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An important characteristic of a robot that operates in a real-life envi-
ronment is the ability to expand its current knowledge continuously, au-
tonomously and in an interaction with the environment. It has to under-
stand what it does not know and it should act appropriately to obtain
the missing information ant to update its knowledge accordingly. This
self-understandig/self-extension cycle is implemented by the active learn-
ing paradigm, which is the central topic of this deliverable. We address the
problem of active learning on different levels of cross-modal learning and pro-
pose several approaches that facilitate active learning. We evaluate different
active learning strategies, address the problem of active vision, and present
the methods that we have developed for self-supervised learning of object
affordances, as well the extension of the approach to cross-modal binding
and learning.
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Executive Summary

Active learning is an important characteristic of a system that is supposed
to be capable of self-extension based on self-understanding. Such a system
should be able to understand what it does and does not know, therefore it
should be able to detect the gaps in its knowledge and determine what kind
of information would be needed to fill these gaps. In order to self-extend,
it should first be able to plan a sequence of actions that would produce the
required information and, finally, it should be able to update its knowledge
using the newly acquired information. In this deliverable we address active
learning from several directions on different levels of cross-modal learning.
We propose several methods and approaches; some of them address the full
active learning cycle, while some of them only a part of it.

We addressed the problem of active learning of conceptual knowledge
and developed a framework that implements the full active learning cycle
and enables thorough evaluation of different active learning strategies. The
experimental results show that the active learning approach outperforms the
passive one and that the adaptation of the learning process to the learners
knowledge significantly improves the learning peformance. The framework
is based on the odKDE methodology we initially developed in Year 2 and
significantly improved in Year 3.

One important research line was also active vision. We use an active
approach to segment the scene into independently moving objects and sub-
sequently learn their models. We also developed a principled methodology
for detecting the incompleteness of the learned object models, and to de-
termine what can be done to complete the model and what the benefits of
doing so are.

We have also continued our work on learning object affordances. We
redefined and extended our low-level self-supervised cross-modal learning
algorithm and developed an online relevance learning vector quantisation
method that enables more efficient and effective learning of object affordance
classes.

Finally, we also revised and refined the problem definition of binding and
cross-modal learning from Year 2, reformulated and adapted its formulation
in Markov Logic Networks, and applied it to a cognitive system architecture
enabling active learning on the system level.

Some of the work presented in this deliverable is a continuation of the
work performed in Year 2 and mostly presented in deliverables DR.5.2. Con-
tinuous learning of cross modal concepts and DR.5.3 Representations of gaps
in categorical knowledge, as well as in deliverable DR.2.2 Active Vision,
learning and manipulation. This deliverable, however, also presents work
that has been initiated in Year 3. In both cases, the novelty and the value
added in Year 3 are clearly exposed in the sections below. The work has been
mainly performed as envisioned in the workplan and forms a solid basis for
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further research and extensions in the direction of more general interactive
learning of cross-modal concepts.

Role of Active learning of cross modal concepts in
CogX

In the process of active cross-modal learning, the system tries to understand
what it does know and what it does not. Based on this it actively plans and
executes corresponding actions to obtain the missing information and then
updates the current knowledge accordingly. Therefore, the main research
topic addressed in this deliverable is central in the project that aims to
develop autonomous systems that self-understand and self-extend.

Contribution to the CogX scenarios and prototypes

In order to monitor and show progress on active and interactive continu-
ous learning, we have designed the George scenario (Interactive cross-modal
learning scenario) [55]. This scenario has been designed as a use case for
guiding and testing system-wide research and for demonstrating methods
developed in WP 5 (and also some other workpackages) in a working sys-
tem. Therefore, many of the methods presented in this deliverable have been
integrated into the overall system, which is used in the George scenario.
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1 Tasks, objectives, results

1.1 Planned work

This deliverable mainly tackles the problems addressed in Task 5.3 of Work-
package 5:

Task 5.3: Active learning of cross-modal concepts. Increase the
systems autonomy to enable continuous detection of ignorance,
and active planning and execution of knowledge producing ac-
tions enabling autonomous continuous self-extension.

Therefore, the main goal was to develop the theory and methods to be
integrated into a robot capable of active continuous learning of cross-modal
concepts.

Before we begin with the description of the planned and performed work,
let us first elaborate the active learning paradigm in the context of artificial
cognitive systems. As depicted in Fig. 1, we envision one active learning
cycle (a planned incremental update of the current knowledge) comprising
of four main steps:

1. Detection of knowledge gaps. The system should first self-understand,
it should understand what it does and what it does not know. It should
detect using its internal modal representations what information is
missing.

2. Generation of gap completion proposal. Based on the detected
ignorance the learner should determine (plan) what information is
needed to fill the gap in the knowledge and issue a request (a desire,
a motive) to the overall system about what information it would like
to obtain (e.g., a view from the opposite side is needed, more similar
objects are needed, a push from another direction is needed, etc.).

3. Planning and execution of actions. The system should then plan
the sequence of actions that would lead to the state that would re-
veal information asked by the particular modal learner. It would thus
determine (plan) how and when to obtain a particular piece of in-
formation (e.g., the robot would move to get a novel view-point, or it
would grasp and rotate the object, or it would ask a human to rotate
the object, or it would push the object, or it would initiate a dialogue
with the tutor, etc.).

4. Updating the current knowledge. After the action has been ex-
ecuted the modal learner will gather novel information and use it for
updating the current internal representations.
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Figure 1: Active learning cycle.

In a multimodal system engaged in active learning, each modality keeps
its internal modal representation of the world and concepts that are being
learned. These internal representations have to meet certain requirements
to enable active learning. They should enable detection of knowledge gaps
(Step 1) and determination of what kind of information is needed to fill these
gaps (Step 2). After this information is obtained they also have to allow for
efficient update (Step 4). It should also be possible to abstract this modal
information into an amodal one, that can be used by higher-level cognitive
processes to plan the necessary actions (Step 3).

The approaches that we have developed in WP 5 are dealing with these
requirements. Some of the approaches that will be described in this deliv-
erable address all four steps listed above, therefore implementing the full
active learning cycle. Some of the methods we will present address only a
subset of these steps and they can be seen as enabling technologies for active
learning.

In Year 2 deliverable DR.5.2 we identified different types of cross-modal
learning. This year we discuss these different types of learning within the ac-
tive learning paradigm. In weakly-coupled cross-modal learning (Low-level
uni-modal learning with high-level cross-modal supervision) the models are
built within individual modalities, and the other modalities only supervise
learning, by, e.g., providing a label or reinforcement signal. In this deliver-
able two research lines related to this type of learning are presented: Active

EU FP7 CogX 6



DR 5.4: Active learning of cross-modal concepts D. Skočaj et. al.

learning of categorical knowledge and Active vision approaches. In
closely-coupled cross-modal learning (Self-supervised low-level cross-modal
learning), learning processes are more intertwined. A model is learnt by
combining information from different modalities into a common level of rep-
resentation, and then using this level as a starting point to build a com-
mon cross-modal classifier or predictor. Here, we present our work on Self-
supervised learning of object affordances. When referring to modality
specific representations in the active learning cycle (Fig. 1) we have in mind
representations obtained in both of these two types of cross-modal learning
(the ones that reside in a single modality, as well as the ones that span across
modalities). We identified also a third type of cross-modal learning that is
performed on a higher level of abstraction (High-level cross-modal learning).
Here, a model is acquired that connects modal conceptual structures from
different modalities by learning associations between them. This type refers
to the (amodal) third step in the active learning cycle, and actually enables
active learning in an integrated cross-modal system. We implemented this
type of learning in our work on Cross-modal binding and learning.

We will structure this deliverable according to this division. First, let us
look at our plans and goals that we had set:

• Active learning of categorical knowledge.

Our first goal was to address the problem of active learning of con-
ceptual knowledge. We planned to develop a framework, which would
implement all four steps in the active learning cycle and would enable
analysis of different active learning approaches. We wanted to deter-
mine what are the factors that influence the performance of active
learning, how the learning process can be sped up, and what are the
requirements of the learning algorithms that alow this to happen. We
planned to build the active learning framework on the top of the knowl-
edge gaps methodology that we developed in Year 2 and presented in
the deliverable DR.5.3.

