the order. The experiments
were performed on a standard 2GHz CPU, 2GB RAM PC in
Matlab.

A. Influence of the compression parameterDth and data order

The only free parameter in the oKDE is the compression
parameterDth, which quantifies the local approximation er-
ror during compression (and revitalization) in terms of the
unscented Hellinger distance. The aim of the first part of
the experiment was therefore to illustrate how the different
values of this parameter affect the oKDE’s performance.
The experiments involved approximating a spiral-shaped two-
dimensional stationary distribution defined as

x = [(1 + θ) cos(θ), (1 + θ) sin(θ)]T + w (33)

w ∼ φΣw(·) ; θ ∼ U(0, 10)

where Σw = diag{0.92, 0.92} and U(0, 10) is a uniform
distribution on interval[0, 10]. An example of the spiral model
along with its distribution is shown in Figure 7. A set of 1000
samples was generated from this distribution – the first ten
samples were used for initialization and the rest were used one
at a time to update the oKDE. After all 1000 samples have
been observed, the reconstructive performance of the KDE
model was evaluated as the average negative log-likelihoodof
additionally drawn 20,000 samples.

The performance of the oKDE with various compression
values was compared with theadaptive mixtures(AM) ap-
proach [34], which is essentially an online EM algorithm
for Gaussian mixture models with an automatic component-
allocation heuristic. The performance results are shown under
the ”random order” label in Table I. We can see that after
observing the 1000th sample, the oKDE with smallest com-
pression threshold produced models with the smallest error
and produced a mixture model which on average contained
37 components. By increasing the compression threshold, the
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Fig. 8. Mixture models of the spiral distribution from Figure7 obtained by different orderings of data: random (first row), sorted outward (second row) and
sorted inward (third row). Each model is shown as a decomposed mixture model, and as an image of its distribution.

TABLE I
THE AVERAGE NEGATIVE LOG-LIKELIHOOD (−L) AND THE NUMBER OF COMPONENTS IN THE MODEL(Ncmp) FORoKDEDth AND AM W.R.T. TO THE

DATA ORDERS: RANDOM, CENTER-TO-OUTERMOST AND OUTERMOST-TO-CENTER.

[median, mean± standard deviation]
random sorted outward sorted inward

method −L Ncmp −L Ncmp −L Ncmp

AM 5.45, 5.45± 0.0431 43, 43.3± 7.25 5.46, 5.46± 0.0139 217, 216± 12.5 5.41, 5.41± 0.00907 115, 115± 6.3
oKDE0.01 5.39, 5.39±0.00548 37, 37.7± 3.22 5.39, 5.39±0.00526 49, 48.9± 2.6 5.39, 5.39±0.0055 36, 36.8± 2.8
oKDE0.02 5.39, 5.39± 0.00589 19, 19.6± 1.43 5.39, 5.39± 0.00602 20, 20.3± 2.48 5.41, 5.41± 0.011 18, 17.8± 1.38
oKDE0.03 5.42, 5.43± 0.0157 14, 14.4± 1.41 5.43, 5.43± 0.0199 12, 12.4± 1.4 5.57, 5.57± 0.0458 12.5, 12.6± 1.33
oKDE0.04 5.48, 5.48± 0.0302 12, 11.8± 1.44 5.61, 5.63± 0.0878 9, 8.97± 1.5 5.77, 5.76± 0.0602 8, 7.5± 1.5
oKDE0.05 5.56, 5.55± 0.0591 10, 10± 1.76 5.87, 5.83± 0.0706 5, 5.03± 1.4 5.84, 5.84± 0.0372 5, 5.2± 1.03
oKDE0.06 5.58, 5.59± 0.047 8, 8.27± 1.05 5.9, 5.9± 0.0247 3, 3.43± 0.858 5.89, 5.88± 0.0287 4, 3.93± 0.74
oKDE0.07 5.72, 5.72± 0.113 6, 5.87± 1.94 5.92, 5.91± 0.0195 3, 2.7± 0.535 5.91, 5.9± 0.0345 3, 3.2± 1.21

Fig. 7. The left image shows the mean of the spiral model (dark) along
with some samples (bright) generated from the model, while the right image
shows the corresponding spiral distribution.

number of components decreased, while the approximation
error increased. In terms of the approximation error, the
oKDE outperformed the AM forDth values smaller than0.03.
Note that the AM-estimated models contained on average 45
components, while for example, the oKDE withDth = 0.02
produced more accurate models which contained on average
20 components. For convenience we show typical estimated
models for AM and oKDE in the first row of Figure 8.
By comparing these images with the image of the reference
distribution in Figure 7, we can visualize the reduction of the
complexity of the estimated distribution with increasing the
compression threshold in the oKDE.

1) Sorted data: In the previous part of the experiment
the data-points have been sampled randomly from the entire
distribution. Therefore the information aboutthe scale of
the target distribution was present in the observed samples
throughout the experiment. While online estimation of a

distribution from a single-time-step observation is difficult as it
is, it becomes more difficult if the information about the scale
of the target distribution is not available from the start. To
simulate these conditions, we have performed two variations
of the experiment with the 2D spiral distribution in which we
enforced a predefined order to the observed samples. The order
was enforced by deterministically selecting the values of the
position parameterθ (33) along the spiral at equal distances
from the interval[0, 10].

In the first variant, the position valuesθ were organized
in an ascending order, thus yielding anoutward ordering of
data-points from the spiral’s center, while the second variation
used a descending order of position values, which yielded an
inward ordering. In both orderings, the early samples indicated
a small scale of the estimated distribution, and the entire
scale became evident slowly at later time-steps. In the outward
ordering the scale became apparent only slowly, since a large
number of samples are concentrated at the center of the spiral.
This trend was faster for the inward ordering. The results for
the outward and inward ordering are given in the second and
third columns of the Table I. With increasingDth the oKDE
produced models with lower number of components at a cost
of larger approximation error. With respect to the values of
Dth, the number of components remained comparable with
the random sampling. On the other hand, the AM produced
models whose complexity was significantly larger. This can
be attributed directly to the missing scale information in the
early samples, which initially caused allocation of a larger



DRAFT PAPER UNDER SUBMISSION. 10

number of components in the AM model. The accuracy of the
oKDE for outward ordering is comparable to random ordering
for valuesDth < 0.04. However, for the inward ordering,
the decrease in accuracy in comparison to random ordering
becomes already apparent for valuesDth = 0.03 (Table I, last
column).

With increasing the compression thresholdDth, the degra-
dation of the models in oKDE was faster for inward than
outward ordering. The reason is that greaterDth allows grater
loss of information about the structure of the distributiondur-
ing online estimation. In absence of the structure information
the models deteriorate. Note, however, that even in the case
of inward ordering withDth = 0.05, the models retained a
rough structure of the spiral distribution (see, Figure 8, last
row, fifth pair).

To estimate how the oKDE performs regardless of the data
order, the results of Table I were averaged over the different
data orders. The results are shown in Table II and visualized
in Figure 9. We see that on average the oKDE withDth <
0.03 outperforms the AM by producing models with smaller
errors and smaller number of components. With increasing
the compression values, the number of components further
decreases, while the errors increase.

TABLE II
THE AVERAGE NEGATIVE LOG-LIKELIHOOD (−L) AND THE NUMBER OF

COMPONENTS IN THE MODEL(Ncmp) FORoKDEDth AND AM
AVERAGED OVER THE DIFFERENT DATA ORDERS.

[median, mean± standard deviation]
−L Ncmp

AM 5.44, 5.44± 0.035 115, 125± 71.6
oKDE0.01 5.39, 5.39±0.00566 39, 41.1±6.23
oKDE0.02 5.39, 5.4±0.0138 19, 19.2±2.1
oKDE0.03 5.44, 5.48±0.0745 13, 13.1±1.65
oKDE0.04 5.61, 5.63±0.132 9, 9.43±2.33
oKDE0.05 5.82, 5.74±0.149 6, 6.74±2.71
oKDE0.06 5.87, 5.79±0.147 4, 5.21±2.35
oKDE0.07 5.9, 5.85±0.111 3, 3.92±1.94
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Fig. 9. The average negative log-likelihood (−L) and the number of
components in the model (Ncmp) for AM andoKDEDth regardless of the
order of data.

B. Influence of the revitalization scheme

An important part of the oKDE is the revitalization of the
sample distribution. As discussed in section IV-C, merging

certain components in the sample distribution into a common
cluster may be valid at some point in time, but this com-
pression can become invalid later on as new data arrive and
new structures in the distribution should become apparent.An
example of such compression was illustrated in Figure 5. To
more concretely demonstrate how the revitalization influences
the quality of estimation with increasing the number of obser-
vations, we have performed density estimation using the oKDE
with and without the revitalization scheme. In this experiment
we have generated 1000 samples from a heavily skewed one-
dimensional reference distribution (see, Figure 10), and used
one sample at a time with theoKDE to approximate this
distribution. Figure 10 (upper row) shows examples of the
estimated distributions after observing 100 and 1000 samples
without using the revitalization scheme, with the compression
threshold set toDth = 0.02. We see that after observing
100 samples the reference distribution is approximated by
an over-smoothed four-component model. The error of this
over-compression is propagated further as new samples arrive
and prohibits a significant improvement of the model even
after additional nine hundred samples. On the other hand,
when using the oKDE with the revitalization scheme acti-
vated, the model better approximates the reference pdf already
after the first 100 samples (Figure 10, lower row). As more
samples are observed, the revitalization scheme revitalizes the
over-compressed components and better adapts the model’s
complexity, resulting in a significantly better approximation.
The graphs in Figure 11 (left column) show theL1 distances
between the reference distribution and its approximations, for
the different values of the compression thresholdDth, w.r.t.
the number of the observed samples averaged over 20 trials.
Without the revitalization, the distances decrease only for
the first 50 to 200 samples, and then remain approximately
constant. For the first hundred samples, these results are very
similar to the case when applying the revitalization scheme.
However, in case of the revitalization scheme the distances
further decrease with increasing the number of samples.
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Fig. 10. The upper row shows two distributions estimated after observing
100 and 1000 samples without using the revitalization scheme in the oKDE,
while the lower row shows the results of enabling the revitalization in the
oKDE. The reference distribution is depicted by dashed line(green), while
the estimated distribution is depicted by solid (blue) line.

To further illustrate the improvements of using the revital-
ization scheme, we have calculated the improvement factors
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γi w.r.t. the number of samples as

γi =
(ε̂i − εi)

ε̂i
, (34)

where ε̂i is the L1 distance between the reference distri-
bution and the model without revitalization,εi is the L1

distance between the reference distribution and the model
with revitalization andi is the index of the observed sample.
Figure 11 (right column) shows these results for the different
values of the compression thresholdDth. We can see that
the improvement of using the revitalization scheme increases
with the number of samples regardless of the compression
thresholdDth. For example, after observing 1000 samples,
the improvement for all tested valuesDth was between45%
and65%.
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Fig. 11. The left plot shows theL1 distance errors for theoKDE with
the revitalization scheme (bright cyan), and without the revitalization scheme
(dark blue), w.r.t. the number of samplesNsamp. The right graph shows the
improvements in terms of error reduction (improvement factorγi). The results
for oKDE0.01, oKDE0.02, oKDE0.04 and oKDE0.05 are depicted by
solid, dashed, dash-dotted and dotted lines, respectively.

C. Comparison with batch methods

As noted earlier, a significant difference between the online
and batch algorithms is that the batch algorithms have constant
access to all data, while the online algorithms discard the
data and retain only the models derived from the observed
data. These models thus have to retain enough information
to be able to successfully update when the new observations
arrive. We have therefore compared the performance of the
oKDE with three batch state-of-the-art KDE methods: Hall’s
et. al. [17] plug-in (implementation [20]), Murillo’s et. al. [30]
cross validation and Girolami’s et. al. [13] reduced-set-density
estimator initialized by the cross validation estimator. For
reference, we have compared the oKDE also to the adaptive
mixtures [34].

The experiment consisted of two parts. The first part of
the experiment involved estimation of a 2D noisy sinusoidal
distribution defined by

x = [a, sin(3a) + w]T (35)

a = 4(t− 1/2) ; w ∼ φσw
(·)

with σw = 0.22. The mean of the model along with some
generated samples is shown in Figure 12a. Ten thousand
samples were generated from this distribution – the first four
were used for initialization and the rest were used one at a time
to update the oKDE. The reconstructive performance of the
models was evaluated by the average negative log-likelihood

of additionally sampled 20,000 observations. The experiment
was repeated 10 times for different random sets of samples.
An example of anoKDE0.02 model after observing a thousand
samples is shown in Figure 12b.

The second part of the experiment involved estimating a
three-dimensional stationary spiral distribution definedby the
following model

x = [(13− 1
2
t) cos(t),−(13− 1

2
t) sin(t), t]T + w (36)

w ∼ φΣw(·) ; t ∼ U(0, 14),

where Σw = diag{ 1
4 ,

1
4 ,

1
4}, and U(1, 14) is a uniform

distribution constrained to interval[0, 14]. A set of samples
generated from the model (36) is shown in Figure 12c. Again,
a set of ten thousand test samples was generated from this
model – the first 10 samples were used for initialization and the
rest were used one at a time with the oKDE, to approximate the
underlying distribution. The reconstructive performanceof the
models was evaluated by the average negative log-likelihood
of additionally sampled 20,000 observations. This experiment
was also repeated 10 times. An example of the estimated dis-
tribution with oKDE0.02 after observing a thousand samples
is shown in Figure 12d.
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Fig. 12. First row shows the sinusoidal distribution and thesecond row
shows the spiral distribution. Left column shows the reference distributions
and the right column shows the estimated distribution usingoKDE0.02 after
observing a 1000 samples.

The results of the two experiments are summarized in
Table III, Table IV and Figure 13. The different estimators
are denoted as: cross validation (CV), Hall’s plug-in (Hall),
reduced-set-density estimator (RSDE), the adaptive mixtures
(AM) and the online KDE with compression thresholdDth

(oKDEDth).
Among the batch approaches, the CV outperformed the

other two batch methods in terms of accuracy. While the
advantage of the batch methods is that they optimize their pa-
rameters by having access to all the data-points, they become
increasingly slow with increasing the number of data-points
and can also run into computer’s memory constraints. Indeed
this was the case for the particular implementations of the
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TABLE III
THE AVERAGE NEGATIVE LOG-LIKELIHOOD −L AND THE NUMBER OF COMPONENTS IN THE MODEL(Ncmp) W.R.T. THE NUMBER OF OBSERVED

SAMPLES FOR THE EXPERIMENT WITH THE SINUSOIDAL DISTRIBUTION. THE SYMBOL “/” INDICATES THAT THE ESTIMATOR COULD NOT BE

CALCULATED DUE TO MEMORY LIMITATIONS .

50 samples 1000 samples 6000 samples 8000 samples 10000 samples
Batch methods −L Ncmp −L Ncmp −L Ncmp −L Ncmp −L Ncmp

CV 1.71±0.10 50±0.0 1.30±0.01 1000±0.0 1.33±0.00 6000±0.0 1.32±0.00 8000±0.0 1.35±0.00 10000±0.0
Hall 2.35±0.03 50±0.0 1.98±0.01 1000±0.0 1.79±0.01 6000±0.0 1.76±0.00 8000±0.0 / /
RSDE 1.98±0.15 23±4.2 1.30±0.01 380±11.4 1.26±0.01 2203±47.4 / / / /
Online methods −L Ncmp −L Ncmp −L Ncmp −L Ncmp −L Ncmp

AM 2.17±0.12 11±2.7 1.72±0.14 22±3.9 1.54±0.14 38±5.8 1.52±0.13 41±6.3 1.50±0.13 43±6.3
oKDE0.01 1.97±0.07 16±1.6 1.45±0.01 34±1.8 1.31±0.01 48±2.6 1.30±0.01 51±2.8 1.30±0.01 54±2.6
oKDE0.02 1.98±0.09 12±1.7 1.48±0.01 21±2.1 1.45±0.03 28±1.9 1.45±0.03 29±2.6 1.44±0.03 30±2.3
oKDE0.04 1.97±0.05 8±1.1 1.65±0.05 11±1.7 1.61±0.03 13±1.6 1.61±0.03 14±1.5 1.60±0.03 14±1.6
oKDE0.05 2.00±0.05 6±1.1 1.73±0.03 9±1.1 1.65±0.04 10±1.4 1.64±0.04 11±1.3 1.64±0.04 11±1.6

TABLE IV
THE AVERAGE NEGATIVE LOG-LIKELIHOOD −L AND THE NUMBER OF COMPONENTS IN THE MODEL(Ncmp) W.R.T. THE NUMBER OF OBSERVED

SAMPLES FOR THE EXPERIMENT WITH THE3D SPIRAL. THE SYMBOL “/” INDICATES THAT THE ESTIMATOR COULD NOT BE CALCULATED DUE TO

MEMORY LIMITATIONS .

