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Executive Summary

Learning is a fundamental capability of any cognitive system. To enable the efficient operation of a
cognitive agent in a real-world environment, visual learning has to be a continuous process, enabling
the system to adapt to changes and to improve its performance through time. It is therefore important
that the representations can be learned in an incremental way.
In this deliverable we present several algorithms for incremental learning of representations. First, we
present a method for incremental and robust learning of reconstructive subspace representations, such
as PCA. We then extend this work and propose to combine reconstructive and discriminative subspace
methods to enable incremental learning of discriminative subspace representations (such as LDA) as
well.
We then also present a new algorithm for efficient clustering and matching for object class recognition.
Our new scheme lends itself to online, continuous learning, since it allows us to build a hierarchical
clustering tree on large number of images in general, and to incrementally compute image/object
representations by matching them to the tree.
Finally, we present a continuous learning framework, which is used to evaluate different types of in-
cremental learning mechanisms that require different levels of supervision provided by a tutor. We
present a simple method for learning cross-modal associations between words (describing object vi-
sual properties) and simple visual features (extracted from images), as well as associations between
words describing scenes in terms of simple spatial relations and extracted positional features.

Role of models suitable for continuous and human–assisted learning in
Cosy

Continuous learning plays one of the central roles in cognitive systems and in the CoSy project as
well. Another important property of a cognitive assistant, as envisioned in CoSy, is its ability to
communicate with a tutor, which can provide information necessary for an efficient and effective
learning process. The issues discussed in this deliverable are thus highly relevant to CoSy.

Relation to the Demonstrators

Any cognitive system should be able to learn about its body, its environment, objects, scenes, about
actions and consequences of (inter)actions that it can perform and observe. It also has to be able to
adapt to a changing world and to learn new concepts and extend its ontology when needed. We would
like to implement most of these capabilities in the demonstrators we are developing in CoSy. There-
fore, several techniques presented in this deliverable are directly applicable in demonstrators and some
of them are being integrated into the PlayMate scenario (e.g., the continuous learning framework).
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1 Object models suitable for continuous and human–assisted learning

1.1 Incremental learning of discriminative subspace representations

Learning is a fundamental capability of any cognitive system. To enable efficient operation of a
cognitive agent in a real-world environment, visual learning has to be a continuous process. The
representations should not be learned once and for all in a training stage and then used in their fixed
form for recognition, planning and acting. They should be continuously updated over time, adapting
to the changes in the environment, new tasks, user reactions, or user preferences. It is therefore
important that the representations employed allow the learning to be an incremental process.
In this work we focus on subspace methods for visual learning and recognition and analyse their suit-
ability for incremental learning. In [1], which is based on our previous work, we develop methods for
incremental and robust learning of reconstructive subspace representations, such as PCA. We present
an incremental method, which sequentially updates the principal subspace considering weighted in-
fluence of individual images as well as individual pixels within an image. We further extend this
approach to enable determination of consistencies in the input data and imputation of the inconsis-
tent values using the previously acquired knowledge, resulting in a novel method for incremental,
weighted, and robust subspace learning. We demonstrate the effectiveness of the proposed concept in
several experiments on learning of object and background representations.
It turns out that a straightforward application of this approach to discriminative subspace methods does
not produce satisfactory results. Discriminative representations (such as LDA) are more compact and
task dependent, therefore they do not encompass sufficient reconstructive information, which would
enable detection of outliers and reliable reconstruction of their values. Therefore, in [2] we propose
to combine reconstructive and discriminative subspace methods to enable incremental learning of
discriminative representations. Inspired by [3] (see DR.7.1), we achieve this by embedding LDA
learning and classification into the incremental PCA framework. The combined subspace consists
of a truncated PCA subspace and a few additional basis vectors that encompass the discriminative
information, which would be lost by the discarded principal vectors. As such it contains both sufficient
reconstructive information to enable incremental learning, and the previously extracted discriminative
information to enable efficient classification as well. We demonstrate that we are able to efficiently
update the current model with new instances of the already learned classes as well as being able to
introduce new classes.
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1.2 Efficient clustering and matching for object class recognition