This methodology is based on generative models called the online
Kernel Density Estimators (oKDE). In Year 2 we have performed a
thorough experimental analysis of the oKDE which was published in
a pattern recognition journal [26]. That analysis layed out the ba-
sis for extension of the oKDE to models that explicitly address the
discrimination capacity of the discriminative models. As a proof-of-
concept we have derived a first discriminative extension of the oKDE in
[25]. While [25] was a solid proof-of-concept, several unanswered ques-
tions remained. Namely, the method was computationally slower than
oKDE, it exceeded oKDE in producing simpler models, but we could
not conclude with absolute certainty that the models were also better
in terms of classification capabilities. This year we therefore planned
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to perform the additional extensive analysis, which would lead to final
reformulation of the online discriminative Kernel Density Estimators
(odKDE), which would ideally outperform the oKDE by all criteria in
a discriminative setting.

• Active vision.

Our previous work on object recognition [39, 32] reported in DR.2.2
addressed Step 4 (Updating the current knowledge) of the active learn-
ing cycle, by providing mechanisms to incrementally learn 3D visual
object models online. While this allows for very simple learning strate-
gies such as driving around the table once, the generated models did
not represent their completeness and vice versa knowledge gaps ex-
plicitly to support Steps 1-3 of the active learning cycle. The planned
work for this year was therefore to augment object representations
with meaningful, quantitative measures of completeness that tie in
with the overall goal and motive management framework.

• Self-supervised learning of object affordances.

In our work on low-level cross-modal object affordance learning, we
sought to make a distinction between object shape properties as one
modality and object effects under action as another modality and
aimed to form percepts within each of those modalities and cross-
modal associations between them. In continuation of our work in [42],
we aimed to build a more theoretically robust formulation of our self-
supervised cross-modal learning algorithm, whilst also incorporating
additional mechanisms as necessary with the goal of ensuring that the
algorithm is more capable of rapid learning over short training periods.

• Cross-modal binding and learning.

The main goal for this year was to apply on the overall system the
principles from the Year 2 prototype binding system. How should a
binding system based on Markov Logic Networks be integrated in our
cognitive architecture? On a system level, this competence enables ab-
straction and integration of modal information required by Step 3 in
the active learning cycle. The plan was also to design a flexible on-line
learner based on Markov Logic Networks that would not only pro-
vide the cross-modal learning functionality to the integrated binding
system, but possibly act as a general multi-purpose learner on higher
cognitive level.

1.2 Actual work performed

In this section we briefly describe the main achievements related to the
topic of this deliverable. For detailed descriptions of the work performed
the reader is referred to the papers attached in the annex of this deliverable.
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1.2.1 Active learning of categorical knowledge

In general settings, novel training samples may arrive at any time, and the
representations of the learned models have to be able to adapt to new situ-
ations. The representations should allow for incremental or online learning.
The representations are being build incrementally; their reliability is being
increased through time resulting in the continuous improvement of the clas-
sification performance. A natural goal of an online learner is to speed up
the learning process, therefore to utilize the learned models as soon as pos-
sible (e.g., for recognition of the learned concepts). As we know from our
everyday experience, a good teaching material facilitates learning, as well
as a good teachers does. Similar question also arise in the case of online
machine learning: which training samples to present to the learner and in
what order? This is the main question we address in our work presented in
Annex 2.1 [54].

We constrain our analysis by considering a case of learning conceptual
knowledge. We assume that we have a teacher that teaches the learner about
certain concepts (e.g., object properties, spatial relations, object categories,
etc.). The teacher provides labels that are used by the learner to update its
representations. We discuss different ways of how this knowledge is trans-
ferred from the teacher to the learner, ranging from purely passive approach
where the teacher completely drives the learning to the active learning ap-
proaches where the learner takes the initiative and actively influences the
learning processes. We start with completely passive teacher-driven learn-
ing, where the teacher presents new training samples by treating all training
samples equally without considering the learner’s knowledge. Then we pro-
ceed by differentiating between training samples and giving a higher priority
to the samples that are expected to hold a significant discriminative infor-
mation. Then the teacher also takes the learner’s current knowledge into
account when selecting training samples. We also evaluated active learner-
driven approaches, where the learner inspects its internal knowledge and
detects the ignorance. Different ways of generating knowledge gap comple-
tion proposals are discussed, i.e., by referring only to the current training
sample or also to the previously observed samples, by referring to the most
ambiguous concept, or by generating the actual training sample, which is es-
timated to improve the current representation most. Detailed description of
these approaches and the results of the experimental evaluation are given in
Annex 2.1 [54]. We analyzed the learning curve with respect to different lev-
els of the influence the learner has to the learning process. The experimental
results show that the active learning approach outperforms the passive one
and that the adaptation of the learning process to the learner’s knowledge
significantly facilitates and speeds up the learning.

The learning mechanisms that we used are based on the underlying KDE
methodology we have developed. We have performed an extensive analysis
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of how to capitalize on discriminative information in the framework of on-
line Kernel Density Estimators, leading to the final version of the online
discriminative Kernel Density Estimators (odKDE). The theory about the
new odKDE and its experimental analysis has now been submitted to a
journal as a follow-up paper to the oKDE [26] that was developed in Year 2.
We have revised the theory on the odKDE, which led to a simpler formula-
tion of the algorithm. We have shown that the previously proposed oKDE
can be treated as a general framework for online construction of probabil-
ity density functions from streaming data, that applies compression to the
models to keep complexity low. We have proposed a formulation of a cost
function that measures discrimination loss during compression. A princi-
pal novelty in this function was the fact that it can be directly plugged
in the existing compression optimization algorithm used in oKDE. While
the computation of the cost function is very slow in its original form, we
have derived a simplification that decomposes the cost function and allows
much faster computation. In contrast to the oKDE, which is purely recon-
structive, the odKDE implements a principle of constrained generalization,
rather than maximizing some discriminative cost function (as it is usually
done in discriminative models). While both the oKDE and the odKDE in-
volve reconstructive updates by new data-points, the odKDE then gradually
generalizes the model while constraining the discrimination loss.

In our study that was performed during this project, we have shown
that a crucial point in an online model is that it has to be sufficiently com-
plex to properly adapt its structure when the new data-point arrives. It
appears now that the presented paradigm of reconstructive updating com-
bined with discriminatively-constrained generalization maintains excellent
balance and sufficient complexity required for online updating and gener-
alization (smoothing) that improves classification properties while keeping
the model simple. We performed extensive comparison with a batch support
vector machine, oKDE and batch state-of-the-art KDEs on several standard
publicly available machine learning datasets to allow deeper comparison to
the competing methods and to experimentally show that the odKDE now
outperforms the oKDE in better recognition capability and in generating
simpler models. The analysis and the new methodology is described in An-
nex 2.2 [24].

1.2.2 Active vision

One aspect of cross-modal learning encountered in many robotics tasks is
to learn the association between visual object appearance and linguistic
object labels, such as putting an object on a table and saying “This is a
coke can”. Actively learning these object models is essentially comprised
of three parts. 1) Segmenting from the scene what is considered to be an
object 2) Completing object models from partially acquired models, possibly
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including actions such as view point changes or clarification questions to the
tutor 3) And linking the acquired visual model to other modalities, most
notably language.

For complex scenes where object boundaries are not immediately clear
static segmentation approaches such as plane pop-out [66, 65] are not suffi-
cient. To disambiguate between possible interpretations in these cases, the
work presented in Annex 2.3 [40] follows an active approach to segment the
scene into independently moving objects. We extended previous work on
learning planar patch based object models to include motion cues to group
sets of patches that show consistent motion after a push is applied to a part
of the scene.

Once one view of an object has been identified and learned, the robot
needs a principled methodology to extend its partial knowledge. I.e., it needs
to identify where the model is incomplete, what can be done to complete it
and what are the benefits of doing so. In the work presented in Annex 2.4 [68]
we extend previous work on incremental online learning of object models
with learned probabilistic measures for observed detection success, predicted
detection success and model completeness. This allows the robot to quantify
its current knowledge and the predicted increase in knowledge for a given
action (i.e. change of view point).

1.2.3 Self-supervised learning of object affordances

Another line of research focuses on affordance learning. The main goal is to
learn to predict what will happen with an object that has been pushed in
terms of classification (what the resulting affordance class will be).

Continuing our work in [42], we have refined our low-level self-supervised
cross-modal learning algorithm such that it is placed on a more theoretically
sound footing, incorporates additional mechanisms that make it more effec-
tive over short-term training periods, and we have performed more exten-
sive experiments both on simulated datasets and with real object affordance
learning data in order to demonstrate its effectiveness.