50 samples 1000 samples 6000 samples 8000 samples 10000 samples
Batch methods −L Ncmp −L Ncmp −L Ncmp −L Ncmp −L Ncmp

CV 8.07±0.25 50±0.0 6.61±0.01 1000±0.0 6.50±0.00 6000±0.0 6.53±0.01 8000±0.0 6.52±0.01 10000±0.0
Hall 8.14±0.20 50±0.0 6.95±0.01 1000±0.0 6.69±0.01 6000±0.0 / / / /
RSDE 8.64±0.67 30±7.6 6.69±0.03 516±82.5 6.57±0.01 2614±17.1 / / / /
Online methods −L Ncmp −L Ncmp −L Ncmp −L Ncmp −L Ncmp

AM 8.66±0.16 18±2.7 6.93±0.09 42±4.3 6.62±0.07 64±6.0 6.60±0.06 68±5.8 6.58±0.06 72±6.2
oKDE0.01 8.03±0.20 24±1.5 6.75±0.01 46±2.4 6.49±0.00 51±1.7 6.47±0.00 52±1.8 6.45±0.00 52±1.4
oKDE0.02 8.04±0.25 19±1.7 6.77±0.01 29±1.4 6.53±0.01 32±1.1 6.52±0.01 33±1.1 6.51±0.01 33±1.2
oKDE0.04 8.14±0.30 14±1.3 6.84±0.01 20±1.1 6.69±0.04 23±1.5 6.66±0.02 24±1.3 6.64±0.02 24±1.2
oKDE0.05 8.08±0.28 13±1.4 6.88±0.03 18±0.9 6.75±0.03 21±1.1 6.72±0.04 21±1.2 6.71±0.04 21±1.1

batch RSDE and Hall, which prohibited estimation for very
large sets of samples. This is indicated in the Table III and
Table IV by the symbol “/”. For smaller number of samples,
the batch CV outperformed the online methods in terms of
accuracy, however, at a cost of severely increased model
complexity. For example, after observing thousand data-points,
the complexity of CV model was one-thousand components,
while the complexity of theoKDE0.01 was only5% of that.
For increasing the number of samples over (approximately
6000), the oKDE started to outperform the CV also in
terms of better accuracy, while maintaining the number of
components low. In Figure 13 we can see that in the case
of CV, the number of components increased linearly with
the number of samples, while in the case of oKDE models,
the number of components initially increases, but then, after
approximately 500 samples stabilizes and increases only little.
For example, after observing 10000 samples, the complexity
of the CV model was 10000 components, while the complexity
of the oKDE0.01 was approximately 52 components. While
the number of components from 6000th to 10000th sample
increased by 4000 in CV model, this increase was in the
oKDE0.01 on average by six components in the case of
sinusoidal distribution (Table III) and only 1 component inthe
case of the spiral distribution (Table IV). All online methods
(oKDE as well as AM) on average produced models with
a smaller number of components than the batch RSDE. In
all experiments, theoKDE0.01 and oKDE0.02 consistently
outperformed the online AM model in terms of accuracy.
The oKDE0.02 also consistently produced models of lower
complexity than the AM. It is important to note that while the
online methods (oKDE and AM) maintained a compressed

model of the observed data, and were able to adapt the
models with each new observation, the batch methods required
processing also all of the previously observed samples along
with the current observation, thus increasing their complexity
as well as the complexity of their updates.

D. Estimation of non-stationary distributions

In the third experiment we applied theoKDE0.02 to ap-
proximate a non-stationary distribution. This distribution was
a mixture of two distributions,

p0(x, t) = w(t)p1(x) + (1− w(t))p2(x), (37)

whose mixing weightw(t) was changing with time-stepst.
The first distribution,p1(x), was a heavily skewed distribution
(Figure 14a), while the second,p2(x), was a mixture of a
uniform and a skewed distribution (Figure 14c). The weight
was set tow(t) = 1 for the first 1000 samples and it gradually
decreased to zero for the next 7000 samples at ratew(t) =
w(t− 1)0.995. Thusp0(x, t) transited from purep1(x) to pure
p2(x). Figures 14(a,b,c) show the distribution at time-steps
t = 1, t = 1800 and t = 8000, respectively.

Since the distribution was non-stationary, the forgetting
factor in oKDE0.02 was set tof = 0.999. Thus the effective
sample size converges toNt = 1000 and theoKDE0.02 was
performing as if it effectively observed only 1000 samples.The
oKDE0.02 was initialized from the first 3 samples and the rest
were added one at a time. The quality of estimation at time-
stept was measured by theL1 distance between the current
estimate andp0(x, t). The performance of theoKDE0.02 was
compared to the adaptive mixtures and the two sliding-window



DRAFT PAPER UNDER SUBMISSION. 13

TABLE V
THE L1 DISTANCE AND THE NUMBER OF COMPONENTS IN THE MODEL(Ncmp) W.R.T. THE NUMBER OF OBSERVED SAMPLES FOR THE EXPERIMENT

WITH THE NONSTATIONARY DISTRIBUTION.

1000 samples 3000 samples 6000 samples 8000 samples
L1 Ncmp L1 Ncmp L1 Ncmp L1 Ncmp

oKDE0.02 0.09±0.01 10± 0.8 0.08±0.01 10± 0.92 0.05±0.01 10± 0.94 0.04±0.00 10± 1.3
CV 0.14± 0.01 1000± 0 0.06±0.01 1000± 0 0.06± 0.01 1000± 0 0.06± 0.00 1000± 0
Hall 0.16± 0.01 1000± 0 0.07± 0.00 1000± 0 0.08± 0.00 1000± 0 0.08± 0.00 1000± 0
AM 0.16± 0.06 8.4± 2.7 0.11± 0.02 9.6± 2.7 0.09± 0.03 11± 2.6 0.08± 0.03 11± 2.6
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Fig. 13. The evolution of the average negative log likelihood and the number
of components w.r.t. the number of samples for the sinusoidal distribution
(upper row) and the spiral distribution (lower row). This image is best viewed
in color.

batch methods, CV and Hall batch KDEs, which have been
computed using the last 1000 observed samples. The forgetting
factor in the AM was set as in theoKDE0.02. Note that
since the distribution was non-stationary, the AM algorithm
was producing mixtures that contained many components
whose weight was approximately zero. This comes from the
fact, that the AM algorithm lacks a mechanism for removing
redundant components. Therefore, during online operationof
the AM, those components whose weight fell below10−4 were
removed from the mixture. Figure 15 and Table V summarize
the results.

Both batch methods outperformed the AM model in terms
of accuracy, however, they produced models of significantly
greater complexity. On average, theoKDE0.02 outperformed
both, CV and Hall, batch KDEs by maintaining lower error
and using one tenth as many components. The approximation
error of models produced by theoKDE0.02 was lower for
1000 samples, became slightly greater than that of the batch
KDEs for 200 and 3000 samples, and then became again lower.
We have noticed that in some (rare) cases, the CV produced an
under-smoothed estimate of the distribution which temporarily

increased theL1 error. On the other hand, this behavior has
not been observed for the oKDE, AM and the Hall’s method.
In all experiments, theoKDE0.02 models with comparable
accuracy to AM, however, it consistently outperformed the
AM in terms of accuracy. An example of the model produced
by the oKDE is shown in Figure 14(d).
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Fig. 14. The phases of the non-stationary distribution att = 1 (a), t =
1800 (b) andt = 8000 (c), and the estimated distribution with oKDE after
observing the 8000th sample (d). The components of theoKDE0.02 model
in (d) are depicted by solid thin lines and the oKDE is shown insolid thick
line, while the reference distribution is depicted by a dashed green line.
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Fig. 15. TheL1 estimation error (left) and the number of components
(right) w.r.t the time-step, along with one-standard-deviation bars. The results
are shown for the oKDE (full line), CV (dashed), Hall (dotteddark) and AM
(dotted bright).

E. Online models for discrimination

To analyze how the discriminative properties of the oKDE
evolve during online estimation, we have compared the clas-
sification performance of the oKDE with three batch KDEs:
the CV batch KDE [30], the reduced-set density estimator [13]
initialized by the CV and the Hall’s batch KDE [17]4. For the

4Since the Hall’s KDE assumes a diagonal covariance matrix of the
kernel, the data was pre-sphered before applying the Hall’sKDE for better
performance.
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baseline classification, we have applied a multiclass SVM with
an RBF kernel [7]. The methods were compared on a set of
public classification problems [3] (Table VI). The classification
performance of the KDE-based methods was tested using a
simple Bayesian criterion

ŷ = arg max
l

pKDE(x|cl). (38)

The parameter for the SVM kernel was determined separately
in each experiment via cross validation on the training data
set. The classification experiment was conducted via four-
fold cross validation. The oKDE was initialized from the
first 10 samples and the rest were added one at a time. The
compression threshold was set toDth = 0.05. The results
of the experiments after observing all the data-points are
summarized in Table VI, while the Fig. 16 shows the oKDE
results during online estimation.

After observing all the data-points, the batch methods, SVM
and CV, produced on average best classification. The oKDE
outperformed batch RSDE and slightly Hall’s KDE batch
method, and produced a comparable classification to the SVM
and the CV. An important observation is that the oKDE out-
performed, or produced comparable performance, to the batch
methods, even though the oKDE was constructed by observing
only a single sample at a time. In contrast, the SVM and batch
KDEs optimized their structure by having access to all the
samples. A further thing to note is that, with the exception of
the Pima dataset, the oKDE’s classification performance quite
closely matched that of an SVM, eventhough the oKDE is in
its nature reconstructive, while the SVM optimizes its structure
to maximize discrimination. Note also, that the complexity
of the models learnt by batch KDEs is generally larger than
that of the oKDE. For example, for theletter dataset, the
oKDE required one third as many components to achieve a
comparable performance to the CV and Hall’s KDE. While the
RSDE retained a significantly smaller number of components
than the oKDE for theletter dataset, the RSDE’s classification
performance was significantly lower. By further inspection
of the results in Fig. 16, we can also observe a general
trend that the number of components initially significantly
increases in the oKDE, but then stabilizes for larger numberof
samples, while the recognition score further improves. This is
particularly evident for thewine andLetter datasets, in which
the bound on the complexity is reached relatively early on after
observing 90 and 200 samples per class (300th and 5200th
sample), respectively, while the classification performance
further increased through the model refinement. This makes
the oKDE an appropriate tool for online operation since it
produces compressed models with good classification perfor-
mance, while at the same time allowing online refinements
of the model without necessarily increasing their complexity
with each training example.

VII. C ONCLUSION

We have proposed an approach for a kernel density esti-
mation which can be applied in online operation. The central
point of the proposed scheme is that it maintains a compressed
model of the observed samples and uses this model to compute

the kernel density estimate of the underlying distribution.
Since in online operation, the samples arrive continually,a
low complexity of the model has to be maintained. We have
therefore proposed a compression scheme, which searches for
clusters of components and approximates them by a single
component. To enable recovering from false compressions,
each component is also described by a more detailed mixture
model. The approach was analyzed using examples of online
estimation of stationary as well as non-stationary distributions
and on classification examples. In all experiments, the oKDE
was able to produce comparable or better results to the state-
of-the-art batch approaches, while producing models whose
complexity was significantly lower. While the proposed oKDE
is a contribution to the literature on kernel density estimation
as such, parts of our approach can contribute to solutions
of some other problems as well. The proposed unscented
Hellinger distance may be used, for example, as a general
metric in applications where one needs to compare mixtures
of Gaussians (e.g., [15]). Recently, an approximate probability
density estimator was proposed for visual tracking in [18].The
estimator is based on KDE, however, the kernel bandwidth
is either predefined by user or an ad hoc scheme which is
vulnerable to data order is applied. Our bandwidth selection
rule can be directly applied to that estimator to provide
means of an automatic and theoretically supported bandwidth
selection.

Furthermore, since we maintain a non-parametric model of
the data, it would be interesting to consider in the future
work standard improvements of the bandwidth selectors such
as sample point or baloon density estimator [38], [47]. An-
other extension might be adaptation of the cross-validation
bandwidth selector [30]. While we have seen that the oKDE
successfully approximates the nonstationary distributions, the
“forgetting factor” was predetermined. An interesting venue
of furhter research would be how to automatically determine
this factor directly from streaming data.

Note that the update procedure in the oKDE makes it
a reconstructive estimator, since the compression algorithm
penalizes errors in the reconstruction. We can think about the
compression algorithm itself as an approximate optimization,
which seeks a minimum of the reconstructive cost function.
We believe that replacing this cost function with some other
criteria would yield different properties of the online KDE,
without modification of the optimization algorithm. Indeed,
we have already explored a possibility of replacing this cost
function with a criteria that, instead of reconstruction errors, it
penalizes discriminative errors in [23] and obtained encourag-
ing preliminary results. We believe that this venue of research
will lead to online probabilistic discriminative models based
on the kernel density estimation, which will be based on the
theory presented here. These are the topics of our ongoing
research.

APPENDIX A
FUNCTIONAL APPROXIMATION

In this appendix we derive an approximation to the func-
tionalR(p,F) from Section III. We write the multiple partial
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TABLE VI
AVERAGE CLASSIFICATION RESULTS(RECOG.) AND AVERAGE NUMBER OF COMPONENTS PER CLASS(Ncmp) IN THE MODELS ALONG WITH ± ONE

STANDARD DEVIATION . THE NUMBER OF SAMPLES IN EACH DATASET, THE DIMENSIONALITY AND THE NUMBER OF CLASSES ARE DENOTED BYNS , ND

AND NC , RESPECTIVELY.

oKDE CV RSDE Hall SVM
dataset NS ND NC Recog. Ncmp Recog. Ncmp Recog. Ncmp Recog. Ncmp Recog. Ncmp

Iris 150 4 3 97±3% 31±0 96±3% 38±0 96±2% 10±5 97±4% 38±0 96±3% 16±1
Pima 768 8 2 70±1% 162±3 72±2% 288±0 65±3% 48±10 67±2% 288±0 78±3% 160±4
Wine 178 13 3 99±2% 45±0 92±4% 45±0 94±4% 44±0 99±2% 45±0 98±2% 22±4
Letter 20000 16 26 95±0% 222±5 96±0% 613±0 55±0% 25±0 95±0% 613±0 96±0% 322±0
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Fig. 16. Upper row shows classification results (Score) and the lower row shows the number of components per class (Ncmp) w.r.t. the number of all
observed samples (Nobs). The results for the oKDE are depicted along with one standard deviation bars. For reference, we also show results for the batch
methods after observing all the samples.

derivatives of ad-variate functiong(x) as

g(r) =
∂|r|

∂xr1
1 . . . ∂xrd

d

g(x), (39)

with r = (r1, . . . , rd) a vector of nonnegative integers and
|r| = ∑d

i=1 ri. According to [47] (page, 98) we can rewrite
R(p,F) from (7) into

R(p,F) =
∫

tr{FGp(x)}tr{FGp(x)}dx

= vechT (F)ΨGvech(F), (40)

with ΨG denoting a1
2d(d+ 1)× 1

2d(d+ 1) matrix

ΨG =
∫

vech(2Gp(x)− dg(Gp(x)))×

vechT (2Gp(x)− dg(Gp(x)))dx, (41)

and where the notationdg denotes the diagonal matrix formed
by replacing all off-diagonal entries by zeros. SinceGp(x) is
a matrix of second partial derivatives, each entriy inΨG can
be written in terms of functionalsψr,

ψr =
∫
p(r1)(x)p(r2)(x)dx

=
∫
p(r)(x)p(x)dx (42)

with r = r1 + r2 and with even|r1| and |r2|. This means
that entries in (40) are simply expectations of partial even
derivatives of an unknown distributionp(x). We now approx-
imate the unknown distribution by a sample modelps(x) and
approximate its derivative through a kernel density estimate
p
(r)
G (x) (approximations in equation 8), where

pG(x) =
Ng∑

i=1

αgiφΣgi
(µgi − x)

ps(x) =
Ns∑

j=1

αsjφΣsj
(µsj − x).