From a theoretical standpoint, we have shown how, given the cross-
modal structure of codebook layers of prototypes, we may derive learning
rules based on the learning vector quantization paradigm that can employ
class probabilities instead of actual class labels during training, thus allowing
us to bootstrap the self-supervised learning process in an online manner
even when the categories are not yet fully known. This is an important
consideration at the lower-level where data of lower-order features co-occur
in an online manner across multiple modalities and higher-level concepts
ought to be formed dynamically.

In addition, given the sparsity of training data in the autonomous robotics
setting, as well as the expense of gathering additional data, and the necessity
to learn online and update models as soon as training data arrives, it is often
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not feasible to train over large datasets or long training periods of multiple
epochs where the training data are recycled. To address these issues, we
developed additional mechanisms to augment the base algorithm and en-
sure that it can achieve effective results rapidly. The first such mechanism
is a form of feature relevance determination where the prototypes in the
classifying codebook layer are analysed using the Fisher criterion to weigh
each of the feature dimensions with respect to their discriminative relevance.
The second mechanism is that of ineffective prototype culling, where pro-
totypes that do not contribute to, or indeed even inhibit, the classification
process are culled from consideration whenever the network is tasked with
classifying a sample. We demonstrate the effectiveness of these techniques
in experiments on both simulated and real data in [41] (c.f. Annex 2.5).

With regard to active learning in the low-level self-supervised cross-
modal setting, the algorithm we have developed as referenced in [41] (c.f.
Annex 2.5) may also be employed within such a context. Following the
self-understanding workflow of Figure 1, the algorithm can account for the
detection of knowledge gaps in two key ways. Firstly, the algorithm dy-
namically detects novel affordance categories as data become available. It
could potentially start out with one or two categories based on clusters in
the data, but as new data are gathered in the effect modality, representing
the effects of actions on objects, it can detect if new clusters are forming
that could potentially be novel affordance categories. Secondly, based on the
available training objects and the potential actions that can be applied to
them, the algorithm can, based on its current knowledge, provide posterior
probabilities for different possible affordance class predictions. It can there-
fore indicate which action/object combinations are the most ambiguous in
terms of their affordance class predictions, thus potentially indicating gaps in
knowledge. Again following Figure 1, with regard to generating gap comple-
tion proposals, once novel clusters have been detected in the effect modality,
the algorithm forms novel affordance categories in an unsupervised manner,
thus implicitly filling such knowledge gaps. In the case where multiple train-
ing objects are available, the algorithm can propose performing an action
on an object that provides the most ambiguous posterior class probabilities
for affordance class prediction. When it comes to updating knowledge, the
algorithm fits naturally here because it can learn online, forming updated
cross-modal representations of affordances using novel data from object in-
teractions. Taken together, these three aspects of the algorithm enable the
planning and execution of actions for active learning. As knowledge gaps
are detected, gap completion proposals may be generated, actions may be
planned and executed in order to gather novel data to fill the gap, and finally
the algorithm may update its representations.

To test whether or not the algorithm functions effectively under an active
learning assumption, we performed some preliminary experiments where,
using previously gathered object affordance data [42], we assumed that the
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entire training set was available to the algorithm and actively selected the
samples at each online training step by choosing the most ambiguous sample
in terms of the algorithm’s class prediction. This was made possible because
the algorithm can provide posterior class probabilities as well as class label
predictions. To explain this in brief, unsupervised online hyper-clustering
of prototypes is performed in both an object property modality and an ob-
ject effect modality based on a stream of data co-occurring in each, while a
cross-modal co-occurrence mapping between prototypes in each modality is
also constructed. Crucially, the prototypes in the object effect modality are
meta-clustered to form category clusters that may be projected onto the ob-
ject property modality, either in terms of category cluster labels or category
cluster probabilities using the information provided by the co-occurrence
mapping. This process is explained in detail in [41] (c.f. Annex 2.5). The
results of our initial experiments have been inconclusive. While the active
learning approach appears to generally perform better than regular online
learning over partially-ordered data, it does not appear to perform as well
as online learning over randomly ordered data on this particular dataset.
We suspect that the small training set size may have a significant influence
on this performance, but this warrants further investigation which we aim
to attempt in due course.

We have also considered the problem of affordance learning by using a
different approach, continuing our work in [45, 46]. We follow the idea pre-
sented above, but we focus here on the problem of how a robot can predict
the results of interaction with an object, in terms of predicting a concrete
object movement (trajectory) as well as a categorization of the movements.
We initially approached the problem of trajectory prediction using regression
techniques, such as Recurrent Neural Networks (RNNs) trained with offline
and active learning strategies for samples selection [45], as described in the
Year 2 deliverable DR.5.2. RNNs can predict sequences with long-term de-
pendencies, making them useful for predicting many steps ahead. However,
since learning in RNNs is based on gradient descent methods, learning re-
quires a lot of cycles. Furthermore, predictions need not always be entirely
accurate, due to convergence to local minima.

As an alternative, we have explored Bayesian learning and vector quanti-
zation algorithms for solving this prediction problem. Our goal is to extract
probabilistic finite state machines which model and discretize the behavior
of a dynamical system learnt from robot-object interactions. Preliminary
experiments were presented in [46], where stochastic finite state machines
were extracted in a simulated scenario. In order to tackle both classification
and prediction problems, we can use the output functions in a probabilistic
finite state machine either to predict a continuous series, or to classify a
temporal pattern. This yields two different ways in which we can combine
the acquisition of probabilistic (discrete) machines, with the learning of dy-
namic (continuous) systems. We use offline learning methods for learning
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probabilistic finite state machines. We have performed several series of ex-
periments with artificial datasets, to show the potential of these algorithms.
Vector quantization is explored by using some datasets with Gaussian noise
distributions in the presence of outliers, where we apply an incremental
algorithm which suggests a life-long learning procedure. Extraction of prob-
abilistic machines is explored by integrating Vector quantization of input,
state and output spaces of the dynamical system and Bayesian learning
and conditional entropy for inferring the transitions between states and its
probabilities. An experiment where a probabilistic finite state machine is
inferred from data generated from a noisy automaton shows the strength
of this approach. We compared our results to other approaches found in
the literature, where we show better performance (Annex 2.7 [44]). In
future work, the use of information-theoretical approaches to calculate tran-
sitions might also be useful to explore active selection of samples via an
information-gain measure.

1.2.4 Cross-modal binding and learning

We revised and refined the problem definition of binding and cross-modal
learning from Year 2 and reformulated and adapted its formulation in Markov
Logic Networks (MLNs). The main issue this year was how to apply the prin-
ciples from the problem definition and the specifics of MLNs to a cognitive
architecture. This work is described in detail in Annex 2.6 [61].

In a cognitive system the sensory information is usually first processed
by the perceptual layer. While processing on the perceptual layer is inher-
ently intra-modal, high-level cognition, which includes many processes that
are critical for active learning (e. g. , motivation, planning), usually assumes
a-modal information. High-level cross-modal learning and binding play a
crucial role in overcoming the semantic gap between the two representation
categories, assuring that the high-level representations are grounded in mul-
tiple modalities. As such, its ability to associate between various modal and
a-modal representations plays an important role in active learning in gen-
eral, since more often than not active learning involves multiple modalities
(including a-modal representations, as depicted in Fig. 1).

Fig. 2 illustrates a possible application of our binding and cross-modal
learning system to a cognitive architecture. We can see that the information
from the perceptual layer is used by three distinct processes:

• The process of concept grounding uses modal concepts produced by
the learning process in modal learners (e. g. various color and shape
types) to ground the binding rules.

• The process of instance grounding relies on the ability of the percep-
tual layer to quickly present (usually relying on one modality only)

EU FP7 CogX 14



DR 5.4: Active learning of cross-modal concepts D. Skočaj et. al.

quantitative estimates about the entities (instances) the cognitive sys-
tem is currently sensing. While the multi-modal representations of
perceived entities are quantitatively and qualitatively finalized by the
binding process itself (union configuration), these initial approximate
representations can be considered to be placeholders for potential ob-
jects (i. e. possible percept unions). They are devoid of any features
or other kind of attributes.

• The recognition process in modal learners results in the percept config-
uration, which represents the input to the process of binding inference.

Figure 2: Cross-modal learning and binding as part of a cognitive system.

The final product of binding — the union configuration is used both as
the basis for a-modal representations in high-level cognition and as a source
of learning samples for the weight learning.

The processes of instance grounding, binding inference and weight learn-
ing form the inner binding loop, which exploits the perceptive abilities of
modal learners and recognizers to improve its cross-modal associative power.
On the other hand the process of concept grounding exploits the concept
forming ability of modal learners to produce new cross-modal concepts,
which are eventually evaluated within the existing cross-modal knowledge
by the inner binding loop.
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To demostrate the above principles in practice, we developed a CAST
component with online MLN functionality — the MLN learner. In the cur-
rent system the MLN learner is used as a reference resolution tool (a form
of binding) by the dialogue subsystem. Because of its inherent flexibility
(MLNs), it can have many other applications that require learning in the
high-level cognition.

1.3 Relation to the state-of-the-art

In this section we discuss how our work is related to, and goes beyond the
current state-of-the-art.

1.3.1 Active learning of categorical knowledge

Active learning of categorical knowledge has been often addressed in the
literature. The proposed approaches mainly focus on estimating classifiers
using minimal amount of data. They are motivated by the fact that there
are many situations in which large quantities of unlabeled data are relatively
easily obtained, however, the cost of labeling each sample can be high. De-
pending on how the data is accessed, we can divide the approaches to active
learning into two major groups: (i) pool-based approaches to learning, and
(ii) learning from streaming data. In pool-based learning, all data is avail-
able in advance, a selection procedure determines the learning points, queries
an oracle (a teacher) for labels of these points, and uses these points to con-
struct a classifier. Here, an important issue is which data-points to chose for
querying. A plethora of papers have been published on this topic proposing
numerous approaches [8, 52, 51, 35, 1, 64, 28, 19, 2, 23] using different kinds
of classifiers and committees of classifiers, as well as probabilistic rules for
selecting the next best sample for querying. In the stream-based learning,
the data comes sequentially, and possibly indefinitely. Here the challenge
is to constantly adapt the classifier to the possibly changing properties of
the data and identify in the observed sequence the potentially informative
data-points for querying the oracle. Although the samples are introduced
sequentially, most of the learning algorithms for streaming data process the
data in small batches [67, 12, 20]. For situations in which a teacher is sequen-
tially presenting training samples to the learner, the pool-based approaches
are not applicable, since they assume that the learner would have access to
all observed samples. In that respect, the traditional streaming-data-based
active learning approaches are also not applicable, since they assume a batch
of data-points to be available for constructing the classifier. In real-life sit-
uations, it is desirable that the learner detects good candidates for querying
on the fly and updates its classifiers accordingly, while requiring minimal
involvement of the teacher. Several learning strategies have been proposed
in this social learning context [4, 53, 10]. We also analyze the problem of ac-
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tive learning of categorical knowledge in the light of these requirements. In
our earlier work [53], we addressed this problem in the constrained stream-
based interactive settings. In the current work [54] we take more general
approach. We discuss different ways of conveying the categorical knowl-
edge from the teacher to the learner and analyze different knowledge gaps
completion methods. We experimentally show that the active learning ap-
proach and the adaptation of the learning process to the learners knowledge
significantly facilitate and speed up learning.

Our experiments were performed with the learner and classifier based on
the discriminative reconstructive representations learned by odKDE. The
nature of the purely reconstructive models is that they retain only the in-
formation which is necessary for an approximate reconstruction of the data
– and this information is also crucial for proper online updating [26]. But
since the retained reconstructive information does not necessarily encompass
the discriminative information, such approximations often lead to reduced
discrimination performance of the reconstructive models on specific classifi-
cation tasks. On the other hand, purely discriminative models disregard the
reconstructive information, which may lead to reduction of their robustness,
e.g, [13]. Some early work on incrementalization of a linear discriminant
analysis [58] suggests that accounting for the reconstructive information is
indeed crucial for robust incremental updates of discriminative models. The
leading hypothesis of our present work can be stated as: if we gradually
generalize a generative model while constraining its loss of discriminative
information, we will arrive at a model that has better discriminative prop-
erties than the original reconstructive model, but at a same time we will
retain sufficient reconstructive information to allow efficient updating from
new data-points. Our analysis in [24] has confirmed that this hypothesis in-
deed holds. When applied to the state-of-the-art oKDE [26], we have arrived
at a discriminative online Kernel Density Estimator (odKDE). Experimen-
tal results in [24] show that, compared to the batch state-of-the-art KDE
approaches [33, 15, 17] and the state-of-the-art online KDE [26], the odKDE
produces significantly simpler models with on average better classification
performance.

1.3.2 Active vision

Active strategies for segmentation of objects in robotic scenarios have been
explored in the past [30]. Our work differs in that we additionally employ
well known structure from motion (SfM) techniques to acquire detailed 3D
object models. While classical SfM moving through a static scene is essen-
tially solved in a coherent theory, recent work focuses on dynamic scenes
composed of rigidly moving objects. The solutions available so far can be
broadly classified into algebraic methods [60, 9], which exploit algebraic con-
straints satisfied by all scene objects, even though they move relative to each
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other, and non-algebraic methods [57, 14], which essentially combine rigid
SfM with segmentation. Most related to our system are [50, 36] which use
interleaved segmentation and 3D reconstruction of tracked features into in-
dependent objects. Our work differs in that we introduce planar patches as
intermediate structure between tracked interest points and full 3D objects,
as the simpler plane models can be extracted more robustly. These pla-
nar patches are then grouped into 3D objects. Finally, instead of a sparse
point cloud we get a dense representation in terms of planes, which is more
suitable for robotic manipulation.

A robot that aims to continually extend its knowledge can not rely
only on models trained offline. Instead partial objects acquired e.g. via the
method mentioned above should be extended online in interaction with the
environment. Various methods have been proposed to overcome the offline
learning vs. online recognition division [59, 37, 47, 16, 43, 38]. While the
work presented in this report uses fairly standard techniques for recognition,
it focuses more on a representation of the object model that allows the sys-
tem to reason about model completeness and further knowledge gathering
actions.

1.3.3 Self-supervised learning of object affordances

Also self-supervised cross-modal learning has been addressed many times in
the literature in varying forms. An early example of a cross-modal neural
network similar in structure to that of our algorithm is provided by [31],
where self-organizing maps acting in separate spaces were connected together
via a Hebbian mapping and labeled samples were presented to the network
for cross-modal clustering. One of the more inspirational papers for our own
work, that of de Sa and Ballard in [11], used a multi-modal neural network
to study the McGurk effect [29] using co-occurring visual and audio data of
utterances from human speakers. The authors also employed learning vector
quantization in their multimodal framework in the traditional form where
category clusters were used as class labels. Coen [5, 6, 7] also addressed the
idea of cross-modal learning by clustering in separated, but interconnected
modalities, though without online learning. Both multimodal learning and
the McGurk effect have more recently been addressed in the deep learning
community [34] where deep autoencoder networks were used in both audio
and visual modalities to learn features cross-modally.

1.3.4 Cross-modal binding and learning

Many of the past attempts at binding information within cognitive systems
were restricted to associating linguistic information to lower level perceptual
information. Roy et al. tried to ground the linguistic descriptions of objects
and actions in visual and sound perceptions and to generate descriptions of
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previously unseen scenes based on the previously accumulated knowledge
[48, 49]. This is essentially a symbol grounding problem first defined by
Harnad [18]. Chella et al. proposed a three-layered cognitive architecture
around the visual system with the middle, conceptual layer bridging the gap
between linguistic and sub-symbolic (visual) layers [3]. Related problems
were also often addressed by Steels [56].

Jacobsson et al. approached the binding problem in a more general way
[22] [21] developing a cross-modal binding system that could form associ-
ations between multiple modalities and could be part of a wider cognitive
architecture. The cross-modal knowledge was represented as a set of binary
functions comparing binding attributes in pair-wise fashion. A cognitive ar-
chitecture using this system for linguistic reference resolution was presented
in [62]. This system was capable of learning visual concepts in interaction
with a human tutor. A probabilistic binding system was developed within
the same group that encodes cross-modal knowledge into a Bayesian graph-
ical model [63]. In [27] a framework for constructing high-level cognitive
representations of the environment, called beliefs, was presented. Markov
logic was used as the main framework for various types of inference over
beliefs, including perceptual grouping, which comes very close to our defini-
tion of binding. All these systems ([22] – [27]) assumed static cross-modal
knowledge.