This means that the entriesψr are approximated by

ψ̂r =
∫
p
(r)
G (x)ps(x)dx

=
∫
p
(r1)
G (x)p(r2)

s (x)dx. (43)

By matching the last line of the (43) with the first line of (42)
we get the approximation ofΨG ,

Ψ̂G =
∫

vech(2GpG
(x)− dg(GpG

(x)))×

vechT (2Gps(x)− dg(Gps(x)))dx. (44)
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PluggingΨ̂G back into (40) yields the following approxima-
tion of R(p,F):

R̂(p,F,G) =
∫

tr{FGpG
(x)}tr{FGps

(x)}dx. (45)

APPENDIX B
CLOSED-FORM FUNCTIONAL CALCULATION

To derive a closed-form solution to

R̂(p,F,G) =
∫

tr{FGpG
(x)}tr{FGps

(x)} (46)

which is based only on matrix algebra, we follow closely
the derivation of a similar integral which was studied in the
Appendix of M.P. Wand’s paper [46]. As in that paper, we
will require some established results:

GφΣ(·−µ) = φΣ(x){Σ−1(x− µ)(x− µ)T − I}Σ−1, (47)

φΣi
(x− µi)φΣj

(x− µj) =
φΣi+Σj

(µi − µj)φΣi(Σi+Σj)−1Σj
(x− µ∗) (48)

where

µ∗ = Σj(Σi + Σj)−1µi + Σi(Σi + Σj)−1µj , (49)

and

Cov(XT AX, (X− c)T B(X− c)) =
2tr[AΣB{Σ + 2(µ− c)µT }], (50)

whereX is random vector distributed inφΣ(µ − x), A and
B are d × d symmetric constant matrices andc is a d × 1
constant vector. We start by expanding the integral

∫
tr{FGpG

(x)}tr{FGps
(x)} =

Ng∑

i=1

Ns∑

j=1

αgiαsjφΣgi+Σsj
(µgi − µsj)

×E[tr{FΣ−1
gi [(Y − µgi)(Y − µgi)T Σ−1

gi − I]}
×tr{FΣ−1

sj [(Y − µsj)(Y − µsj)T Σ−1
sj − I]}], (51)

where I is an identity matrix andY a random vector dis-
tributed inφΣgi(Σgi+Σsj)−1Σsj

(x− µ∗ij), with

µ∗ij = Σsj(Σgi + Σsj)−1µgi + Σgi(Σgi + Σsj)−1µsj . (52)

SinceE(UV) = Cov(U,V) + E(U)E(V) for two random
variablesU andV the expectation in (51) can be written as

Cov{(Y − µgi)T Σ−1
gi FΣ−1

gi (Y − µgi),

(Y − µsj)T Σ−1
sj FΣ−1

sj (Y − µsj)

+tr{FΣ−1
gi (E[(Y − µgi)(Y − µgi)T ]Σ−1

gi − I)}
×tr{FΣ−1

sj (E[(Y − µsj)(Y − µsj)T ]Σ−1
sj − I)}. (53)

Sinceµ∗ij − µsi = Σgi(Σgi + Σsj)−1(µsj − µgi), (50) and
matrix algebra can be used to show that the covariance term
is

2tr{F(Σgi + Σsj)−1F(Σgi + Σsj)−1 ×
[I− 2(µgi − µsj)(µgi − µsj)T (Σgi + Σsj)]}.

Using E[(Y − µgi)(Y − µgi)T ] = Σgi(Σgi + Σsj)−1Σsj +
(µ∗ij−µgi)(µ∗ij−µgi)T it can be shown that each of the factor
in the second term is equal to

−tr{F(Σgi+Σsj)−1[I−(µgi−µsj)(µgi−µsj)T (Σgi+Σsj)−1]}.
(54)

Combining these with (51) and applying the definitions

Aij = (Σgi + Σsj)−1,

Bij = Aij{I− 2(µgi − µsj)(µgi − µsj)T Aij},
Cij = Aij{I− (µgi − µsj)(µgi − µsj)T Aij} (55)

leads to the result in (11).

APPENDIX C
THE UNSCENTEDHELLINGER DISTANCE

The unscented transform is a special case of a Gaussian
quadrature, which, similarly to Monte Carlo integration, relies
on evaluating integrals using carefully placed points, called
the sigma points, over the support of the integral. Therefore,
as in Monte Carlo integration [45], we define animportance
distribution p0(x) = γ(p1(x) + p2(x)), which contains the
support of both,p1(x) as well asp2(x), with γ set such
that

∫
p0(x)dx = 1. In our case,p0(x) is a Gaussian

mixture model of a formp0(x) =
∑N

i=1 wiφΣi
(x− xi), and

we rewrite the Hellinger distance (21) into

D2(p1, p2) =
1
2

∫
g(x)p0(x)dx =

1
2

N∑

i=1

wi

∫
g(x)φΣi

(x− xi)dx, (56)

where we have definedg(x) = (
√

p1(x)−
√

p2(x))2

p0(x) . Note that
the integrals in (56) are simply expectations over a nonlinearly
transformed Gaussian random variableX, and therefore admit
to the unscented transform. According to [22] we then have

D2(p1, p2) ≈
1
2

N∑

i=1

wi

2d+1∑

j=0

g((j)Xi)(j)Wi, (57)

where{(j)Xi,
(j)Wi}j=0:d are weighted sets of sigma points

corresponding to thei-th GaussianφΣi
(x− xi), and are

defined as

(0)Xi = xi ; (0)Wi =
κ

1 + κ
(j)Xi = xi + sj

√
1 + κ(

√
dΣi)j (58)

(j)Wi =
κ

2(1 + κ)
; sj =

{
1 ; j ≤ d
−1 ; otherwise

(59)

with κ = max([0,m − d]), and (
√

Σi)j is the j-th column
of the matrix square root ofΣi. Concretely, letUDUT be a
singular value decomposition of covariance matrixΣ, such
that U = {U1, . . . , Ud} and D = diag{λ1, . . . , λd}, then
(
√

Σ)k =
√
λkUk. In line with the discussion on the properties

of the unscented transform in [22], we set the parameterm to
m = 3.
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Aleš Leonardisreceived the Dipl.ing. and M.Sc. de-
grees in electrical engineering and the Ph.D. degree
in computer science from the Faculty of Electrical
Engineering and Computer Science, University of
Ljubljana, Ljubljana, Slovenia, in 1985, 1988, and
1993, respectively.

From 1988 to 1991, he was a Visiting Re-
searcher at the General Robotics and Active Sensory
Perception Laboratory, University of Pennsylvania,
Philadelphia. From 1995 to 1997, he was a Post-
doctoral Associate with the Pattern Recognition and

Image Processing Group, Vienna University of Technology, Vienna, Austria.
He was also a Visiting Researcher and a Visiting Professor atthe Swiss
Federal Institute of Technology ETH, Zurich, and at the Technische Fakultaet
der Friedrich-Alexander-Universitaet, Erlangen, respectively. He is a Full
Professor and the Head of the Visual Cognitive Systems Laboratory, Faculty
of Computer and Information Science, University of Ljubljana. He is also
an Adjunct Professor with the Faculty of Computer Science, Graz University
of Technology, Graz, Austria. He is an author or coauthor of more than 160
papers published in journals and conferences and he coauthored the book
Segmentation and Recovery of Superquadrics (Kluwer, 2000).His research
interests include robust and adaptive methods for computer vision, object and
scene recognition and categorization, statistical visuallearning, 3-D object
modeling, and biologically motivated visions. Dr. Leonardisis an Editorial
Board Member of Pattern Recognition, an Editor of the Springer Book Series
Computational Imaging and Vision, and an Associate Editor of the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE. He has served on the program committees of major computer-vision
and pattern-recognition conferences. He was also a ProgramCochair of the
European Conference on Computer Vision 2006. He has receivedseveral
awards. In 2002, he coauthored a paper, Multiple Eigenspaces, which won
the 29th Annual Pattern Recognition Society award. In 2004,he was awarded
a prestigious national award for scientific achievements. Heis a fellow of the
International Association for Pattern Recognition and a member of the IEEE
Computer Society.



Online Discriminative Kernel Density Estimation
Matej Kristan, Aleš Leonardis
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Abstract—We propose a new method for online estimation
of probabilistic discriminative models. The method is based on
the recently proposed online Kernel Density Estimation (oKDE)
framework which produces Gaussian mixture models and allows
adaptation using only a single data point at a time. The oKDE
builds reconstructive models from the data, and we extend it to
take into account the interclass discrimination through a new
distance function between the classifiers. We arrive at an online
discriminative Kernel Density Estimator (odKDE). We compare
the odKDE to oKDE, batch state-of-the-art KDEs and support
vector machine (SVM) on a standard database. The odKDE
achieves comparable classification performance to that of best
batch KDEs and SVM, while allowing online adaptation, and
produces models of lower complexity than the oKDE.

Index Terms—Online Estimation; Discriminative Models; Ker-
nel Density Estimation

I. INTRODUCTION

Building discriminative models of some process from the
observed data is a central task of many applications in machine
learning. A popular approach to generating models is to
estimate the probability density function (pdf) associated with
the observed data. In this respect, reconstructive models such
as the Gaussian mixture models, (GMM), (e.g., [1]) have been
successfully applied in batch operation, i.e., in situations in
which all the data is observed in advance. In contrast to
the reconstructive models, the discriminative models capitalize
on the discriminative information, however, this may lead to
decreased robustness [2]. A significant drawback of the purely
batch methods is that their estimation becomes increasingly
difficult when processing extremely large amounts of data.
Furthermore, in real-world environments, all the data may not
be available in advance, or we even want to observe some
process for an indefinite duration, while continually providing
the best estimate of the model from the data observed so far.
This generates the need for models that can be constructed in
an online operation.

Adapting the existing reconstructive GMM methods to work
with online cases, in which as little as a single data-point may
be observed at a time, is a nontrivial task. In contrast to the
batch incremental models (e.g., [3]) who store and revisit all
the data in multiple passes, the online models have to adapt
from a (single) new data-point and then discard that data-
point. The main difficulty is therefore that the online models
have to maintain sufficient information to generalize well to
the yet unobserved data and have to adjust their complexity
without having access to all the observations (future as well

as past). There have been various attempts to extend the re-
constructive GMMs to online operation, however, these either
imply strong spatio-temporal constraints on the data [4], [5],
assume constraints on the shape of the target distribution [6]
or require tuning of parameters to a specific application [7].
Recently, we have proposed a non-parametric approach called
the online Kernel Density Estimation (oKDE) [8]. In contrast
to the other approaches, the oKDE does not impose any
of the above constraints but assumes only that the target
pdf is sufficiently smooth and produces models with a high
reconstructive performance. In [9] we have also considered a
variant of the oKDE that allows adaptation from positive as
well as negative examples.

While the purely reconstructive models may contain redun-
dant information required for discrimination, the discrimina-
tive models disregard the reconstructive information required
for online adaptation. Indeed, Fidler et al. [2] have shown
that even in batch methods accounting for the reconstructive
information leads to improved robustness of the discrimi-
native models. Following their results, we adapt the oKDE
framework to account for the discriminative power of the
models along with the reconstructive, thus arriving at an
online discriminative Kernel Density Estimator, which is the
main contribution of the paper. The proposed method allows
online adaptation of the discriminative models, by maintaining
enough reconstructive power to efficiently adapt to new ob-
servations, and can be used to develop online classifiers. The
remainder of the paper is structured as follows. In Section II
we briefly review the oKDE framework, in Section III we
extend the oKDE to discriminative models, in Section IV we
evaluate the approach and the Section V concludes the paper.

II. THE ONLINE KERNEL DENSITY ESTIMATION

The online Kernel Density Estimation (oKDE) produces a
generative model from the d-dimensional streaming data as an
N -component Gaussian mixture model

p(x) =
N∑

i=1

wiφΣi
(x− xi), (1)

where φΣ(x− µ) = (2π)−
d
2 |Σ|− 1

2 e(− 1
2 (x−µ)T Σ−1(x−µ)) is a

Gaussian kernel centered at µ with covariance matrix Σ. We
give here only a brief overview of the oKDE framework and
refer the reader to [8] for more details.



Broadly speaking, the oKDE proceeds in two steps:
Update: Starting with the GMM from the previous time-step
pt−1(x) and the new observation xt, the oKDE augments the
pt−1(x) by a Gaussian kernel φΣt(x − xt) centered at xt,
it automatically calculates the optimal covariance Σt for that
kernel and accordingly readjusts the covariances of the existing
kernels using the multivariate online plug-in rule proposed
in [8]. If required, it also refines the GMM by splitting up
some of the components.
Compress: To maintain a low complexity (i.e., low number
of components) the GMM is simplified from time to time.
The oKDE generates a binary tree among the components and
iteratively merges pairs of components until some threshold of
a cost function is exceeded. In [8], the cost function represents
the distance between the distribution before and after the
compression, which penalizes the reconstruction errors.

III. DISCRIMINATIVE KDE

We pose the online discriminative learning as a task to
estimate from a stream of data a set of K discriminative
classes, each class ci described by a Gaussian mixture model
p(x|ci) and a prior probability p(ci). In principle, we could
use the oKDE to construct each of these classes, but, due to
its reconstructive nature, the produced models will be likely
redundant for classification. Indeed, we require the models
to contain just so much of the information to prevent a
degraded classification. Recall that the oKDE simplifies the
models under a certain cost function which measures the
reconstruction error induced by compression [8]. This means
that by redefining this cost function to rather take into account
the classification error, the compression step in the oKDE will
lead to models that reduce their complexity while retaining
their discriminative power.

Assume that we want to compress the ci-th class mixture
model p(x|ci) into pcmp(ci|x), while minimizing the induced
classification errors. First we have to rewrite this model into
a classification model. We consider the class ci as a positive
example class C+, described by a mixture model p(C+|x) =
p(ci|x). Then we collect all the other classes to form a single
negative example class C−, p(C−|x) =

∑
j\i p(cj |x). The

posterior over the resulting two-class model is then defined as

p(C|x) = δC+(C)p(C+|x) + δC−(C)p(C−|x), (2)

where δC∗(C) is a Dirac function centered at C∗. The com-
pressed counterpart of the posterior (2), is obtained by setting
pcmp(C+|x) = pcmp(ci|x):

pcmp(C|x) = δC+(C)pcmp(C+|x) + δC−(C)p(C−|x). (3)

From the classification point of view we can say that p(x|ci)
can be compressed into pcmp(x|ci) as long as the distance
between the corresponding posteriors p(C|x) and pcmp(C|x),
does not change significantly. We therefore require a distance
measure between the posterior before and after compression.

A. Distance between two classifiers

We define the distance between the posterior p(C|x) and
its compression pcmp(C|x), given some value of x, using the
Hellinger distance [10],

D2(p, pcmp|x)∆=
1
2

∫

C

(p(C|x)
1
2 − pcmp(C|x)

1
2 )2

=
1
2

∑

C∈[C+,C−]

(p(C|x)
1
2 − pcmp(C|x)

1
2 )2. (4)

Integrating (4) over the relevant feature space x gives the
expected Hellinger distance

D̂2(p, pcmp) =
∫
D2(p, pcmp|x)p0(x)dx, (5)

where the expectation is calculated over the distribution
p0(x) = p(x|C+)p(C+) + p(x|C−)p(C−), with the priors
P (C+) = p(ci) and P (C−) =

∑
j\i p(cj). In our case,

p0(x) can be written in the form of a Gaussian mixture model
p0(x) =

∑M
i=1 wiφΣi(x− xi) and (5) becomes

D̂2(p, pcmp) =
M∑

i=1

wi

∫
D2(p, pcmp|x)φΣi

(x− xi)dx. (6)

Note that while D(·, ·|x) is a metric, constrained to the
interval [0, 1], it is a nonlinear function of x, and the integrals
in (6) cannot be evaluated analytically. However, they can
be numerically approximated using the unscented transform,
which has been proposed by [11] for calculating nonlinear
transformations of Gaussian variables. Similarly to a Monte
Carlo integration, the unscented transform relies on evaluating
integrals using carefully placed points, called the sigma points,
over the support of the integral. Therefore, (6) is approximated
as

D̂2(p, pcmp) ≈
M∑

i=1

wi

2d+1∑

j=0

D2(p, pcmp|(j)Xi)(j)Wi, (7)

where {(j)Xi, (j)Wi}j=0:d are the weighted sets of sigma
points corresponding to the i-th Gaussian φΣi

(x− xi), and
are defined as

(0)Xi = xi ; (0)Wi =
κ

1 + κ
(8)

(j)Xi = xi + sj
√

1 + κ(
√
dΣi)j ;

(j)Wi =
κ

2(1 + κ)
; sj =

{
1 ; j ≤ d
−1 ; otherwise

with κ = max([0,m − d]), and (
√

Σi)j is the j-th column
of the matrix square root of Σi. Specifically, let UDUT be a
singular value decomposition of covariance matrix Σ, such
that U = {U1, . . . , Ud} and D = diag{λ1, . . . , λd}, then
(
√

Σ)k =
√
λkUk. In line with the discussion on the properties

of the unscented transform in [11], we set the parameter m to
m = 3.



B. The online discriminative KDE

The distance function D̂(p, pcmp) from Section III-A penal-
izes any change of the classification posterior which is induced
through the compression of the mixture models. Small values,
i.e., D̂(p, pcmp) ≈ 0, mean that the classification does not
change, while D̂(p, pcmp) = 1 implies a complete change. In
an online operation, we can therefore simply adapt the oKDE
(Section II) to build and compress a mixture model for each
class separately from the observed data. To penalize the loss of
discrimination during the compression, we can use the distance
measure D̂(p, pcmp) as the compression cost function. We
arrive at an online discriminative KDE (odKDE). In practice,
we let the odKDE compress the model until the cost function
exceeds some (small) threshold D̂th.

During learning, at time-step t − 1, we have a set of
K models {pt−1(x|ci), pt−1(ci)}i=1:K . For simplicity as-
sume that at time-step t, K new observations {zi}i=1:K ,
one per each class1, arrive and the models are updated into
{pt(x|ci), pt(ci)}i=1:K . A single time-step iteration of the
approach is outlined in Algorithm 1. In the classification phase
a new observation z is classified into a class ĉ by applying the
Bayesian rule

ĉ = arg max
ci

p(z|ci)p(ci). (9)

Algorithm 1 : The online discriminative KDE
Input:
{pt−1(x|ci), pt−1(ci)}i=1:K . . . the input models.
{zi}i=1:K . . . observations (one per each class)

Output:
{pt(x|ci), pt(ci)}i=1:K . . . the output models.

Procedure:
1: for i = 1 : K do
2: Update pt−1(x|ci) with zi into p̃t(x|ci) using the

original update step of oKDE (Section II).
3: Update the prior pt(ci).
4: end for
5: for i = 1 : K do
6: Construct the two-class classification model (2) by

treating p̃t(x|ci) as a positive example and the rest K−1
models as the negative example.

7: Compress p̃t(x|ci) into pt(x|ci) by hierarchical merg-
ing components such that D̂(p̃t, pt) ≤ D̂th.

8: end for

IV. EXPERIMENTS

We have compared the classification performance of the
odKDE with the online reconstructive KDE, oKDE [8], and
three state-of-the-art batch KDEs: the cross-validation (CV)
KDE [12], the reduced-set density estimator [13] (RSDE)
initialized by the CV, and the Hall’s KDE [14] (Hall). For the

1This restriction serves only for clarity of the presentation. Note that, in
general, our approach can also handle cases in which observations come only
from a subset of classes at a time.

baseline classification, we have applied a multiclass support
vector machine (SVM) with an RBF kernel [15]. The methods
were compared on a set of public classification problems [16]
(Table I). In all experiments, the distance parameter in the
odKDE was set to D̂th = 0.005.

The odKDE and oKDE were initialized for each class using
the first 10 samples and the rest were added one at a time;
this experiment was repeated via four-fold cross validation
and for three random data orderings. This amounted to twelve
repetitions per dataset. The parameter for the SVM kernel was
determined separately in each experiment via cross validation
on the training dataset. Table I shows the classification score
and the number of components in the models after observing
all the samples, while Fig. 1 shows the evolution of the results
with respect to (w.r.t.) the number of observations for the
oKDE and the doKDE. For reference, the graphs also show
results for the batch methods after observing all the samples.
From the results in Table I we see that the odKDE generated
models with comparable classification performance as the
oKDE, but generally with a significantly lower complexity.
We can verify that this was also true during the online
estmation from Fig. 1. Although the odKDE was learnt only
by observing a single example at a time, the resulting models
exhibit classification performance similar to the best batch
KDE approaches and the SVM, who optimized their structure
having access to all the data. By further inspection of the
results we can also observe a general trend that the number
of components initially significantly increases in doKDE (as
well as in oKDE), but then stabilizes for larger number of
samples, while the recognition score further improves. For
example, in the case of the Letter dataset, the bound on
the complexity is reached relatively early on after observing
200 samples per class (i.e., after 5200th sample), while the
classification performance further increased through the model
refinement. This makes the odKDE a very appropriate tool
for online operation since it produces compressed models
with good classification performance, while at the same time
maintains sufficient reconstructive information to allow online
refinements of the models from new observations.

V. CONCLUSION

We have proposed an approach for online estimation of
discriminative models by adapting the framework of online
Kernel Density Estimation. We have defined a distance mea-
sure which measures the discrimination of models and used
this measure in the oKDE as a cost function for compres-
sion. Results demonstrate that the proposed odKDE produces
comparable classification performance to the state-of-the-art,
and produces models of significantly lower complexity while
allowing online adaptation. This makes the approach ideal for
online estimation of classifiers from streaming data. In our
future work we will study how different distance measures
and data orderings influence the performance of the proposed
method as well as test how the method handles noise in labels.



TABLE I
AVERAGE CLASSIFICATION RESULTS ALONG WITH ± ONE STANDARD DEVIATION. THE NUMBER OF SAMPLES IN EACH DATASET, THE DIMENSIONALITY

AND THE NUMBER OF CLASSES ARE DENOTED BY NS , ND AND NC , RESPECTIVELY.

Recognition accuracy[%] (Number of components per class)
dataset NS ND NC odKDE oKDE CV RSDE Hall SVM
Iris 150 4 3 97±4%(6.3±1) 97±3%(31±0) 96±3%(38±0) 96±2%(10±5) 97±4%(38±0) 96±3%(16±1)
Pima 768 8 2 71±3%(108±6) 70±1%(162±3) 72±2%(288±0) 65±3%(48±10) 67±2%(288±0) 78±3%(160±4)
Wine 178 13 3 97±2%(2.5±1) 99±2%(45±0) 92±4%(45±0) 94±4%(44±0) 99±2%(45±0) 98±2%(22±4)
Letter 20000 16 26 94±0%(16±1) 95±0%(222±2) 96±0%(613±0) 55±0%(25±0) 95±0%(613±0) 96±0%(322±0)

Fig. 1. Upper row shows the classification results (Score) and the lower shows the number of components per class (Ncmp) w.r.t. the number of samples
(Nobs). The results for the oKDE and odKDE are depicted by darker (red) line and bright (green) line, respectively along with one standard deviation bars.
For reference, we also show results for the batch methods after observing all samples.
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Faculty of Computer and Information Science

University of Ljubljana, Slovenia
{barry.ridge, danijel.skocaj, ales.leonardis}@fri.uni-lj.si

Abstract— For a developmental robotic system to function
successfully in the real world, it is important that it be
able to form its own internal representations of affordance
classes based on observable regularities in sensory data. Usually
successful classifiers are built using labeled training data, but
it is not always realistic to assume that labels are available in
a developmental robotics setting. There does, however, exist an
advantage in this setting that can help circumvent the absence of
labels: co-occurrence of correlated data across separate sensory
modalities over time. The main contribution of this paper is an
online classifier training algorithm based on Kohonen’s learning
vector quantization (LVQ) that, by taking advantage of this co-
occurrence information, does not require labels during training,
either dynamically generated or otherwise. We evaluate the
algorithm in experiments involving a robotic arm that interacts
with various household objects on a table surface where camera
systems extract features for two separate visual modalities. It
is shown to improve its ability to classify the affordances of
novel objects over time, coming close to the performance of
equivalent fully-supervised algorithms.

I. INTRODUCTION

The term affordance, introduced by Gibson [1], is used
to characterise the action possibilities that an environment
offers an agent acting within that environment. In this
paper we address the issue of object affordance learning
in a developmental robotic system by developing a self-
supervised classifier that operates across two different sen-
sory modalities mediated by object interactions. The main
idea behind this is illustrated in Fig. 1 and Fig. 2(a). In our
scenario, a robotic arm is mounted on a table surface while
camera systems observe the scene. Objects are placed in the
workspace where the arm is allowed to interact with them
using pushing actions. Object features (e.g. shape features)
derived from image data taken prior to arm-object interaction
provide data for the first sensory modality, hereby referred
to as the input modality. After an action has been initiated
on an object, video footage is recorded of the object in
motion and effect features are extracted from the video
footage, forming the basis of the output modality. Often
when different sensory modalities (or stimulus modalities)
are discussed in the literature, they tend to be modalities
from different sensory systems, e.g. auditory and visual.
Here, instead, we consider two different sensory modalities

This research has been supported by: EU FP6 project VISIONTRAIN
(MRTN-CT-2004-005439), EU FP7 project CogX (ICT-215181), and Re-
search program P2-0214 Computer Vision (Republic of Slovenia).
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Fig. 1. The main idea of our affordance learning framework.

from the same sensory system (visual) dealing with shape
and motion respectively. Though there is a temporal delay
when gathering data from each modality during an interactive
episode, for the purposes of our discussion here we consider
such data in each modality to be co-occurrences. Given a
series of interactive episodes, the learning task is to find
clusters in the output modality feature space that may be
identified as affordance classes, and use them to train a
classifier in the input modality space. Thus, when the system
encounters novel objects, it can predict their affordance
classes by observing their respective object features.

The main contribution of our algorithm is that it removes
the need for class labels of any kind during the training
stage by introducing a probabilistic heuristic based on the
co-occurrence information. When designing the algorithm,
we were subscribing to an online learning paradigm suitable
for developmental robotic systems. Requirements for such
an algorithm include: 1) No, or limited, access to previously
viewed training samples. 2) An incremental training mech-
anism. 3) Fixed, or limited, memory requirements. To meet
these criteria, we use a cross-modal neural network, as in
Fig. 2(b) consisting of two layers of codebook vectors fully
connected via a Hebbian weight mapping. The codebook
vector layers are of a fixed size, thus meeting the third online
learning criterion. The learning algorithm that we present,
through the use of Kohonen’s self-organizing map (SOM) [2]
method, as well as a variation of Kohonen’s learning vector
quantization (LVQ) [2], does not require access to previously
viewed training samples and can be trained incrementally,
thus satisfying the first and second criteria.



(a) (b)

Fig. 2. (a) Experimental setup. (b) Our cross-modal neural network.
Two SOM networks operating in separate modalities, fully connected via a
weighted Hebbian mapping.

Perhaps the most closely related work in the literature with
respect to affordance learning to our work is by Fitzpatrick
et al. [3], [4]. The authors trained a humanoid robot to rec-
ognize “rolling” affordances of 4 household objects using a
fixed set of actions to poke the objects in different directions
as well as simple visual descriptors for object recognition.
There are two main differences between their method and
ours. Firstly, in [3], [4], the feature associated with the rolling
direction affordance was pre-determined, whereas in our
system, the learning algorithm is provided with a number of
different output features and it must determine for itself the
affordance classes within that feature space. Secondly, their
system used object recognition to identify the affordances
of individual objects, whereas our system determines the
affordance class of objects (grounded in output modality
features) based, not on their individual identity, but on a
broad set of input features (e.g. shape). In [5], the authors
used a humanoid robot to push objects on a table and used
a Bayesian network to form associations between actions,
objects and effects. Though quite similar to our approach,
their learning method may not be as amenable to full online
learning, as they have to gather a certain amount of data
initially to form categories within the various modalities
before the network can be trained.

Saxena et al. [6], [7] used the same robotic arm used in
our work (see Sec. III-A) to attempt to grasp novel objects
based on a probabilistic model trained on synthetic images of
various other objects labeled with grasp points. What differs
in our work is that rather than training our learning algorithm
on synthetically generated object examples, we train on
interactions with real objects. Moreover, their two possible
affordances were specified in advance: graspable or non-
graspable, whereas our system generates its own affordance
classes through interaction with objects. In [8], the authors
describe a mobile robotic system equipped with a 3D laser
scanner that learns to perceive traversability affordances of
various objects, such as spheres, cylinders and boxes in a
room. The robot was provided with a set of seven possible
actions and used its range scanner to gather angle and
distance features aggregated over a grid-division of the range
image. It then learned mappings between environmental situ-
ations and the results of its actions by first selecting relevant
features from the full set, then using support vector machines
to classify the relevant features into affordance categories.

Though good results were acheived, the affordance categories
were, again, pre-defined: traversable or non-traversable.

With regard to our learning algorithm, one of the first ex-
amples of Hebbian-linked SOMs was provided in [9], where
they were used for developing an artificial neural network
model of the mental lexicon. The structure of the network
in [9] is identical to the one presented here: two SOMs fully
connected via weighted Hebbian mappings. Moreover, the
training scheme presented in [9] is the same as our phase
1 training (see Sec. II-B). However, this training scheme by
itself, is not optimized for classification purposes as we shall
see later in Sec. V, and the SOMs do not influence each
other during training. de Sa et al. [10], [11] greatly improved
upon this by creating a cross-modal neural network where
two competitive learning maps in each modality influenced
each others’ training by learning to agree upon common class
labels for co-occurring data samples. Similarly to us, they
employed LVQ to train the maps in each modality based on
the class information. One drawback, however, is that the
class labels have to be determined a priori and maintained
throughout the training process. A SOM with a Hebbian
learning mechanism called a Growing When Required (GWR)
network was used in [12] to aid a simulated mobile robot in
learning affordances of objects with survival values such as
nutrition and stamina so that it could prosper over time in its
environment. The SOM was used to cluster visual sensor data
in the input space where nodes were assigned weights based
on the success or failure of actions. While our method also
uses SOM training, in our case it is used on both the output
data, where the nodes are meta-clustered to form affordance
classes, and the input data, where at a certain point it is
swapped for a variation of LVQ which is better suited for
classification optimization.

II. THE LEARNING ALGORITHM

A classifier could be constructed in either of these modal-
ities by attaching class labels to the training data and
employing a supervised learning algorithm, but this is hardly
ideal for an autonomous cognitive system like a robot since
it assumes the existence of an external tutor who is willing to
label the data. However, once we have noted that in this type
of learning scenario correlated training data co-occur in each
modality, this opens up some alternative possibilities. For
example, k-means clustering or density estimation might be
possible in the joint feature space, however, as was discussed
in [11], these are not ideal solutions. The problem with
simple k-means clustering or competitive learning in the
joint space is that all feature dimensions would be required
for the classification of test samples; these methods would
not be able to marginalize over the missing dimensions
when trying to predict the outcome of one modality from
another. Density modeling would account for this problem,
but requires fitting many parameters which would become
infeasible in high dimensions. Moreover, neither approach
complies naturally to our online learning criteria. Thus, per-
haps a better approach would be to use the natural structure
of the data in one modality, as well as the co-occurrence



information, to train a supervised classifier in the other
modality. This could be accomplished, for example, by using
an unsupervised clustering algorithm like k-means to derive
clusters in one modality which could be used as class labels
to train a supervised classifier in the other ([11] provides a
similar approach). However, it is computationally expensive
to cluster at every training step in an online algorithm.
One alternative, that of clustering early and maintaining the
clusters over time, could potentially introduce inaccuracies
as training progresses if the sample distribution changes
significantly. In the following we describe a cross-modal
neural network and a two-phased training scheme that aims
to address these issues.

A. Cross-modal Neural Network

The structure of our cross-modal neural network is illus-
trated in Fig. 3 (a). Two codebook vector layers, one in
the input modality and one in the output modality, are fully
connected to each other via a weighted Hebbian mapping.
The idea is that the codebook vector layers are trained
to form a representation of the information contained in
their respective modalities, while the Hebbian mapping is
trained on the basis of the co-occurrence of data across these
modalities.

Learning proceeds in two phases. In the first phase of train-
ing, as training samples for each modality are concurrently
presented to the network, the codebook vector layers are
trained separately using the usual SOM algorithm (described
below). While training is ongoing, the Hebbian links that
connect the best-matching unit nodes in each of the codebook
vector layers are then updated appropriately based on co-
occurence. Though SOM training is good for producing low-
dimensional represenations of data distributions, it is not the
best solution for optimizing decision borders, thus we em-
ploy a second phase of training that exploits the co-occurence
information captured by the Hebbian mapping between the
codebook vector layers. In the second phase, the codebook
vector layer in the output modality continues to be trained
in the usual way, as does the Hebbian mapping, while the
codebook vector layer in the input modality is trained using
our variation of LVQ. Rather than using class labels, the LVQ
training rules are selected using a Hellinger distance-based
heuristic that exploits the cross-modal Hebbian mapping to
indicate whether a given codebook vector is of the “correct”
or “incorrect” class for a given training sample.