Our goal is to design a flexible binding system, capable to continuously
adapt the probabilistic representation of cross-modal knowledge to the chal-
lenges of a dynamic environment. These requirements lead us in the di-
rection of Markov graphical models as a powerful and flexible platform for
probabilistic problem formulation. We base our work, however, on a formal
definition of the binding problem, which is still general enough to accommo-
date other possible approaches to binding.
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2 Annexes

2.1 Skočaj et. al “About different active learning approaches
for acquiring categorical knowledge”

Bibliography D. Skočaj, M. Kristan and A. Leonardis: “About different
active learning approaches for acquiring categorical knowledge” Submitted
to Twentieth International Electrotechnical and Computer Science Confer-
ence, Portorož, Slovenia, 29–21 September 2011.

Abstract In this paper we address the problem of acquiring categorical
knowledge from the active learning perspective. We describe and implement
several teacher and learner-driven approaches that require different levels of
teacher competencies and consider different types of knowledge for selection
of training samples. The experimental results show that the active learning
approach outperforms the passive one and that the adaptation of the learn-
ing process to the learners knowledge significantly improves the learning
performance.

Relation to WP Self-understanding and self-extension, which are ad-
dressed in the active learning framework, are the main topics of the project,
and active learning is the main topic of Task 5.3 in WP 5, therefore the paper
tackles the central issues of this workpackage and the project as whole.
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2.2 Kristan and Leonardis “Online Discriminative Kernel
Density Estimation With Gaussian Kernels”

Bibliography M. Kristan and A. Leonardis: “Online Discriminative Ker-
nel Density Estimation With Gaussian Kernels”. Submitted for journal
publication, 2011.

Abstract We propose an approach for a supervised online estimation of
probabilistic discriminative models. The method is based on the recently
proposed online Kernel Density Estimation (oKDE) framework which pro-
duces Gaussian mixture models and allows adaptation using only a single
data point at a time. The oKDE builds reconstructive models from the
data and maintains its complexity low by compressing the models from
time to time. We propose a new cost function that measures loss of in-
terclass discrimination during compression, thus guiding the compression
towards simpler models that still retain discriminative properties. We call
the resulting method an online discriminative Kernel Density Estimator (od-
KDE).We compare the odKDE to oKDE, batch state-of-the-art KDEs and
support vector machine (SVM) on standard publicly-available datasets. The
odKDE achieves comparable classification performance to that of best batch
KDEs and SVM, while allowing online adaptation, and produces models of
lower complexity than the oKDE.

Relation to WP This paper proposes the underlying methodology which
is used in this workpackage for online construction of mutually-exclusive con-
cepts such as particular colors and spatial relations. The proposed method
constructs discriminative models for maximal classification performance, but
at the same time also keeps the models in their generative form. The fact
that the models are generative is crucial for knowledge revision during active
learning, since the generative nature allows the robot to revise its knowl-
edge models, perform hallucination and detect gaps and uncertainties in the
knowledge.
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2.3 Prankl et al. “3D Piecewise Planar Object Model for
Robotics Manipulation”

Bibliography J. Prankl, M. Zillich, M. Vincze: “3D Piecewise Planar
Object Model for Robotics Manipulation”, Proc. Int. Conf. Robotics and
Automation (ICRA), pages 1784–1790, 2011

Abstract Man made environments are abundant with planar surfaces
which have attractive properties for robotics manipulation tasks and are a
prerequisite for a variety of vision tasks. This work presents automatic on-
line 3D object model acquisition assuming a robot to manipulate the object.
Objects are represented with piecewise planar surfaces in a spatio-temporal
graph. Planes once detected as homographies are tracked and serve as pri-
ors in subsequent images. After reconstruction of the planes the 3D motion
is analyzed and initial object hypotheses are created. In case planes start
moving independently a split event is triggered, the spatio-temporal object
graph is traced back and visible planes as well as occluded planes are as-
signed to the most probable split object. The novelty of this framework is to
formalize Multibody Structure-and-Motion (MSaM), that is, to segment in-
terest point tracks into different rigid objects and compute the multiple view
geometry of each object, with Minimal Description Length (MDL) based on
model selection of planes in an incremental manner. Thus, object models
are built from planes, which directly can be used for robotic manipulation.

Relation to WP Identifying which parts of the scene make up individual
objects is the first step in autonomously extending the system’s knowledge
about objects. While plane pop-out as attentional operator is sufficient for
table top scenes of limited complexity, only interacting with the environment
allows the system to segment objects in more generic complex scenes. The
work presented here allows to actively learn new object models. Objects are
represented as sets of rigidly connected planar patches, which are segmented
from the scene background by pushing against surfaces and observing the
resulting motion. While pushing of objects was still done by hand in this
work, next steps will be using the actual robot and include planning of
pushes which result in an optimal information gain.
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2.4 Zillich et al. “Knowing Your Limits - Self-Evaluation
and Prediction in Object Recognition”

Bibliography M. Zillich, J. Prankl, T. Mörwald, M. Vincze: “Knowing
Your Limits - Self-Evaluation and Prediction in Object Recognition”, Proc.
Int. Conf. on Intelligent Robots and Systems (IROS), 2011

Abstract Allowing a robot to acquire 3D object models autonomously not
only requires robust feature detection and learning methods but also mech-
anisms for guiding learning and assessing learning progress. In this paper
we present probabilistic measures for observed detection success, predicted
detection success and the completeness of learned models, where learning
is incremental and online. This allows the robot to decide when to add a
new keyframe to its view-based object model, where to look next in order to
complete the model, predicting the probability of successful object detection
given the model trained so far as well as knowing when to stop learning.

Relation to WP Representing not only knowledge but also where knowl-
edge is missing and how it can be completed is one of the central themes
in CogX. The above work extends previous methods of online incremental
learning of object models with measures to quantify observed detection suc-
cess, predicted detection success and model completeness. This allows the
system to actively plan for knowledge gathering actions in order to com-
plete partial object models. In that respect this work is also relevant for
WP4, specifically Task 4.2: General planning of information gathering and
dialogue actions (as reported in DR.4.3), and Task 4.3: Planning for active
learning.
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2.5 Ridge et al. “Self-supervised Cross-Modal Relevance
Learning Vector Quantization”

Bibliography B. Ridge, D. Skočaj, and A. Leonardis: “Self-supervised
Cross-Modal Relevance Learning Vector Quantization”. To be submitted
for journal publication, 2011.

Abstract Given the absence of category labels or the expense of acquiring
them in many applications, self-supervised learning algorithms that discover
and exploit categories autonomously are an important consideration in ma-
chine learning. It is not always obvious how such self-supervision should
proceed, particularly in the online learning setting, though in the context of
cross-modal learning, where data samples co-occur across multiple modali-
ties or views, the idea becomes more tractable. In this paper, we present a
self-supervised cross-modal learning framework that employs codebook lay-
ers of prototypes to cluster in separate modalities that are connected via a
cross-modal co-occurrence mapping. As data co-occur in multiple modalities
online, we demonstrate how the category clusters that emerge in the data
may be used to drive self-supervised learning. In our setting, we employ
a modified form of learning vector quantization that may be trained using
class probabilities instead of class labels, an effective means of bootstrapping
self-supervised learning when the category clusters are not yet fully-formed.
We also employ both a feature relevance determination mechanism and a
means of culling ineffective prototypes, thus facilitating rapid learning over
few training epochs. We demonstrate the effectiveness of our approach in
experiments on both simulated data and data gathered from a cognitive
robotics object affordance learning setting.

Relation to WP This paper addresses how cross-modal learning can be
performed at a low-level where features are streaming from multiple sensory
modalities online and co-occurring across these modalities. It demonstrates
how not only can higher-level concepts be formed in this setting, but also
how they can be used to drive self-supervised learning at this level. This is
commensurate with the goals of WP5, which strives to analyse the problems
of low-level cross-modal learning and online learning.
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2.6 Vrečko et al. “Modeling Binding and Cross-modal Learn-
ing in Markov Logic Networks”

Bibliography A. Vrečko, A. Leonardis and D. Skočaj: “Modeling Bind-
ing and Cross-modal Learning in Markov Logic Networks”. Submitted for
journal publication, 2011

Abstract Binding – the ability to combine two or more modal representa-
tions of the same entity into a single shared representation is vital for every
cognitive system operating in a complex environment. In order to success-
fully adapt to changes in an dynamic environment the binding mechanism
has to be supplemented with cross-modal learning. In this paper we define
the problems of high-level binding and cross-modal learning. By these defi-
nitions we model a binding mechanism in a Markov logic network and define
its role in a cognitive architecture. We evaluate a prototype binding system
online, using three different inference methods.

Relation to WP The paper addresses the problems of high-level cross-
modal binding and learning, as defined in WP 5. It defines both problems
and shows, using the Markov logic networks, how can high-level cross-modal
associations be learned in this framework.
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2.7 Roa et al. “Robust Vector Quantization for Inference of
Substochastic Sequential Machines”

Bibliography S. Roa and G.-J. Kruijff: “Robust Vector Quantization for
Inference of Substochastic Sequential Machines”. Technical Report, 2011.

Abstract The article explores the problem of discretizing the continuous
evolution of a dynamical system. A probabilistic discrete state, input and
output space representation of the system, together with probabilistic tran-
sition functions, can be learned by the proposed algorithm. The method is
based on the CrySSMEx algorithm for extracting substochastic finite state
machines and a new Vector quantization algorithm. Experiments on Vector
quantization were performed with artificial data generated by using gaussian
noise distributions. Noisy automata were also used to test the algorithm and
corresponding probabilistic finite state machines were extracted.

Relation to WP The paper is related to Tasks 5.3 and 5.4. The al-
gorithm described can be used either for categorical learning or prediction
learning. This is a preliminary work that can potentially be extended for
active learning.
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3D Piecewise Planar Object Model for Robotics Manipulation

Johann Prankl, Michael Zillich, and Markus Vincze

Abstract— Man-made environments are abundant with pla-
nar surfaces which have attractive properties for robotics
manipulation tasks and are a prerequisite for a variety of vision
tasks. This work presents automatic on-line 3D object model ac-
quisition assuming a robot to manipulate the object. Objects are
represented with piecewise planar surfaces in a spatio-temporal
graph. Planes once detected as homographies are tracked and
serve as priors in subsequent images. After reconstruction of the
planes the 3D motion is analyzed and initial object hypotheses
are created. In case planes start moving independently a split
event is triggered, the spatio-temporal object graph is traced
back and visible planes as well as occluded planes are assigned
to the most probable split object. The novelty of this framework
is to formalize Multi-body Structure-and-Motion (MSaM), that
is, to segment interest point tracks into different rigid objects
and compute the multiple-view geometry of each object, with
Minimal Description Length (MDL) based on model selection
of planes in an incremental manner. Thus, object models are
built from planes, which directly can be used for robotic
manipulation.

I. INTRODUCTION

Increasing interest in enabling robot manipulators to oper-
ate in everyday environments leads to the problem of how to
acquire object models for manipulation. One does not want
to specify all objects and possible obstacles in advance but
allow the robot to actively acquire its own models, using
the robot’s ability to change view points and to interact with
the scene. Many objects in man-made environments consist
of planar surfaces, such as tables, shelves or box-shaped
packaging. Also curved surfaces can be approximated with
sufficient accuracy for most robotics tasks with piecewise
planar surfaces, as is common in modelling for computer
graphics. Planar surface patches support reasoning about
object properties important for manipulation, such as contact
points and friction cones, in contrast to models based on
distinctive interest points, which typically lead to sparse point
sets and are more suitable for recognition.

Our overall goal is to build a cognitive robotic experi-
mentation framework. The rationale behind our system is
to enable human tutor driven learning-by-showing as well
as completely automatic on-line model acquisition by the
robot (see Fig. 1). Schindler et al. [1] use a model selection
framework for multibody Structure-from-Motion estimation
of image sequences. In contrast we use model selection to
detect piecewise planar surfaces. We describe plane hypothe-
ses using the 2D projective transformation (homography)
computed from four interest point pairs in two uncalibrated
images. In the first step our model is simpler than that

J. Prankl, M. Zillich, and M. Vincze are with the Automa-
tion and Control Institute, Vienna University of Technology, Austria
{prankl,zillich,vincze}@acin.tuwien.ac.at

camera trajectory

push object

(a) (b)

Fig. 1. Example scenario we used to test our system, where a camera
moves around objects and pushes them. The image shows a stereo setup,
from which we use only a single camera.

of Schindler, but it enables the robot to interact in more
realistic environments. After 3D reconstruction of the planes
the motion is analyzed and initial object hypotheses are
created. In case planes start moving independently a split
event is triggered and current visible planes as well as already
occluded planes, stored in a temporal object hypotheses
graph are assigned to the most plausible split object model.
For assignment of the planes a Minimal Description Length
(MDL) criterion formalizing the colour distribution and the
distance of planes within an object is used. Hence, at each
timestamp piecewise planar object models of the current
scene are available, which directly can be used for robotic
manipulation. In case an interest point descriptor, such as
the popular SIFT proposed by Lowe [2] is computed this
model can directly be used for object recognition and full
pose registration from a single image (see [3]).

After a review of the related work, we give an overview
of the system in Section II and its core parts, namely
the plane detection (Section II-A), Structure-from-Motion
(Section II-B), merging of planes (Section II-C) and splitting
of piecewise planar object models (Section II-D). Finally,
results of the experiments are shown in Section III.

A. Related work

Although this work focuses on a framework for modelling
objects we first want to mention some literature from the field
of active vision, which is the motivation for our experiments
shown later on and then tackle related work our system is
based on. The early attempts on Active Vision, that is an
active observer whose purpose is to improve the quality
of the perceptual results, goes back to [4], [5]. In [5]
Aloimonos et. al stressed that an active observer can solve
basic vision problems in a much more efficient way. They
introduce a general methodology, in which they believe low-
level vision problems should be addressed. Metta et al. [6]



developed an active strategy for a robot to acquire visual
experience through simple experimental manipulation. The
experiments are oriented towards determining which parts of
the environment are physically coherent, that is, which parts
will move together, and which are more or less independent.
Our experiments are similar, but in contrast to Meta, who
studies the causal chains of events we focus on learning a 3D
piecewise planar object model triggered by motion events.

The basic parts of our object model are planes. Detecting
planes in uncalibrated image sequences is well studied.
Most approaches use a hypothesize-and-test framework. A
popular method for detecting multiple models is to use the
robust estimation method RANSAC [7], to sequentially fit
the model to a data set and then to remove inliers. To generate
plane hypotheses Vincent et al. [8] use groups of four points
which are likely to be coplanar to compute the homography.
To increase the likelihood that the points belong to the same
plane they select points lying on two different lines in an
image. In contrast Kanazawa et al. [9] define a probability
for feature points to belong to the same plane using the
Euclidean distance between the points. Both approaches use
a RANSAC scheme, iteratively detect the dominant plane,
remove the inliers and precede with the remaining interest
points. The success of the plane computation depends on the
coplanarity of four matched points. In [10], [11] different
strategies are proposed to sequentially reduce the set of
points/lines to three pairs. More recent approaches, such as
proposed by Toldo et al. [12] and Chin et al. [13], concentrate
on robust estimation of multiple structures to treat hypothe-
ses equally and do not favour planes detected first over
subsequent planes by greedily consuming features. These
approaches have to create plane hypotheses independently
of each other and thus it is not possible to restrict the search
space, which leads to higher computational complexity. Our
method is most similar to the approach by Prankl et al. [14],
who propose incremental model selection based on the MDL
principle to overcome these drawbacks.

The planes, represented by homographies, are the basic
entities for 3D reconstruction and for merging/splitting to
create the final object model. While classical Structure-
from-Motion moving through a static scene is essentially
solved in a coherent theory [15] and several robust systems
exist, in recent years, researchers focused on dynamic scenes
composed of rigidly moving objects. The solutions available
so far can be broadly classified into algebraic methods [16],
[17], which exploit algebraic constraints satisfied by all scene
objects, even though they move relative to each other, and
non-algebraic methods [18], [19], which essentially combine
rigid SfM with segmentation. Most related to our system are
the methods proposed by Schindler [1] and by Ozden [20].
They use interleaved segmentation and 3D reconstruction of
tracked features into independent objects. Instead of directly
sampling features and generating 3D object hypotheses, we
incrementally cluster features to planes in 2D using homo-
graphies and then reconstruct and merge/split planes into
independently moving objects in 3D. Thus in the first step we
use a simpler model to more robustly cluster tracked features

Algorithm 1 Piecewise planar object modelling pipeline
1) Instantiate new interest points (IPs)
2) Track interest points
3) Track planes modelled by homographies and try to

estimate 3D motion for existing objects
if plane does not support 3D motion then
• trigger split event and create new objects from

current and past keyframes
end if
if average displacement of the IPs < d pixels then
• goto step 1

else
• init a new keyframe and continue

end if
4) Detect and renew planes
5) Merge and reconstruct planes greedily

if new plane supports active object motion model then
• insert plane

else
• create new 3D object and motion model (SfM)

else if
6) Refine objects using incremental bundle adjustment
7) goto step 1

to planes, followed by a second step, reconstruct, merge/split
planes and create the final object model. Finally, instead of a
sparse point cloud we get a dense representation with planes,
which directly can be used for robotic manipulation.