A classifier can then be formed after training by perform-
ing unsupervised meta-clustering over the output modality
nodes in order to form class labels, although it should be
emphasised that these class labels are not required during
training. It should also be noted that the algorithm, in largely
unmodified form, could also perform regression, though
results for this are not presented in this paper. The training
and classification processes are described in more detail in
the following sections.
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SampleSample
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Output activation distributionOutput activation distribution
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(b)
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Fig. 3. Training and classification. In each figure, the bottom layer is the
input modality codebook & the top layer is the output modality codebook.
Arrows indicate node movement during training. (a) Phase 1 training: regular
SOM training performed in each modality while Hebbian links are also
updated. (b) Phase 2 training: Hellinger distance heuristic indicates correct
training sample classification based on activation distributions. Input best-
matching unit node (BMU) is moved towards the training sample. (c) Phase
2 training: heuristic indicates incorrect sample classification because the
activation distributions differ significantly. Input BMU is moved away from
the training sample. (d) Classfication: output nodes are meta-clustered and
the cluster with the strongest weighted connections to the input BMU wins.

B. Training: Phase 1
The following two sub-sections describe how both the

individual modality networks and the Hebbian mapping that



connects them are trained in the first phase of training. Phase
1 training is illustrated in Fig. 3 (a).

1) Modality Codebook Vector Layers: In the first phase,
network training in each modality proceeds in accordance
with Kohonen’s original SOM formulation [2] which we
summarise here. The nodes of the network layers of each
modality contain codebook vectors mi = [mi1, . . . ,mid],
where d is the dimensionality of the modality feature vectors,
that are randomly initialized before training begins. At each
training step, a data vector x = [x1, . . . , xd] is is measured
against each codebook vector using the Euclidean distance
metric, as follows:

||x−mi||2 =
d∑

j=1

wj(xj −mij)2, (1)

where wj is an element of weight vector w = [w1, . . . , wd]
which is used for a feature selection algorithm in the second
phase of training, described in Sec. II-C. The node that
is closest to the input data vector based on this metric is
called the best matching unit (BMU) and both it and its
neighbouring nodes are updated using the following update
rule

mi(t+1) =
{

mi(t) + αSOM(t) [x(t)−mi(t)] if i ∈ Nc,
mi(t) otherwise,

(2)
operating over all i ∈ [1, n], where αSOM(t) is the learning
rate at time t and Nc is the neighbourhood around the BMU
c.

2) Cross-modal Hebbian Mapping: The following Heb-
bian weight training procedure is taken from Miikulainen
[9]. In order to train the Hebbian mapping, we require a
measurement of the activation of a given modality layer node
ai, formulated as follows:

ai(t) =
{

1− ||x(t)−mi(t)||−dmin
dmax−dmin

if i ∈ Nc,

0 otherwise,
(3)

where dmin is the smallest and dmax the largest distance of
x(t) to a unit in the neighbourhood.

During training, the link weight changes are made propor-
tional to the product of the activation of the two nodes in
each modality that are being associated, as follows:

∆hkl(t) = αHEB(t)ak(t)al(t), (4)

where ∆hkl is the unidirectional associative weight leading
from node k in the input modality layer to node l in the
output modality layer, αHEB(t) is the Hebbian learning rate,
and ak(t) and al(t) are the activations on the two nodes
at time t. Each link weight hkl is then updated using the
following normalization equation:

hkl(t+ 1) =
hkl(t) + ∆hkl(t)√∑
l [hkl(t) + ∆hkl(t)]

2
. (5)

The Hebbian mapping, when trained as above, provides
a type of memory of previous training experience in terms
of modality co-occurrences, or of what one modality “looks
like” from the perspective of the other. As we shall see,

this information can be effectively employed to augment
classifier training.

C. Training: Phase 2

After Phase 1 training has proceeded for a reasonable
amount of time, i.e., long enough to provide a robust
Hebbian mapping, Phase 2 training may be initiated. In the
algorithm presented in this paper, the network layer in the
output modality continues to be trained with the usual SOM
algorithm in Phase 2. The network layer in the input modality
however, switches to a modified version of learning vector
quantization (LVQ) [2] training that employs a probabilistic
heuristic. In order to develop this heuristic, we require the
Hellinger distance metric which we discuss next. Phase 2
training is illustrated in Figs. 3 (b) and 3 (c).

1) Hellinger Distance Heuristic: Using the definition
from [13], for a countable state space Ω, given probability
measures µ and ν,

dH(µ, ν) :=

[∑

ω∈Ω

(√
µ(ω)−

√
ν(ω)

)2
] 1

2

. (6)

We use the Hellinger distance metric as defined above to
create a heuristic that allows us to measure the similarity
between nodes in the input modality layer and the output
modality layer with respect to the Hebbian mapping. The
Hellinger distance takes values in the bounded interval
[0,
√

2], making it amenable to statistical analysis, e.g. cal-
culating mean distance. Given input modality node k, we
define

fk(t) = {hkl(t) : ∀l in the output modality layer} , (7)

or all the Hebbian link weights that connect node k in the
input modality layer to the nodes in the output modality layer
at time t. We define

g(t) = {al(t) : ∀l in the output modality layer} , (8)

or all the node activations in the output modality layer at
time t.
fk can be thought of as a distribution of the Hebbian map

activity from node k in the input layer projected onto the
output layer. Loosely put, this gives us a picture of what
the output map looks like from the perspective of node k
in the input map based on previous training experience. g,
on the other hand, gives us a distribution of the output map
activity with respect to the current training sample. Thus,
when given a training sample for the input modality, if we
employ the metric dH(fk(t), g(t)), we can get an impression
of how well its best matching unit node in the input modality
layer predicts the activity of the output modality layer given
its co-occurring training sample. This heuristic can of course
be used in the opposite direction, from the output modality
layer to the input modality layer, but for the algorithm we
present in this paper it is employed strictly in the above way
to augment the training of the input modality layer. Now
that we have the necessary tools in place, we may proceed
to present our modified LVQ algorithm.



Fig. 4. Examples of image and range data taken with the stereo camera for two different types of objects: a book which slides when pushed by the robotic
arm, and a Pepsi can which rolls when pushed by the arm. From left to right: intensity image, range data of the scene, segmented object, segmented object
range data, object range data with a fitted quadric surface.

2) Learning Vector Quantization Without Class Labels:
In traditional LVQ training [2], codebook vectors are given
fixed class labels a priori. Subsequently, as training sam-
ples are presented with accompanying class labels, the best
matching codebook vectors are updated according to a set
of rules. If the best matching codebook vector class label
matches that of the training sample, the codebook vector is
moved towards the sample. If the labels do not match, the
codebook vector is moved away from the sample.

In the modified form of LVQ we present here, which is the
main contribution of this paper, we refrain from labeling the
codebook vectors altogether. Codebook vectors are updated
based on the heuristic presented in the previous section.
Given the best matching node c in the input modality layer
for a given input modality training sample x, we apply the
following update rule:

mc(t+ 1) =





mc(t) + (1− γ)αLVQ c [x(t)−mc(t)]
if dH(fc(t), g(t)) < ε

mc(t) + (γ − 1)αLVQ c [x(t)−mc(t)]
otherwise,

(9)
where, assuming dH(fc(t), g(t)) is normalised, ε is usually
set to its mean value over all t, and γ is set to either 0 or
2dH(fc(t), g(t)) if the rule is to be applied in either a binary
or fuzzy fashion respectively.

In more simple terms, the effect of applying the above
rule is that, when the output modality appears to have the
same activity distribution as predicted by the best matching
node in the input modality based on past experience, the best
matching node in the input modality is moved closer to the
training sample. Conversely, if the output modality appears to
have a significantly different activity distribution, it is moved
away from the training sample. These two alternative cases
are visualised in Figs. 3 (b) and 3 (c).

Note that the above also incorporates optimized-learning-
rate learning vector quantization (OLVQ), where separate
αLVQ c are stored and updated for each node. See [2] for
more details.

3) Feature Selection: As alluded to in Sec. II-B.1, we
also employ a feature selection method to boost classifier
training. We use the relevance determination learning vector
quantization (RLVQ) algorithm from [14] to do this. Given
the best matching node c in the input modality layer for a
given input modality training sample x at time-step t, we
perform the following operation on the wj from (1). For
each feature dimension j:

wj(t+ 1) =





max {wj(t)− αF(t)|x(t)−mc(t)|, 0}
if dH(fc(t), g(t)) < ε

wj(t) + αF(t)|x(t)−mc(t)|
otherwise.

(10)
We then normalise, as follows: for all j, wj := wj/|w|.

D. Classification

After training, a classifier may be formed from the network
by performing unsupervised meta-clustering over the nodes
of the output modality codebook layer. To this end, we used
k-means with automatic selection of k based on votes from
the following validity indices: Davies-Bouldin [15], Calinski-
Harabasz [16], Dunn [15], Krzanowski-Lai [16] and the
silhouette index [16], [15]. These clusters define the output
modality categories to be used for classification purposes.
Given an input modality test sample to be classified, the
best matching node in the input modality layer is found and
its Hebbian weight links are mapped to the output modality
layer. The weights for the links connecting to each cluster
are summed, and the cluster with the highest score is deemed
to be the winning class for that input test sample.

III. SYSTEM ARCHITECTURE & SETUP

A. Robotic Arm

In our system, we use a Neuronics Katana 6M robotic
arm which features 5 DC motors for main arm movement,
as well as a 6th motor to power a 2 fingered gripper that
houses both infrared and haptic sensors (note: these sensors
are not used in the experiment presented here). The base of



Fig. 5. An example of the object tracking mechanism described in Sec. IV-B using the images in the first row show a progression of frames tracking
a Sprite can being pushed by the arm. The outer rectangle is a likelihood window around the object obtained using the particle filter tracker. The inner
rectangle is the result of using histogram back-projection within that window to localise the object. The second row of close-up images shows how the
appearance of the object within the inner rectangle changes during the course of object motion.

the arm is mounted on a flat table with a wooden laminate
surface, and the arm is allowed to move freely in the area
above the table surface, avoiding collisions with the table
through the use of specialized control software. The arm
control software that was used for this work is a modified
version of Golem 1, control software for the Katana arm.
Given desirable parameters, Golem uses forward kinematics
to generate arm joint orientations and motion paths, then
uses cost functions and searches to select the ones that most
closely fit the parameters. In order to ensure that the actions,
and by extension the object affordances, that are available
to the system are as consistent and learnable as possible, we
optimized for a linear end-effector motion trajectory when
moving between workspace positions.

B. Camera Systems

2 Point Gray Research cameras- the Flea monocular
camera (640x480 @ 60FPS or 1024x768 @ 30FPS) and the
Bumblebee 2 grayscale stereo camera (640x480 at 48FPS or
1024x768 at 20FPS) were used to gather intensity images,
range data and video for the experiment listed in Sec. V.

IV. VISUAL FEATURE EXTRACTION

A. Input Modality Feature Extraction

With regard to the input modality features, for the purposes
of this particular affordance learning scenario, we are mostly
interested in extracting features that describe the global shape
of an object as they are likely to be most relevant for
determining how the object will behave. However, in theory,
any types of features that describe properties of the objects
under consideration could be used here.

1) Range Data: We have developed a method for seg-
menting the object from range images that uses RANSAC
(RANdom SAmple Consensus) [17] to fit a plane to the
table surface for removal, then mean-shift clustering [18]
as well as a graph-cut segmentation in the corresponding

1Golem was developed by researchers at the University of Birmingham
who kindly provided us with a copy for our research. More information can
be found at: http://www.cs.bham.ac.uk/˜msk/ .

intensity image to isolate the object range data with minimal
noise. The graph-cut segmentation method we used was from
[19], which uses the min-cut/max-flow algorithms oulined in
[20], [21], [22] to apply the standard graph cut technique to
segmenting multimodal tensor valued images. A quadratic
surface may then be fitted to the object range data to derive
curvature features from the object surface. We derive 2
curvature features in this way from the coefficients of the
polynomial of the fitted quadratic surface that provide a good
description of the global curvature of the object. This surface
fitting technique is illustrated on the two objects shown in
Fig. 4.

2) Image Data: The segmentation technique produces
reasonably good intensity image segmentations of objects.
These are then used to calculate the following 10 shape
features: area, convex area, eccentricity, equivalent cicular
diameter, Euler number, extent, filled area, and the major
axis length.

B. Output Modality Feature Extraction

After an arm action has been performed on an object, the
resulting videos of the interaction are processed for output
modality features. This is primarily acheived by tracking the
object in motion using a probabilistic tracker from [23].
This tracker is in essence a colour-based particle filter,
which also makes use of background subtraction using a pre-
learned background image. Background subtraction by itself
is insufficient to localise the object in our experimental setup
due to changes in lighting and the motion of the arm, but
it is helpful in reducing ambiguities for the tracker. Object
shapes are approximated by elliptical regions, while their
colour is encoded using colour histograms. The dynamics
of objects are modeled using a dynamic model from [24],
which allows for tracking with a smaller number of particles,
and consequently, near real-time tracking performance.

1) Global Object Motion Features: The following 9 fea-
tures are calculated from the particle filter tracker output
data: total distance traveled in x-axis, total distance traveled
in y-axis, total Euclidean distance traveled, mean velocity in



x-axis, mean velocity in y-axis, velocity variance in x-axis,
velocity variance in y-axis, final x position, final y position.

2) Object Appearance Changes: To estimate how the
appearance of the objects change during motion, we chose
to calculate the average difference of both colour and edge
histograms between video frames of the objects, the aim
being to detect both motion blur and the texture changes
characteristic of many rotating objects. This required an
extension to the particle filter tracker previously described.
The tracker by itself is sufficient for tracking the motion of
objects, but it is slightly inaccurate at times. For example, if
an object is rolling and stops suddenly, the tracker sometimes
briefly overshoots the object before returning to it a few
frames later. To avoid this, we use the output of the tracker
to define a broad window around the object in the video
frames, before using colour histogram back-projection [25]
to localise the object within the window. Histogram differ-
ence averages are then calculated from the start of object
motion until the end. See Fig. 5 for sample frames from
an interaction with an object that illustrates this technique
at work. We derive 3 output modality features from this
procedure: average colour histogram difference, average edge
histogram difference, and the product of these two values.

V. EXPERIMENTS

To test our affordance learning system, the experimental
environment was set up as previously described and as shown
in Fig. 2(a). During experiments, objects were placed at a
fixed starting position prior to interaction. Two cameras were
used to provide both sufficiently detailed close-up range data
of the object surfaces and a sufficiently wide field of view to
capture object motion over the entire work area. To achieve
this, the stereo camera was positioned above the object start
position, while the monocular camera was positioned at a
higher position in front of the workspace.

We selected 8 household objects to be used in the ex-
periments: 4 flat-surfaced objects; a book, a CD box, a box
of tea and a drink carton, and 4 curved-surfaced objects;
a box of cleaning wipes, a Pepsi can, a Sprite can and a
tennis ball box. Each of these objects was placed centred
at the start position with a consistent orientation, and the
robotic arm pushed the object at a fixed speed using a fixed
pushing action. During trials, the curved objects would tend
to roll after being pushed, whereas the flat objects would stop
suddenly after the push. Before an action was performed on
an object, both intensity and range images were gathered
from the stereo camera. This data was then processed to
produce the 12 input modality features discussed in Sec. IV-
A. After an action was performed on an object, images were
gathered and passed to the tracking system described in Sec.
IV-B to produce 12 output modality features.

To evaluate the algorithm, we first collected a dataset as
follows. 20 object push tests were carried out for each of
the 8 objects listed previously and the resulting data was
processed, leaving 160 data samples. The samples were then
hand-labeled with two ground truth labels: rolling and non-
rolling. In the following evaluations, leave-one-out cross

validation was performed by splitting the dataset into a
training set of 140 samples consisting of all data for 7 of
the objects and a test set of 20 samples consisting of all
data for the remaining object. The classification task was
then to train on 7 objects, find the affordance classes in
the output modality and try to classify the remaining object
on that basis. In the experiments for this paper, the training
set was doubled and randomized, effectively allowing for 2
epochs of training over the training set, i.e. training over 280
samples. Cross validation was performed by using each of the
8 objects in turn as the test object and averaging classification
scores across all 8 subsequent training and test sets and the
20 test samples contained therein. Fig. 6 shows the results of
incrementally cross-validating 6 algorithms every 20 training
steps and averaging over 40 trials. In 4 of the algorithms,
each of the two codebook vector layers in the input and
output modalities contained 100 nodes arranged in a 10×10
hexagonal lattice with a sheet-shaped topology. In the other
2 algorithms, the codebook vector layers contained 5 nodes
arranged in a 1× 5 linear topology.