II. SYSTEM

We developed a method to create piecewise planar object
models from an uncalibrated image sequence on the fly. The
idea is to use a simple model for clustering interest points
to planes, which is combined with tracking in an interleaved
way and then reconstruct and merge planes to create object
hypotheses. In case planes start moving independently a split
event is triggered and the history of that object hypothesis is
reviewed to assign current visible planes as well as already
occluded planes to the best split hypothesis. Hence, we
can handle more complex scenes and additionally we get
a structural model of planes instead of a sparse point cloud.
Algorithm 1 gives a detailed outline of the piecewise planar
object modelling pipeline and Fig. 2 depicts the events, that
is detection, tracking, merging and splitting of planes.

A. Plane detection using homographies

The idea is to cluster interest points at image level us-
ing the 2D projective transformation (homography). Interest
points of a plane cluster belong to the same object with a high
probability and thus build a reliable part for the following
3D reconstruction.

1) Algorithm: We embedded Minimal Description Length
(MDL) based model selection in an iterative scheme. Ex-
isting planes, tracked from the last images or created in
the last iteration compete with newly created hypotheses to



detection, reconstruction, merging of planes with common motion and tracking

trace back graph and model separate objects

split event

after pushing

keyframe #X1 keyframe #X2 keyframe #X3

Fig. 2. The upper row shows three keyframes of sequence 1 (897 frames) with detected planes in green which are merged because of common 3D motion.
The brightness of the interest points indicates the assignment to different planes. After the gripper (two black dots on the left image border) pushes the
plane 43 the keyframe-graph is traced back and the object model (44) and the background object (43) are created (lower image row). Changing plane id’s
of the top surface of the hexagonal object indicate that planes represented by homographies are substituted with better explanations.

Algorithm 2 Plane detection and tracking
P ← Ptracked, P ′ ← 0
k ← 0, ε←M/N , S ← 0
while η = (1− εM )k ≥ η0 do
P ′ ← P
Add Z random plane hypotheses to P ′

Select plane hypotheses from P ′ and store in P
Count number of explained interest points (inliers) I for
P
if I > Imax then
Imax ← I
ε← Imax/N

end if
k ← k + 1

end while

ensure that interest points are assigned to the best currently
available hypothesis. Additionally hypothesis generation is
guided to unexplained regions. This method avoids the bias
towards dominant planes typical for iterative methods, and
it limits the search space which leads to a faster explanation
of the entire image in terms of piecewise planar surfaces.
Algorithm 2 shows the proposed method for plane detection
and tracking. P is initialized with tracked planes of the last
image. Then in each iteration a small number Z of new
plane hypotheses P ′ is computed which have to compete
with the selected hypotheses P of the last iteration. The
termination criterion is based on the true inlier ratio ε and
the number of samples M which are necessary to compute
the homographies. As long as we do not know these values
we use the best estimate available up to now. For ε that is
the ratio of the number of explained interest points Imax

of the current best plane hypotheses and the number of

matched interest points N to explain. Accordingly M is
the number of plane hypotheses currently selected multiplied
with the minimal set of interest points m = 4 to compute one
homography. Furthermore in Algorithm 2 k is the number
of iterations, η stands for the probability that no correct set
of hypotheses is found and η0 is the desired failure rate.
Due to the incremental scheme it is possible to guide the
computation of new hypotheses to unexplained regions.

2) Minimal Description Length based model selection:
In each iteration selected homographies of the last iteration
have to compete with newly sampled hypotheses. For the
selection, the idea is that the same feature cannot belong
to more than one plane. Thus an over-complete set of
homographies is generated and the best subset in terms
of a Minimum Description Length criterion is chosen. The
basic mathematical tool for this is introduced in [21] and
adapted in [22]. To select the best model, the savings for
each hypothesis h are expressed as

Sh = Sdata − κ1Smodel − κ2Serror (1)

where in our case Sdata is the number of interest points N
explained by h and Smodel stands for the cost of coding
the model itself. In our case we only have one model
(the homography of a plane) and thus Smodel = 1. Serror

describes the cost for the error added, which we express with
the log-likelihood over all interest points fk of the plane
hypothesis h. Experiments have shown that the Gaussian
error model in conjunction with an approximation of the
log-likelihood comply with the expectations. κ1 and κ2 are
constants to weight the different factors. Finally the merit
term of a model results in

sii = Sh = −κ1 +
N∑

k=1

((1− κ2) + κ2p(fk|h)) , (2)



where p(fk|h) is the likelihood that an interest point belongs
to the plane hypothesis h. Details for the derivation of (2) can
be found in [14]. An interest point can only be assigned to
one model. Hence, overlapping models compete for interest
points which can be represented by interaction costs

sij = −
1

2

∑

fk∈hi∩hj

((1− κ2) + κ2 min{p(fk|hi), p(fk|hj)}) .

(3)
Finding the optimal possible set of homographies for the
current iteration leads to a Quadratic Boolean Problem
(QBP)1

max
n

nTSn , S =




s11 · · · s1N
...

. . .
...

sN1 · · · sNN


 (4)

where n= [n1, n2, · · · , nN ] stands for the indicator vector
with ni = 1 if a plane hypothesis is selected and ni = 0
otherwise. Because of iteratively adding plane hypotheses the
number of planes leading to the QBP is tractable. Further-
more experiments have shown that s greedy approximation
of the QBP gives good results and thus the solution can be
found very fast.

B. Structure from Motion (SfM)

The final results of our system are 3D models of objects.
Approaching this goal from object reconstruction our system
is strongly related to the dynamic SfM frameworks [1], [20].
In [20] Ozden et al. defined the following requirements:

1) Determine the number of independently moving ob-
jects of a sequence

2) Segment the feature tracks into different moving ob-
jects in each frame

3) Compute their 3D structure and the camera motion for
the frame

4) Resolve geometric ambiguities
5) Robustness to short feature tracks due to occlusion,

motion blur, etc.
6) Scale to realistic recording times

They propose interleaved segmentation and 3D reconstruc-
tion of the feature tracks into independent objects. Instead of
directly sampling features and generating 3D object hypothe-
ses we incrementally cluster features to planes in projective
space and track them. Thus the first two items as well as the
third are approached more robustly with a simpler model
in 2D followed by reconstruction, clustering and splitting of
planes to objects in 3D.

For reconstruction of the planes we use a standard SfM
pipeline similar to Nister et al. [23]. The nonlinear refined
homography is directly decomposed to initialize the first
camera pose (see [24]). In the following frames the relative
motion from C−1 to C is estimated using RANSAC [7]
and a direct least squares solution between the two point

1QBP assumes pairwise interaction, which in our case can be violated.
But this is still a good approximation because interaction always increases
cost, yielding a desirable bias against weak hypotheses.

sets (cp. Haralick et al. [25]). A sparse bundle adjustment
implementation by Lourakis [26] over the last N frames is
used to refine camera pose and 3D points of the plane. Once
a plane is reconstructed our algorithm tries to incorporate
planes greedily in case of consistent motion.

C. Merging of planes with consistent motion

Merging of planes amounts to checking whether the
motion of a new plane is consistent with the motion of
an existing object. In contrast to Schindler et al. [1] we
aim at building individual object models and thus, once an
object is split we do not merge them again if they start
moving together. Hence, it is possible that several objects
with the same motion are tracked at the same time and a
new plane moves consistent with more than one object. If
merging would be done only because of consistent motion
this plane would be assigned to one of the objects just by
chance. Therefore a pseudo-likelihood depending on motion,
colour and the 3D interest point adjacency is introduced and
planes are assigned to the object with a higher probability.
Analogous to (2) the formulation

pij = −ν1 +
1

N

N∑

k=1

(
(1− ν2) + ν2p(f

proj
i,k |Hj)

)

+ ν3p
∗(ai|Aj) (5)

is used to assign the plane i to the object j with the higher
likelihood pij , where p(fproji,k |Hj) is the probability that an
interest point of a plane i belongs to the 3D object Hj . This
is modelled using a Gaussian error model. The camera pose
of object j is used to compute 3D points for plane i and the
projections are compared to the corresponding tracked image
points. ν denote constants to weight the different factors,
where ν1 is an offset which must be reached to be considered
as moving together and ν3 is a weighting factor to reduce the
influence of the appearance model p∗(ai|Aj) and primarily
merge depending on the motion. The appearance model

p∗(ai|Aj) =
1

N

N∑

k=1

(
(1− ν4) + ν4p(f

3D
i,k |Hj)