The goal of the evaluation was to compare the performance
of our self-supervised algorithm to fully-supervised learning
using ground truth labels. In the case of the self-supervised
algorithms, classification of a test sample was deemed to
be correct if the output modality meta-cluster (c.f. Sec. II-
D) matched the ground truth (c.f. [26] for more details
on matching the meta-clusters to ground truth labels). Of
the 6 algorithms evaluated, 2 were variations on fully-
supervised LVQ1, OLVQ1 with 100 nodes and OLVQ1 with
5 nodes, while the remaining 4 were variations of self-
supervised cross-modal learning. Of the 4 variations of cross-
modal learning, one was cross-modal SOM training as in
[9] with 100 nodes and the other 3 were modifications of
our proposed heuristic-based LVQ algorithm: fuzzy heuristic
OLVQ1 with RLVQ feature selection (HeurORLVQ), binary
HeurORLVQ with 100 nodes, and binary HeurORLVQ with
5 nodes. For each of these, the initial αSOM learning rate in
each modality was set to 1 with a linear profile descending
to 0 over the 280 timesteps in the output modality and 140
timesteps in the input modality. The RLVQ αF learning rate
was set to a constant 0.1. Training shifted from Phase 1 to
Phase 2 halfway through the training set (140 timesteps), In
Phase 2, αLVQ was set to a constant 0.3. These learning rates
were selected both through trial and error, and as advised by
[2].

As can be seen in Fig. 6, the fully supervised algorithms
performed the best, as expected, with the 5-node OLVQ
reaching a correct classification rate of 97.11% by the end
of training, and the 100-node OLVQ reaching a score of
93.53%. Of the self-supervised cross-modal classifiers, 100-
node Fuzzy HeurORLVQ performed the best, reaching a cor-
rect classification rate of 91.64%, while 100-node HeurOR-
LVQ and 5-node HeurORLVQ reached rates of 90.16% and
86.67% respectively. The cross-modal SOM finished with
a score of 81.91%, thus justifying our two-phased learning
approach. Our algorithm works best when there are enough
nodes in the network to give a decent approximation of the
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Fig. 6. Incremental leave-one-out cross-validation evaluation averaged over
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(c.f. Sec. II) is indicated by the vertical dotted line.

sample density in the output modality, thus providing a more
accurate Hellinger distance heuristic. The results show that,
when evaluated with such a number of nodes, our algorithm
performs almost as well as fully-supervised OLVQ1 using the
same number of nodes. On the other hand, OLVQ1 works
best when the number of training steps is 30 to 50 times the
number of codebook vectors [2], i.e. for our small training
set size of 280 samples, the number of codebook vectors
should be low, e.g., 5. However, even when using such a
small number of nodes, in this 2-class learning scenario
our algorithm performed robustly, and still produced better
results than the 100-node cross-modal SOM.

VI. CONCLUSION

In conclusion, we have presented a robotic system that
uses a novel self-supervised cross-modal online classifier
training algorithm to learn basic object affordances. We have
shown that it can be successfully trained to learn affordances
of household objects by interacting with them, and subse-
quently predict the affordance classes of novel objects by
observing their object features, e.g. shape. The experimental
results also demonstrated how the system, through the use
of the proposed novel algorithm, can start learning with
little or no experience, and improve results over time to the
point where the classification rate is close to that of a fully-
supervised system. Although the results presented here only
account for one type of action, multiple classifiers may be
trained to account for different types of actions. We aim to
improve on this in future work by modifying the algorithm
such that actions may be parameterized, perhaps in a separate
modality. We would also like to test the algorithm on more
challenging problems where there are more than two classes
present in the training data.
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Abstract.

When operating in the real world, a robot needs to accurately pre-

dict the consequences of its own actions. This is important to guide

its own behavior, and in adapting it based on feedback from the

environment. The paper focuses on a specific problem in this con-

text, namely predicting affordances of simple geometrical objects

called polyflaps. A machine learning approach is presented for ac-

quiring models of object movement, resulting from a robot perform-

ing pushing actions on a polyflap. Long Short-Term Memory ma-

chines (LSTMs) are used to deal with the inherent spatiotemporal

nature of this problem. An LSTM is a gradient-based model of a Re-

current Neural Network, and can successively predict a sequence of

feature vectors. The paper discusses offline experiments to test the

ability of LSTMs to solve the prediction problem considered here.

Cross-validation methods are applied as a measure of convergence

performance. An active learning method based on Intelligent Adap-

tive Curiosity is also applied for improving the learning performance

of learners trained offline, generating a combination of learners spe-

cialized in different sensorimotor spaces after the knowledge trans-

fer.

1 Introduction

Robots need to learn in continuously changing environments. One

way to learn from the world is by interacting with objects present in

it. This work is inspired by the fact that humans and animals in gen-

eral are able to properly adapt to a dynamic environment. Theories

of cognitive development like the theory of affordances [5] attempt

to explain how creatures are able to acquire sensorimotor skills when

they are faced with the different features found in the environment.

For instance, surfaces afford posture, locomotion, collision, manip-

ulation, and in general behaviour [5]. Particular objects can afford

sliding, flipping, rolling behaviour. A consequence of this is that the

creature should then properly predict the consequences of actions on

a surface given its own body configuration. We consider here a spe-

cial case of affordances learning in robots, namely that of predicting

consequences of pushing simple geometrical objects called polyflaps.

Polyflaps have been proposed to design simple learning scenarios. A

polyflap is a polygon (concave or convex) cut out of a flat sheet of

some material (e.g. cardboard) and folded once (anywhere) to pro-

duce a 3-D object [17], cf. Fig. 1. By combining different objects

and performing different actions, we can steadily increase the com-

plexity of the learning environment.

1 The research reported of in this paper is supported by EU FP7 IP ”CogX”
(ICT-215181)

Figure 1. Polyflaps,
http://www.cs.bham.ac.uk/∼axs/polyflaps/. Used here are

polyflaps of the shape (bottom-right corner)

In this paper we discuss a learning scenario where a simulated

robotic arm interacts with a polyflap. In the implementation we use

the NVidia R© PhysXTM library that allows us to perform realistic

physical simulations and to obtain 3-dimensional feature vectors, so

that we can easily re-adapt our algorithms to real scenarios. Although

providing an idealized scenario, these experiments are necessary to

establish a base line from which we can start facing noisy and in-

complete features, where learning machines should be able to gener-

alize and present outcomes in the presence of uncertainty. The learn-

ing machines we use are able to process spatio-temporal features.

Specifically, we use the Long Short-Term Memory (LSTM) [7, 6]

model of an Artificial Neural Network. The main objective is that

the robot arm pushes the object and predicts a sequence of polyflap

poses encoded as rigid body transformations during a certain time

interval following the pushing action. To reduce the space- and time

complexity of the problem, we select a discrete set of possible ac-

tions and starting positions for the arm to start the pushing move-

ment. This reduction of dimensionality affords us also to evaluate

and analyse more easily and carefully the learning algorithms and

its corresponding results. In general, sliding and flipping affordances

are obtained by applying pushing actions. The experiments show that

the machines are able to model a sort of regression function that fits

the data very accurate. This fact is also crucial from the point of view

of dimensionality reduction, since the use of a learning machine to-

gether with its generalization abilities can highly reduce the need



of storage space. Moreover, the inherent recurrent topology of these

networks affords the reduction of space needed for storing spatio-

temporal information.

The characteristics of these learning machines are appropriate for

autonomous development of robots [10, 14]. Robots should be able

to autonomously acquire sensorimotor skills by interaction with the

environment. Thus, machines that are able to learn in an online and

active manner need to be used. Neural Networks in general are useful

for these tasks, since their weights can be updated efficiently by us-

ing one forward and one backward pass when we use gradient-based

methods. However, one has to be careful with the problem of overfit-

ting data (bias-variance tradeoff). Therefore, a sufficiently big set of

samples and iterations are needed in order to generalize sufficiently

well a dataset.

We tested the topology of the neural network in order to find a

good compromise between computational complexity and general-

ization ability. For that purpose, we extracted n-fold crossvalidation

sets and analyzed the average sum of squares error for all training

epochs. The problem that we tackle can be regarded as a time series

prediction problem approached by regression techniques. Therefore,

the sum of squares error is a good performance estimation. The ex-

periments show that the machines are able to accurately predict a

feature vector, given a history of precedent feature vectors that to-

gether form a sequence. After offline training, we applied an active

learning technique based on the Intelligent Adaptive Curiosity algo-

rithm [10, 14], by including an additional set of actions in order to

test the autonomous generation of different regions in the sensorimo-

tor space that allows an active selection of samples via maximization

of a measure of learning progress and multiple learners specialized

in each region. We also show that the generalization is improved by

the set of machines (which are only “biased” for their corresponding

regions).

This paper is organized as follows. In the next section, we present

a current state of the art related to affordances learning in robots and

recurrent neural networks. In section 3, we describe the learning sce-

nario and the features we used for training LSTMs. In section 4 we

present the offline learning mechanism and architecture employed.

In section 5 we show and explain experimental results for offline ex-

periments with LSTMs. In section 6 we explain the active learning

mechanism and results and in section 8 we present some concluding

remarks and planned work.

2 Related Work

Affordances learning has been introduced in the field of robotics in

recent years. The reason is that aiming to autonomous behaviour

in robots requires an inspiration from biological cognitive systems,

which are very successful on acquiring sensorimotor skills by their

own means. As a cognitive science theory, the field was introduced

by the perceptual psychologist J.J. Gibson [5]. An affordance in this

sense is a resource or support that the environment offers an agent

for action, and that the agent can directly perceive and employ. From

the robotic perspective, this concept implies that the robots should be

able to predict consequences of actions given certain object features

and robotic embodiment.

In the field of robotics, a compilation of works related to

affordance-based robot control can be found in [15]. A similar ap-

proach to the one presented in this work is described in [12]. In that

work, labels of object/action pairs and 11 features encoding the ac-

tion performed and the object behaviour are used to train Self Orga-

nizing Maps. In this way, they cluster this space and map the features

to the target function represented by such labels. Pushing actions

were performed on different objects in a real environment. Other ap-

proaches have used also similar features and learning methods and

have studied different kinds of affordances [2].

Perception of affordances has also been addressed with reinforce-

ment learning techniques. In [11], the robot performs different learn-

ing stages starting from recognizing affordances and finally accom-

plishing some task given the affordances that the robot has already

acquired in earlier stages. In that work, liftable vs. non-liftable ob-

jects are recognized and Markov Decision Processes are used for the

goal-based task. In [10, 14] the robot autonomously enters differ-

ent stages of development by interacting with objects or performing

some action, which is selected according to a measure of “interest-

ingness”. Thus, robots are intrinsically motivated to perform actions

that offer an opportunity to learn according to an estimation of learn-

ing progress calculated from prediction error histories.

However, we can consider that these aproaches use a kind of short-

term memory or mapping approach that does not take into account

the spatio-temporal processing of data when an action is performed

in a given time interval. Moreover, in some approaches there is an

explicit labelling of the recognized affordances or the robot has no

means to evaluate the accuracy of its predictions. In order to evaluate

the abilities of learning machines in processing a series of features

like rigid body transformations that gives us a more accurate assess-

ment of the object poses and behaviour, we are using recurrent neural

networks that are known to process sequences and obtain proper gen-

eralizations by infering regression functions.

A simulated scenario using also polyflaps is described in [9]. The

authors formalise the learning problem in a probabilistic framework.

Explicit 3D rigid body transformations are predicted by that models

and they are tested against novel objects similar in shape to polyflaps.

Long Short-Term Memory machines have been used for problems

like time-series prediction, sequences classification, phoneme classi-

fication, reinforcement learning, among others [7, 6, 1]. They are ap-

propriate to handle long-term dependencies in data sequences. There-

fore, they seem to have a high potential to be used in learning tasks

where compositionality and conditional dependencies of events or

states is encountered through a relatively broad time period.

The work described in this paper is a follow-up of the one pre-

sented in [13].

3 Learning Scenario

Figure 2. Learning scenario with a polyflap

The learning scenario is shown in Fig. 2. The simulated arm cor-

responds to a Neuronics R© Katana 6MTM arm with a ball as a simple



finger. In order to simulate a pushing action we apply a linear trajec-

tory over a specified time period until it reaches the desired pose. The

arm has 6 joints, including the last joint for the finger which is static.

The representation of object poses are in Euler angles with respect to

a reference frame which is the origin in the scene (6-D pose).

The features corresponding to the arm are a starting 6-D pose vec-

tor for the end-effector e0, and a real value denoting a direction angle

Θ ranging from 60 to 120 degrees, parallel to the ground plane in the

direction to the center of the standing polyflap side. Together, these

features form the motor command feature vector denoted as m. The

values are all normalized to obtain vectors with mean 0 and standard

deviation 1.0. A 6-D pose vector corresponding to the polyflap pose

is denoted as pt at time t. The pose p0 is fixed for all experiments.

Then, the concatenation f0 = [m e0 p0] represents the feature

vector to be fed initially to the neural network. The subsequent fea-

ture vectors fed to the machine have the form ft = [0 et pt], where

the size of 0 is the size of m. This representation affords the learning

machine to attain a better convergence.

During the execution of the arm path, we obtain a series of poses

〈pt, et〉 to construct a feature vector ft. We extract then n polyflap

and effector poses and finally we build a sequence set S = {fn
t=1}.

So, a particular sequence set (an instance) is used in each iteration of

the experiment to be fed to the LSTM in n + 1 steps. For the time

step t, a training tuple 〈ft, tt〉 is used for the neural network learn-

ing procedure, where the feature vector ft represents the input vector

and tt = pt+1 the target (predicted) vector encoding the predicted

polyflap pose.

This representation then encodes the rigid body transformations

of polyflap and effector through these n steps and also encodes the

given robot control command that performs the pushing movement.

In order to discretize and reduce the dimensionality of the task, we

only used a discrete number of different starting positions for the arm

to start the pushing movement.

4 Offline Learning method

The learning process used for training LSTMs with the features de-

scribed in section 3 is described here. As mentioned in the previous

section, a dataset D containing a certain quantity of sequences Si is

obtained and we perform offline experiments with these data.

A LSTM machine is usually composed of an input layer, a hidden

layer and an output layer. In general, recurrent neural networks can

have recurrent connections for all their neurons. In particular, in this

work we only use recurrent connections for the hidden layers. We

also made preliminary experiments with networks with no recurrent

connections and we found less performance. The LSTM [7, 6, 1] ar-

chitecture was developed in order to solve some learning issues in

recurrent neural networks related to long-term dependencies learn-

ing. These problems sum up to the problem that errors propagated

back in time tend to either vanish or blow up. This is known as the

problem of vanishing gradients.

LSTM’s solution to this problem is to enforce constant error flow

in a number of specialized units, called Constant Error Carrousels

(CECs), corresponding to those CECs having linear activation func-

tions not decaying over time. CECs avoid to transmit useless infor-

mation from the time-series by adding other input gates that regulate

the access to the units. Thus, they learn to open and close access

to the CECs at appropriate moments. Likewise, the access from the

CECs to output units is controlled by multiplicative output gates and

they learn in a similar way how to open or close the access to the

output side. Additionally, forget gates [3] learn to reset the activation

of the CECs when the information stored in them is no longer use-

ful, i.e., when previous inputs need to be forgotten. The combination

of a CEC with its associated input, output and forget gate is called

a memory cell, as depicted in Fig. 3. Other additions are peephole

weights [4], which improve the LSTM’s ability to learn tasks that re-

quire precise timing and counting of internal states, and bidirectional

connections [16].

Output gate

Input gate

Forget gate

Net input

Net output

CEC

h

g
1.0

Figure 3. LSTM memory block with one cell. The internal state of the cell
is maintained with a recurrent connection of fixed weight 1.0. The three

gates collect activations from inside and outside the block, and control the
cell via multiplicative units (small circles). The input and output gates scale
the input and output of the cell while the forget gate scales the internal state.

The cell input and output activation functions (g and h) are applied at the
indicated places [6].

In this work, we used 10 memory blocks in the hidden layer, which

was found to be a good compromise between computational com-

plexity and convergence.

When some input vector is fed to the network, the forward pass is

calculated as follows. Let us denote an output neuron (unit) activation

yo, an input gate activation yin, and output gate activation yout and a

forget gate activation yf . Then, for the time step t each of them are

calculated in the following standard way:

yi(t) = fi(
X

j

wijy
j(t− 1)), (1)

where wij is the weight of the connection from unit j to unit i, and

f the activation function. In this paper, we only consider one CEC

activation (one cell) for each memory block. The CEC activation sc

for the memory cell c is computed as follows:

sc(t) = yfc(t)sc(t− 1) + yinc(t)g(
X

j

wcjy
j(t− 1)), (2)

where g is the cell input activation function. The memory cell output

is then calculated by

ysc(t) = youtc(t)h(sc(t)), (3)

where h is the cell output activation function. The backward pass is a

steepest (gradient) descent method which updates the weights of the

different types of units. Consider a network input aj(t) to some unit

j at time t. In general, the gradient is defined as:

δj(t) =
δE

δaj(t)
, (4)



where E is the objective (error) function to be minimized and used

for training. For a detailed explanation of the backward pass equa-

tions for each unit type cf. [6]. Since we are dealing with a regres-

sion problem, we consider the sum of squares error as a performance

measure. The error function is defined as:

Et =
1

2K

X

i

(yi − y′i)
2, (5)

where K is a normalization factor which depends on the size of each

sequence ni and the total number of sequences in the dataset k. yi is

the output unit activation and y′i is the expected value. The learning

process is described in the Algorithm 1.

Data: A dataset D1 containing k sequences of variable size ni

for training. A dataset D2 containing z sequences of size

nj for testing.

Result: An LSTM machine after error minimization.

Nr. of epochs ep = 0.

repeat

for i=1 to k do

for j=1 to ni do
Input: Present training tuple 〈fij , tij〉 (jth forward

pass step).

end

Calculate error ei associated to current training

sequence Si.

Backward pass.

end

Evaluate error Et with the test set D2.

Epoch ep = ep + 1.

until No new network found with lowest error after 20 epochs ;

Algorithm 1: Offline learning process

For the purpose of calculating the number of training sequences

that are necessary so that convergence improves, we generated n-

fold cross-validation sets. We split a dataset D into n disjoint sets of

equal size that are used for testing. We used the remaining data for

training n different networks.

5 Experimental results for Offline Learning

In order to test the convergence of LSTMs we used 10-fold cross-

validation sets for three different dataset sizes, namely 100, 200 and

500. That allowed us to estimate the approximate number of samples

that are needed to learn with high precision the prediction task.

In Fig. 4 a comparison of the average sum of squares error (SSE)

and SSE standard deviation is shown. In this case, the SSE is aver-

aged among all the cross-validation sets. The picture shows that the

SSE is considerably reduced when more samples are used, as ex-

pected, and likewise the standard deviation of the SSEs.

6 Active Learning

The active learning procedure is based on the work of Oudeyer et

al. [10] about Intrinsic Motivation Systems. The general idea of

the Intelligent Adaptive Curiosity (IAC) algorithm is that a meta-

learning system samples a set of actions and selects one that maxi-

mizes the learning progress, which is a measure based on the differ-

ence between smoothed current and previous mean error quantities.

The learning progress Lr is associated to a region Rr in the senso-

rimotor space. Starting with one region, successive regions are ob-

tained by splitting the sensorimotor space depending on a measure
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Figure 4. SSEs are reduced when increasing the dataset size.

of variance in the dataset Dr (exemplars used for Region Rr). This

division is performed after |Dr| achieves a certain threshold κ. A

dataset Dr for a Region Rr is split in two datasets Dr+1,Dr+2 (for

regions Rr+1,Rr+2). Let us denote

Dr = {Si}

the set of instances in region Rr . Then the split of Dr defined by the

index c with value vc is performed when the following criterion (Γ)

is met:

• all the instances Si ofDr+1 have the cth component of their motor

command vector mi smaller than vc.

• all the instances Si ofDr+2 have the cth component of their motor

command vector mi greater than vc.

• the quantity |Dr+1| · σ({[eij pij ]
ni
j=1 ∈ Dr+1}) + |Dr+2| ·

σ({[eij pij ]
ni
j=1 ∈ Dr+2}) is minimal, where

σ(S) =

P

v∈S ‖v −
P

v∈S v

|S| ‖2

|S|

where S is a set of vectors.

Each region stores all cutting dimension and values that were used in

its generation as well as in the generation of its parent regions. For

the region Rr a learning machine Mr is stored, and this machine is

inherited by the child regions. The learning process is described in

the Algorithm 2.



Data: An initial region R0 which encompasses the whole

sensorimotor space.

Result: A set of regions {Rr} with corresponding LSTM

machines {Mr}.

for i=1 to I do
Choose a motor command action

mr,i = arg maxm∈{Rr}{Lr,i} among all current regions

{Rr} by using a near to greedy policy with probability 0.3.

if κ then
Split region Rr into Rr+1 and Rr+2 according to Γ.

end

Calculate error er,i associated to current training sequence

Sr,i.

Update the machine Mr with a forward and backward pass.

Calculate smoothed mean error εr,i+1 and εr,i+1−τ with a

window parameter τ and a smoothing parameter θ.

Calculate the decrease in the mean error rate

∆r,i+1 = εr,i+1 − εr,i+1−τ .

Calculate the learning progress Lr,i+1 = −∆r,i+1.

end

Algorithm 2: Active learning process

7 Experimental Results for Active Learning

In order to test the active learning mechanism, the main idea is to

train offline a LSTM with a subset of all possible starting positions

producing a partial set of actions and thus a dataset D0 ⊂ P0, where

P0 is the sensorimotor manifold encompassing D0. Then, we use this

machine in the active learning loop allowing additional actions, so

that at the end we generate a dataset D1 ⊂ P1, where P0 ⊂ P1 . The

hypothesis is that the algorithm will start producing more frequently

actions corresponding to the sensorimotor regions associated to the

new actions.

Thus, we first trained offline a LSTM with a subset of possible

starting positions for the arm movement and a number of sequences

equal to 500. This generates the dataset D0. When initializing the

active learning procedure, we allowed all possible starting positions

for the arm movement. Then, we initialize the region R0 with the al-

ready trained machine M0 that introduces better generalization per-

formance according to the cross-validation sets. We apply a maxi-

mum number I = 300 of iterations, after which a new dataset D1

is generated. Then, we merge the datasets into a set D = D0 ∪ D1.

We use the set D to test the errors of the machine trained offline and

the ensemble of machines trained via active learning. The results are

shown in Table 1.

Table 1. An ensemble trained via IAC against an offline trained machine.

Machine Avg SSE

Offline 0.4251
Active 0.211991

The unique observation here is that the generalization performance

is improved by using the new active learner, which is a expected re-

sult. In order to check the hypothesis presented above, we analysed

the learning progress of the ensemble of machines created after split-

ting the sensorimotor space in different regions.

As expected, the algorithm starts to select very frequently actions

that are new or “interesting”. In Fig. 5, we can observe the frequency

of actions generated from each set of starting positions for a win-

dow of 20 iterations. For instance, from index ∼150 to ∼250 the

new set of actions are more frequent. This result also confirms the

generation of different stages of development that the IAC algorithm

produces [10]. We make the same observation for a specific region

(Fig. 6). In Fig. 7 the curves of learning progress and error for the

corresponding region are shown. We can observe that the learning

progress curve rises and the error drops.
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In Figures 8,9 the prediction ability of a learning machine over a

sequence is illustrated.

Figure 8. Prediction of the flipping affordance. The blue polyflap is the
first predicted polyflap in the current sequence and the red one the last

predicted one.

Figure 9. Prediction of the sliding affordance.

8 Conclusions and future work

The experiments shown in this paper demonstrate the ability of re-

current neural networks, in particular Long Short-Term Memory ma-

chines to approximate a regression function encoding the trajectory

of simple geometrical objects when pushing actions are performed.

Therefore, these machines are useful for predicting the affordances of

pushing actions. We used 3-dimensional features and realistic simu-

lations that we can then apply to real environments. Sequences of fin-

ger effector and polyflap poses were used to feed the LSTMs, show-

ing the capacity of LSTM for prediction in relatively large time pe-

riods. The offline experiments showed great accuracy in prediction.

The use of an active learning mechanism where machines are special-

ized in different parts of the sensorimotor space was also tested. The

selection of actions is performed via a measure of learning progress

that improves generalization.

In this work, the motivation to select an action via active learn-

ing is mainly based on the curiosity-driven mechanism introduced

by the IAC algorithm. This mechanism forces the robot to select ac-

tions that maximize a learning progress measure. This encourages

the reduction of error for sensorimotor regions that are still not accu-

rately learned. The effectivity of the IAC-based strategy for assessing

learning progress in sensorimotor regions with spatio-temporal fea-

tures is confirmed. Moreover, machines that take into account spatio-

temporal information fit well into the active learning loop. However,

the gradient-based method for updating the networks still makes the

process slow, so that many iterations are needed to observe high im-

provements. It is possible to add additional drives or measures for

selecting actions in order to have different strategies for accelerating

the learning progress. Additionally, alternative algorithms for LSTM

training may also be considered.

The CrySSMEx[8] algorithm has been used to analyse recurrent

networks as dynamical systems by using a conditional Entropy based

method that extracts a probabilistic automaton associated to a ma-

chine. This method might be useful for active learning, because it

represents uncertainty and predictability during the processing of

spatio-temporal features.
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Abstract. Binding � the ability to combine two or more modal repre-
sentations of the same entity into a single shared representation is vital
for every cognitive system operating in a complex environment. In order
to successfully adapt to changes in an dynamic environment the bind-
ing mechanism has to be supplemented with cross-modal learning. In
this paper we de�ne the problems of high-level binding and cross-modal
learning. By these de�nitions we model a binding mechanism and a cross-
modal learner in Markov logic network and test the system on a synthetic
object database.

1 Introduction

One of the most important abilities of any cognitive system operating in real
world environment is to relate and merge information from di�erent modalities.
For example, when hearing a sudden, unexpected sound, humans automatically
try to visually locate its source in order to relate the audio perception of the
sound to the visual perception of the source. The process of combining two or
more modal representations (grounded in di�erent sensorial inputs) of the same
entity into a single multimodal representation is called binding. While the term
binding has many di�erent meanings across various scienti�c �elds, a very similar
de�nition comes from the neuroscience, where it denotes the ability of the brain
to converge perceptual data processed in di�erent brain parts and segregate it
in distinct elements [2] [14].

The binding process can operate on di�erent types and levels of cues. In
the above example the direction that the human percieves the sound from is an
important cue, but sometimes this is not enough. If there are several potential
sound sources in the direction of the percept, the human may have to relate
higher level audio and visual properties. A knowledge base that associates the
higher level perceptual features across di�erent modalities is therefore critical
for a successful binding process in any cognitive system.

In order to function properly in a dynamic environment, a cognitive system
should also be able to learn and adapt in a continuous, open-ended manner.
The ability to online update the cross-modal knowledge base, i. e. cross-modal
learning, is therefore vital for any kind of binding process in such an environment.
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Many of the past attempts of binding information within cognitive systems
were restricted to associate linguistic information to lower level perceptual in-
formation. Roy et al. tried to ground the linguistic descriptions of objects and
actions in visual and sound perceptions and to generate descriptions of previously
unseen scenes based on the accumulated knowledge [12] [13]. This is essentially
a symbol grounding problem �rst de�ned by Harnad [6]. Chella et al. proposed
a three-layered cognitive architecture around the visual system with the middle,
conceptual layer bridging the gap between linguistic and sub-symbolic (visual)
layers [4]. Related problems were also often addressed by Steels [15].

Jacobsson et al. approached the binding problem in a more general way [8] [7]
developing a cross-modal binding system that could associate between multiple
modalities and could be part of a wider cognitive architecture. The cross-modal
knowledge was represented as a set of binary functions comparing binding at-
tributes in pair-wise fashion. A cognitive architecture using this system for lin-
guistic reference resolution was presented in [16]. This system was capable of
learning visual concepts in interaction with a human tutor. Recently, a proba-
bilistic binding system was developed within the same group that encodes the
cross-modal knowledge into a Bayesian graphical model [17]. The need for a more
�exible, but still probabilistic representation of the cross-modal knowledge led
our reasearch e�orts in the direction of Markov graphical models, as presented
in this paper.

In the next section we de�ne the problems of cross-modal learning and bind-
ing. In section 3 we �rst brie�y describe the basics of Markov logic networks
(MLNs). Then we desribe our binding and cross-modal learning model that is
based on MLNs. Section 4 describes the experiments performed on the prototype
system. We end the paper with the conclusion and future work.

2 The problem de�nition

The main idea of cross-modal learning is to use successful bindings of modal
percepts as learning samples for the cross-modal learner. The improved cross-
modal knowledge base thus enhances the power of the binding process, which
is then able to bind together new combinations of percepts, i. e. new learning
samples for the learner. For example, if a cognitive system is currently capable of
binding an utterance describing something blue and round to a perceived blue
ball only by color association, this particular instance of binding could teach
the system to associate also the visual shape of the ball to linguistic concept of
roundness. We see that at least on this level the binding process depends on the
ability to associate between modal features (in this example the visual concepts
of blue and shape are features of visual modality, while the linguistic concept of
blue and ball belong to the linguistic modality).

We assume an open world in terms of modal features (new features can
be added, old retracted). The cross-modal learner starts with just a small prior
knowledge of how to associate between few basic features, which is then gradually
expanded to the other features and the new ones that are created.
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High level cross-modal learning problem is closely related to the association
rule learning problem in data mining, which was �rst de�ned by Agrawal et al. [1].
Therefore, we will base our learning problem de�nition on Agrawal's de�nition
and expand it with the notion of modality.

We have a set of n binary attributes called features F = {f1, f2, ..., fn} and
a set of rules called knowledge database K = {t1, t2, ..., tm}. A rule is de�ned as
an implication over two subset of features:

ti : X ⇒ Y (1)

whereX,Y ⊆ F andX∩Y = ∅. The features represent various higher level modal
properties based on the sensorial input. We introduce the notion of modality to
our de�nition � each feature is restricted to one modality only:

M1 = {f11, f12, ..., f1n1}
M2 = {f21, f22, ..., f2n2}

...
...
...
...
...

Mk = {fk1, fk2, ..., fknk
} (2)

F = M1 ∪M2 ∪ ... ∪Mk.

We modify the rule-making restrictions of (1) accordingly:

1. N = Mm1 ∪Mm2 ∪ ... ∪Mmr , m1, ...,mr ∈ {1, 2, ..., k} , r < k

2. Y ⊆ N
3. X ⊆ F \N (3)

Next, we de�ne the binding problem. Percepts are collections of features from
a single modality. A percept acts as a modal representation of a percieved entity.
Let P be the set of current percepts � the percept con�guration:

P = {P1, P2, ..., Pn} , Pi ⊆Mj . (4)

Unions are collections of percepts from di�erent modalities. An union acts as
a shared representation of a percieved entity, grounded through its percepts to
di�erent modalities. Let U be the set of current binding unions � the union
con�guration:

U = {U1, U2, ..., Um} , Ui ⊆ P. (5)

The set of possible binding functions is then de�ned as

β : P→ U, (6)
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where the following restrictions apply:

1. U1 ∪ U2 ∪ ... ∪ Um = P

2. ∀Ui, Uj ∈ U, i 6= j : Ui ∩ Uj = ∅
3. ∀Pi, Pj ∈ Uk, i 6= j : Pi ⊆Ml ∧ Pj ⊆Mm ⇒ l 6= m. (7)

The �rst two restrictions assign each percept in the con�guration to exactly one
union, while the third restricts the number of percepts per modality in an union
to one.

We also introduce a measure of con�dence in an union con�guration based
on the current knowledge base K � the binding con�dence bconfK(U). Given the
percept con�guration P and the set of possible binding functions β, the task of
the binding process is to �nd the optimal union con�guration:

Uopt = argmax
U=β(P )

(bconfK(U)). (8)

In this sense � i. e. considering bconfK(U) as a predictor based on K � we
can consider the high-level cross-modal learning a regression problem. Therefore,
the aim of the cross-modal learner is to maintain and improve the cross-modal
knowledge base, thus providing an increasingly more reliable measure of binding
con�dence.

3 Implementation in MLN

The Markov logic networks1 [10] combines �rst-order logic and probabilistic
graphical models in a single representation. A MLN knowledge base consists
of a set of �rst-order logic formulae (rules) with a weight attached:

weight �rst-order logic formula

The weight is a real number, which determines how strong a constraint each
rule is, the higher the weight � less probable the world violating that rule. To-
gether with a �nite set of constants the MLN de�nes a Markov network (MN)
(or Markov random �eld). A MN is an undirected graph where each possible
grounding of a predicate (all predicate variables replaced with constants) rep-
resents a node, while the rules de�ne the edges between the nodes. Each rule
grounding de�nes a clique in the graph. A MLN can be thus viewed as a tem-
plate for constructing the MN. The probability distribution over possible worlds

1 We used Alchemy [9] to implement the prototype of our crossmodal binding and
cross-modal learning mechanisms. Alchemy is a software package providing various
inference and learning algorithms based on MLN.
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x de�ned by a MN is given by

P (X = x) =
1
Z

exp
(∑

i

wini(x)
)
, (9)

where ni(x) is the number of true groundings of the rule i, wi is the weight of
the rule i, while Z is the partition function de�ned as Z =

∑
x exp

(∑
i wini(x)

)
.