)

+ log(p(ci|Cj)) (6)

combines interest point adjacency and the colour in a proba-
bilistic manner. Interest point adjacency (first term) is based
on a probabilistic voting scheme. For this a neighbourhood
graph of all currently available 3D points is constructed.
This graph is used to compute the mean µ and the standard
deviation σ of the length of edges which connect points of
the same plane. Then µ and σ are used to compute Gaussian
votes p(f3Di,k |Hj), where each 3D point of a target plane
votes for the nearest object and thus the object which is
close to the plane accumulates more votes and gets a higher
probability that the plane belongs to that object. The second
term models the colour distribution of the objects. For this
we build the 8 × 8 × 8 colour histogram ci of the target
plane i and the histogram Cj of the object j to which the
plane should be assigned. We use normalized rgb colours to



be insensitive to brightness differences of object planes. The
border of the plane is approximated by the convex hull of
the interest points. For comparison of colour models we use
the Bhattacharyya coefficient

p(ci|Cj) ∼
∑

q

√
ci(q)Cj(q). (7)

Hence, the probability of a plane i which has to be assigned
to an object j consists of a probabilistic vote of each interest
point to the nearest object and a probability describing the
colour similarity. Being aware that merging of planes based
on colour and 3D interest point adjacency is a critical point,
experiments have shown that for our scenarios, where only
a few objects are modelled simultaneously, this is a good
second merging criterion next to motion.

D. Separating planes in case of different motions

We trigger object modelling if an object separates, that is,
planes start moving differently. Therefore in (5), which is
used to continuously test if planes start moving separately,
ν3 is set to zero and first visible planes are separated only
because of motion without using colour and shape. Then
past observations, where the planes had a common motion
are examined. If the camera moves around an object and
planes could not be tracked because of (self-)occlusion (6)
is used to assign them to the new object with the higher
probability. Therefore we represent objects in a keyframe2

based graph structure. Each observation of an object is
assigned to a keyframe and linked to an observation in the
previous as well as in the next keyframe. Thus the object
itself is stored distributed within the graph structure and each
observation holds the current pose to the reference frame and
the appearance modelled with interest points and the colour
histogram. Fig. 2 depicts an event chain where planes are
merged because of common motion, start moving separately
and thus the object is split and new object models are built
by tracing back the graph and assigning occluded planes to
the object with the higher probability.

III. EXPERIMENTS

For all experiments we use a KLT-tracker [27]. In [28]
it has been shown that a sub-pixel refinement essentially
improves pose estimation. Hence, we use the affine refined
location of the interest points with sub-pixel accuracy and
finally compute a non-linear optimized homography using
homest [29].

To test our system we use five videos each with about
800 frames. Motivated by our cognitive robotic scenarios
the sequences show packaging of arbitrary shapes typically
found in a supermarket (see Fig. 2). We placed two different
objects on a table and manually moved camera and gripper
around them in a way that one half of the objects is already
occluded before the gripper pushes one object. The goal
of the experiments is that our system detects the planes,

2In our system keyframes are a subset of frames of the whole video
sequence, which are automatically selected for plane detection or in case a
split event occurs.
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Fig. 3. Parameter optimisation

reconstructs, tracks and merges them depending on common
motion and finally, after pushing one object, creates two
separate piecewise planar object models.

Three numbers are computed to compare the results, that
is the feature based precision

pf,pr =
nf,tp

nf,tp + nf,fp
(8)

which is the ratio of the number of inliers nf,tp correctly
located on a ground truth plane and the total number of
features per detected plane nf,tp+nf,fp. The second number
is the over-segmentation-rate

pov =
np,fp

np,tp + np,fp
(9)

per plane which indicates how often a plane is replaced
during tracking. np,fp the number of false positives is the
number of detected planes minus the number of correctly
detected planes np,tp. Furthermore we computed the plane
based accuracy

ppl,pr =
np,tp

np,tp + np,fp
(10)

which describes the ratio of the correctly detected planes
np,tp and the total number of detected planes np,tp + np,fp.

A. Plane detection

To test the plane detection we selected 30 keyframes
and manually marked a total number of about 150 planes.
With the first video sequence we tested the behaviour of the
parameters of our algorithm. Fig. 3 shows our performance
measures for the parameter κ1 = [1...10] and κ2 = [0...1.].
It can be seen that our algorithm is quite robust against
variation of the parameters. Fig. 3 (left) shows, that the
Parameter κ1 mostly influences the over-segmentation-rate
while the plane based precision slightly increases. The fea-
ture based precision pf,pr and the plane based precision
ppl,pr are almost constant in Fig. 3 (right) and the over-
segmentation-rate has a minimum for κ2 = 0.3.

The results for all five videos are shown in Table I. It can
be seen that our algorithm did not detect a totally wrong
plane (ppl,pr = 1) while in some cases interest points match
a plane by chance (pf,pr ≈ 0.97). The over-segmentation-
rate pov would be zero, if in the final 3D object model
each manually marked plane is reconstructed by exactly one
plane. Our plane detection/tracking algorithm is designed to



sequence pf,pr ppl,pr pov time per frame [s]
1 0.97 1.0 0.40 0.25
2 0.98 1.0 0.25 0.18
3 0.93 1.0 0.43 0.15
4 0.99 1.0 NA 0.19
5 0.99 1.0 0.60 0.26

TABLE I
RESULTS OF OUR FIVE VIDEO SEQUENCES.

Fig. 8. Example image and reconstruction of a small more complex
sequence which shows the limits of our system. Planes of the three dominant
objects at the front are reconstructed, while the object at the centre of the
image and the objects at the background are not detected because of low
texture and too few features.

subdivide planes if a better explanation can be obtained in
terms of smaller planes. The final object model consists of
all these planes and thus is pov ≈ 0.4. Furthermore the pov
is not zero because sometimes the manually marked planes
are indeed not flat but a little bit curved.

B. Reconstruction

Fig. 2, 4, 5, 6 and 7 show the qualitative results of our
system. Planes merged to one object are drawn with the same
colour, whereas the brightness of interest points indicates the
assignment to different planes. In each figure the third image
of each row shows the perspective of the camera shortly
before/after the object is pushed and the last one depicts the
reconstructed objects. Fig. 2 shows the whole event chain,
that is, detection, reconstruction and merging of planes with
a common motion coloured green and separating planes as
they start moving independently (indicated in red and blue).
In the Sequences 1, 2, 4 and 5, shown in Fig. 2, 4, 6 and 7
object modelling was successful and accurate as expected.
The 3D reconstruction (right image of each row) shows that
sometimes parts of an object, which we intuitively would
mark as one plane are split. That is on the one hand, because
these planes are indeed not flat but a little bit curved and on
the other hand model selection within our plane detection
algorithm replaces a plane in the following keyframes if a
better, more complete/accurate plane is found. Fig. 5 shows
one of the failures which might occur. These two objects
have approximately the same height and thus one joined
explanation was favoured instead of two separate. Fig. 7
and 8 show the limits of our system. Our reconstruction relies
on planes modelled by homographies and thus for one plane
a theoretical minimum number of five interest points are
necessary (4 + 1 which supports the homography). Because
of reliability issues we used a threshold of 10. Hence, in
Fig. 7 even though a small plane is detected (shown in the
middle image, plane with id = 17) the top of the cleaner

bottle is completely lost. In Fig. 8 the object in the middle,
which has hardly any texture and the finer scene details at
the background are invisible for our system whereas the three
prominent objects are nicely recovered.

IV. CONCLUSION AND FURTHER WORK
We explored how robot motion can be used to learn more

about unknown objects in a home or service robot task. Using
our approach it is possible to model the object surface from
pushing the parts. If accidentally several objects are pushed,
different motion will occur and they will be modelled as two
different items. We formalize model selection with Minimal
Description Length (MDL) to incrementally cluster features
to planes in 2D using homographies and then reconstruct
and merge/split planes into independently moving objects
in 3D. Merging as well as splitting is triggered based on a
probability which combines 3D motion, structure and colour
information of the planes. Consistent with plane detection
this is formalized with MDL. Instead of a sparse point cloud,
which is typical for Multi-body Structure-and-Motion, we
get a dense representation with planes, which directly can
be used for robotic manipulation. For future work we want
to introduce more complex object models where parts are
linked with joints, e.g., scissors.
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