The inference in MN is P#-complete problem [11]. Methods for approximat-
ing the inference include various Markov Chain Monte Carlo sampling methods
[5] and belief propagation [18].

3.1 Cross-modal knowledge base

We have two types of templates for the binding rules in our cross-modal knowl-
edge base. The template for the aggregative rule is de�ned as

perPart(p1, f1) ∧ uniPart(u, p1) ∧ perPart(p2, f2)⇒ uniPart(u, p2), (10)

where the predicate perPart(percept, feature) denotes that the feature feature
is part of the percept percept, while uniPart(union, percept) denotes that union
includes percept. In a very similar manner the template for the segregative rule
is de�ned:

perPart(p1, f1) ∧ uniPart(u, p1) ∧ perPart(p2, f2)⇒ ¬uniPart(u, p2). (11)

If by the aggregative rules the percepts are merged in common unions, the seg-
regative rules separate them in distinct unions. The template rules are equivalent
to a subset of association rules (1), where each side is limited to one feature. We
also de�ne the binding domain that we will use to ground the network. An
example of binding domain with two modalities:

modality = {Language, V ision}
feature = {Red,Green,Blue, Compact, F lat, Elongated,

Color1, Color2, Color3, Shape1, Shape2, Shape3}. (12)

Based on this example domain a small set of grounded and weighted binding
rules could look like this:

2.5 perPart(p1, Red) ∧ uniPart(u, p1) ∧ perPart(p2, Color1)⇒ uniPart(u, p2)
1.9 perPart(p1, Red) ∧ uniPart(u, p1) ∧ perPart(p2, Color2)⇒ ¬uniPart(u, p2),

(13)

The predicates forming the binding rules are not fully grounded yet. They are
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only grounded on conceptual level, with the known features like Red, Color1,
etc., while the instances (objects) are still represented with the variables. The
predicates get fully grounded each time an inference is performed, when based
on the current situation (e. g. perceived objects that form the scene) a MN is
constructed. This principle could be very bene�cial for a cognitive system, since
it decouples the general from speci�c, but allows to apply and adapt the general
concepts learnt over longer periods of time to the current situation in a very
�exible fashion.

Using the example domain in (12) an example percept con�guration could
look like

perPart(1, Color1) ∧ perPart(1, Shape2) ∧
perPart(2, Color2) ∧ perPart(2, Shape3) ∧
perPart(3, Red), (14)

From (13) and (14) we could infer the following union con�guration:

uniPart(1, 1) ∧ uniPart(1, 3) ∧ uniPart(2, 3).

Besides the binding rules, our database contains also features' priors in the
following form:

weight perPart(p, ColorGrounding)

A feature prior denotes the default probability of a feature belonging to a percept
(if there is no positive or negative evidence about it).

In addition, we use a special predicate to determine the partition of fea-
tures between modalities in the sense of (2) (e. g. modPart(Language,Red),
modPart(V ision, Color1).

3.2 Learning

After the rules and priors are grounded within the binding domain, we need
to learn the weights for each rule and for each prior grounding. We use the
generative learning method described in [10]. The learner computes a gradient
from the weights based the number of true groundings (ni(x)) in the learning
database and the expected true groundings according the MLN (Ew[ni(x)]):

δ

δwi
logPw(x) = ni(x)− Ew[ni(x)], (15)

and optimizes the weights accordingly. Since the expectations Ew[ni(x)] are very
hard to compute, the method uses the pseudo-likelihood to approximate it [3].
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Continuous learning is performed by feeding the learning samples to the
system in small batches (3-6 examples of unions). Each mini batch represents a
scene the system has resolved, described with perPart and uniPart predicates.
In each learning step the learner accepts the rule's old weight in the knowledge
database as the mean for the Gaussian prior, which it tries to adjust based on
the new training mini batch. By setting the dispersion of the weight's Gaussian
prior to an adequate value, we ensure the learning rate of each mini batch is
proportional to the batch size.

3.3 The binding process

The binding is performed as inference over the knowledge base based on some
evidence. In order for the binding inference to function properly we have to de�ne
some hard rules (formulae with in�nite weight) that apply the restrictions of the
binding functions β in (7):

1. ∀p∃u : uniPart(u, p)
2. uniPart(u1, p) ∧ uniPart(u2, p)⇒ u1 = u2
3. perPart(p1, f1) ∧ perPart(p2, f2) ∧ (p1 6= p2) ∧modPart(m, f1)
∧ modPart(m, f2) ∧ uniPart(u, p1)⇒ ¬uniPart(u, p2).

Usually the inference consists of querying for the predicate uniPart, where the
evidence typically includes the description of the current percept con�guration
(using the predicate perPart), a list of known and potential unions and the
description of the current partial union con�guration (some percepts are already
assigned to known unions). The binding result is expressed as a probability
distribution for each unassigned percept over the known and potential unions.

4 Experimental results

We experimented with our system on a database of 42 synthetic objects. Ob-
jects had percepts from three modalities: vision, language and a�ordance. Visual
modality had in total 13 features: 6 for object color and 7 for the shape. Lan-
guage had 13 features that matched the visual features and 8 features for object
type (e. g. book, box, apple). The a�ordance modality had 3 features describ-
ing the possible outcomes of pushing an object. Mini batches were designed to
mimic robot interaction with a human tutor, where the tutor showed objects
to the robot, describing their properties. Typically a mini batch contained 5-6
objects. The learning sequence consisted of 80 mini batches.

We designed 30 test-cases for evaluating the binding process. In each test-
case we had three visual percepts and one non-visual percept. The binder had to
determine whether and which visual percept the the non-visual belonged to (i. e.
four possible choices: one for each visual percepts and one for no corresponding
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union = {1, 2, 3, 4}
perPart(1, V isRed), perPart(1, V isF lat), perPart(1, V isCylindrical)

perPart(2, V isBlue), perPart(2, V isCompact), perPart(2, V isSpherical)

perPart(3, V isGreen), perPart(3, V isElongated), perPart(3, V isConical)

uniPart(1, 1), uniPart(2, 2), uniPart(2, 2)

perPart(4, LinRed), perPart(4, LinF lat), perPart(4, LinCylindrical)

uniPart(u, 4)?

Fig. 1. An example of an easy test-case. We can see that objects represented with
visual percepts (1,2 and 3) di�er in all types of visual features. The system needs to
determine which union the fourth, linguistic percept belongs to.

union = {1, 2, 3, 4}
perPart(1, V isRed), perPart(1, V isCompact), perPart(3, V isConical)

perPart(2, V isGreen), perPart(2, V isCompact), perPart(2, V isSpherical)

perPart(3, V isGreen), perPart(3, V isF lat),

uniPart(1, 1), uniPart(2, 2), uniPart(2, 2)

perPart(4, LinApple)

uniPart(u, 4)?

Fig. 2. An example of an di�cult test-case. We can see that the objects represented
with visual percepts (1,2 and 3) are less distinct than in the easier test-case (�g. 1) and
with some incomplete information. The system has to �nd out which visual percept
could be an apple. The visual training samples for apples consisted of compact and
spherical percepts of red or green color.

percept). Of the four possible choices there was always one that was more obvi-
ous than the others and deemed correct. The possibility that the system inferred
as the most probable, was considered as its choice for the binding union. The
test-cases varied in their level of di�culty: the easiest featured distinct features
for visual percepts and complete information for all percepts (all percepts had a
value for each feature type belonging to its modality, see �gure 1), while more
di�cult cases could have features shared by more percepts and incomplete per-
cept information (see �gure 2). The tests were performed several times during
the learning process in intervals of four batches.

Figure 3 shows the average success rate over 10 randomly generate learning
sequences. We see that with the growing number of samples the binding rate
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Fig. 3. Experimental results: the average rate of correct bindings relative to the number
of training batches (10 randomly generated learning sequences were used). The green,
yellow and red lines denote the easy, medium and hard test samples respectively, while
the blue line denotes the overall success percentage.

tends to grow and converge, though with some oscillations. The oscillations for
the di�cult samples are more pronounced as for the easier samples. Analyzing
the results example by example we can see that the test-cases with the most
oscillations were the ones that depended on many-to-one feature associations
(e. g. red, compact, cylindrical ⇒ cola can). This can be explained with the
current structure of our binding rules that directly support one-to-one feature
associations only.

5 Conclusion

In this paper we de�ned the problems of high-level binding and cross-modal
learning. By these de�nitions we modeled a binding mechanism and a cross-
modal learner in MLNs. We tested the system on a synthetic object database
and shown how the binding power of the system increases with the number of
learnt samples.

In the future we will apply our binding and cross-modal learning models to a
real cognitive architecture that includes visual and communication subsystems,
thus gaining a platform for experiments on real-world data. We will also extend
the structure of our database to more complex rules (or perhaps include a struc-
ture learning mechanism to our system) and improve and extend our experiments
to better simulate the robot-tutor interaction.
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Synonyms 

Multi-modal learning 

Definition 

Cross-modal learning refers to any kind of learning that involves information obtained from more than one 

modality. In the literature the term modality typically refers to a sensory modality, also known as stimulus 

modality. A stimulus modality provides information obtained from a particular sensorial input, for example 

visual, auditory, olfactory, or kinesthetic information. Examples from artificial cognitive systems ("robots") 

include also information about detected range (by sonar or laser range-finders), movement (by odometry 

sensors), or  motor state (by proprioceptive sensors). We adopt here a notion of modality that includes both 

sensorial data, and further interpretations of that data within the modality. For example, from a pair of 

(depth-calibrated) images, a cloud of points in 3-dimensional space can be computed. We obtain both types 

of data (the image data, and the 3D points) from the same visual sensor. At the same time, they differ in what 

information they provide. We consider information sources derived from sensorial data as derived modalities 

that by themselves can be involved again in cross-modal learning.  

 

Theoretical Background 

We distinguish different types of cross-modal learning. The distinction is based on how the learnt model 
depends on the data from several modalities, and to what degree the model integrates information from these 
modalities.  

In weakly-coupled cross-modal learning, models are built within individual modalities, while the rather high-
level information from other modalities, such as a label or reinforcement signal, supervise the internal 
learning process. Inference based on the learned models can be done on the basis of a single modality, or the 
output of several modalities can be combined to achieve better performance or robustness. One example of 
this is speech recognition. In situated dialogue, recognizing sequences of words in an audio signal can be 
greatly improved by information about the situated context (what is there to be seen, what is there to be 
done, what have we talked before), and through observation of the speaker. Context and observations aid 
disambiguation during processing of the auditory signal, possibly also correcting misheard words, or filling in 
(grammatically) missing words. For example, lip reading can greatly aid recognition. In a continuous learning 
process, successfully recognized lip poses can supervise learning of audio-based speech recognition ability. 
The other way round, correctly recognized audio input can provide labels to aid the learning of lip reading. 
This process of coupled supervision during learning is also known as co-learning. In the end we obtain two 



classifiers, one in each modality, that can be used individually, or they can be combined to further increase the 
success of speech recognition. This type of cross-modal learning is thus based on a weakly coupled 
interaction of data from different modalities, which is done on a rather high level of abstraction. In the case 
above we assumed that both modalities mutually drive the learning in the other one. This process can in 
principle be uni-directional. If the information in one modality is much more reliable, it can drive the learning 
in another modality.  

In closely-coupled cross-modal learning, learning processes are more intertwined. A model is learnt by 
combining information from different modalities into a common level of representation, and then using this 
level as a starting point to build a common cross-modal classifier or predictor. As a result, inference with the 
acquired model requires information coming from several modalities, and cannot be achieved within a single 
modality only. This approach is often used in sensorimotor learning. Here, low-level features from a visual 
modality and motor (or proprioceptive, or haptic) modalities are merged. Based on the obtained cross-modal 
features, higher-level sensorimotor concepts are learned. For example, from low-level visual features 
describing objects and low-level features parametrizing actions that could be performed, a model is learned 
that predicts what happens with a particular object if a particular action is applied (through classification or 
regression). A similar case is also when the feature vectors still reside in the individual modalities, but we 
construct several intermediate classifiers, which are no longer independent, and combine them. This requires 
a close-coupling of semi-synchronous learning processes, based on interconnected representations, and 
leading up to the formation of cross-modal concepts. 

We can also identify a third type of cross-modal learning that is performed on a higher level of abstraction. 
Here, a model is acquired that connects modal conceptual structures from different modalities by learning 
associations between them. For example, let us suppose that we want to recognize a cup of coffee. A cup can 
be recognized visually. Yet, to recognize what is inside the cup we need another sense - smell. We need to 
combine information from both modalities to determine that there is a cup of coffee on the table and not a 
cup of a black tea. The learning of required concepts could be performed largely independently, in each 
modality individually. At some point though we need to learn to combine the concepts of the cup and the 
coffee into a concept of a "cup of coffee". The final representation therefore consists of representations from 
several modalities. 

Cross-modal learning is related to principles of fusion of data from different sensors (Clark and Yuille), also 
known as multi-sensory processing in natural cognitive systems (Stein and Meredith). Different processes 
interact in a cognitive system to form a coherent interpretation of experience, based on the combination of 
information obtained through several modalities. The process of learning how to combine this information is 
a kind of cross-modal learning.  

As already mentioned, we can consider the term modality in its wider sense. This includes derived modalities. 
In this case, the type of information that characterizes a modality is not attached directly to a sensor, but to a 
process which interprets the sensorial data. For example, suppose that we have a place recognition approach 
that is based on both visual images, and 3D point clouds representing geometrical structure. The images may 
be obtained using a camera. The 3D point clouds are obtained using a laser range finder, or, alternatively, 
both the images and the 3D data can be obtained using a stereo rig. In both cases we can conceive of the 
learning of representations of places as a kind of cross-modal learning, although in the second case we have 
one sensor only. In computer vision, it is very often favorable to extract several visual cues (such as color, 
texture, borders, shape, motion), and combine them in order to obtain better classifiers. We can look at the 
learning of such combined classifiers as at a kind of cross-modal learning as well. 

The relevance of cross-modal learning is alike for natural and artificial cognitive systems (Christensen et al). 

Both continuously learn, to extend their knowledge of acting in dynamic environments. The ability to connect 

possibly asynchronously developed models across different modalities provides an important basis for a 

grounded form of self-understanding. The possibility to interconnect and thus form an interpretation that is 



coherent across multiple modalities indicates what is known relative to some experience. Failure to do so may 

indicate a kowledge gap, and can function as a trigger for self-aware learning.  

Important Scientific Research and Open Questions 

There are arguments for learning to be based on association, and for learning to be mediated by a 

(developing) categorical system. Very often, the interconnectivity between modalities is mediated by 

categorical structure. Effectively this establishes a triadic relation between modalities. The conceptual 

structures in the modalities can be connected because they can be understood as related by virtue of their 

reference to a shared categorical ground. The arguments for this type of learning, based on the formation of a 

mediating categorical structure, arise from for example childhood cognitive development. In word learning it 

is shown that a purely associative, unmediated account ("child-as-data-analyst") cannot appropriately account 

for categorical generalizations a child is able to make ("child-as-theorist"). The use of mediating categories 

both helps generalization of sensory input beyond actual experience, and allows for representations to be 

ultimately grounded in, and influenced by, the embodiment of the system (G. Lakoff & M. Johnson). On the 

other hand, in many cases the modalities interact on a much lower level, like in the case of sensorimotor 

learning. It still an open question what roles do these different forms of learning play in specific types of 

cross-modal learning, whether in natural or artificial cognitive systems. 

 

A fundamental aspect of embodied cognition is that understanding is ultimately based in how a cognitive 

system experiences the world. Since the cross-modal learning is based on processing and relating information 

from several (sensory) modalities it may play an important role in bringing about grounded forms of 

cognition. 

We also have to address the terminological issues, since the terms related to cross-modal learning are not 
consistently used in the literature. Sometimes, the term cross-modal learning is used only to refer to strongly-
coupled types of cross-modal learning. Also, the term modality is sometimes used in its narrower sense, 
considering sensory modalities only. Here, we adopted the broader meaning of both terms. There is also 
another term in the literature that is often used to describe a similar phenomenon, the term multi-modal 
learning. One meaning of this term refers to (human) learning based on different multimedia material 
involving different human senses that facilitate learning. The second meaning of this term is very close to the 
meaning of cross-modal learning as defined above. Sometimes this term relates to forms of weakly-coupled 
cross-modal learning, while very often cross-modal and multi-modal learning are used interchangeably with 
the same meaning (synonyms). 

Cross-References 

→ Co-learning 

→ Active learning 

→ Adaptation and learning 

→ Learning and understanding 

→ Data fusion 

→ Cognitive models of learning 

→ Cognitive robotics 

→ Embodied cognition 
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