Many of today’s object class recognition approaches use clustering and matching of local features to
build object models. Frequently used clustering strategies are k-means and agglomerative clustering.
Other methods like mean-shift are also becoming more and more popular. However, their relative
performances have not been compared for computer vision tasks, and no guidelines are available for
judging the tradeoffs in representational capacity, accuracy, and run-time. K-means is frequently used
because of its computational simplicity. However, the clustering solution is suboptimal when the num-
ber of outliers is large. In the agglomerative clustering scheme the number of clusters is automatically
determined based on a more intuitive threshold, yet both its runtime and memory requirements are
significantly higher than for the other methods. In [4] we show, that agglomerative clustering has
several inherent properties that make it highly attractive for object class recognition: first, matching
can be done efficiently using ball-tree search in high-dimensional spaces and with large numbers of
clusters; second the clusters reflect the distribution of features resulting in fewer matches and lower
complexity; and third, recognition performance is often better than for k-means clusters. In [4] we
introduce various improvements for agglomerative clustering in the context of processing large num-
bers of high-dimensional features. In addition, we show how to use the clustering result to build a
data structure for efficient matching. These improvements result not only in a practically feasible
and efficient clustering scheme, but also in significant speed-ups for matching. In this deliverable we
experimentally validate, and present several results to analyze the performance of the new method.
Our clustering algorithm offers advantages for tasks such as database retrieval, image matching, and
object recognition (see an example in WP7, D.7.5). Our new scheme lends itself to online, continuous
learning, since it allows us to build a hierarchical clustering tree on large number of images in general,
and to incrementally compute image/object representations by matching them to the tree.

1.3 On different modes of continuous learning of visual properties

The interaction between a tutor and an artificial cognitive system plays an important role in a contin-
uous learning framework. One goal of the learning mechanism could be to find associations between
words spoken by the tutor and visual features automatically extracted by the cognitive visual system,
i.e. to ground the semantic meaning of the visual objects and their properties into the visual features.
When implementing a continuous learning mechanism, two main issues have to be addressed. Firstly,
the representation, which is used for modeling the observed world, has to allow for updates when
presented with newly acquired information. This update step should be efficient and should not re-
quire access to the previously observed data while still preserving the previously acquired knowledge.
Secondly, a crucial issue is the quality of the updating, which highly depends on the correctness of
the interpretation of the current visual input. With this in mind, several learning strategies can be
used, ranging from completely supervised learning to a completely unsupervised approach. In [5] we
discuss three such learning strategies:

• Tutor-driven approach. The correct interpretation of the visual input is always correctly given
by the tutor.

• Tutor-supervised approach. The system tries to interpret the visual input. If it succeeds to do
this reliably, it updates the current model, otherwise asks the tutor for the correct interpretation.

• Exploratory approach. The system updates the model with the automatically obtained inter-
pretation of the visual input. No intervention from the tutor is provided.
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We propose a method for finding associations between words and simple visual features, such as hue
or intensity values of the corresponding pixels. In particular we present a method for learning visual
attributes (e.g., colour, shape) and their qualitative values (e.g., red, yellow; circular, square). Using
this simple method, we then evaluate different types of incremental learning mechanisms that require
different levels of supervision provided by a tutor.
The results are as anticipated. The tutor-driven learning finds the correct associations between visual
features and visual properties of objects that yield close to optimal results. Tutor-supervised learning
also proved to be quite successful, while exploratory learning is useful only after the system has
already acquired a sufficient level of knowledge. So, as expected, there is a trade-off between the
quality of the results and the the number of necessary questions.
We then applied the same method and the learning framework for learning simple spatial relations,
such as ”A is to the left of B, ”A is near to B”, or ”A is on the right”. The learning method had to find
associations between simple positional features (the coordinates of the centers of the objects in the
image, the distance between them, etc.) and these spatial relations. In a dialogue with a tutor (initially
in a tutor driven manner, while later in a tutor supervised manner), the system was able to find suitable
associations and to adequately model the spatial relationships. Although in the beginning it did not
have any concept about spatial relations, it was gradually extending its knowledge, and after a while it
was able to produce simple descriptions of a scene using learned object visual properties and learned
spatial relations. The developed framework for continuous learning thus proved to be useful in two
different domains.

2 Future Work

We plan to extend the framework for continuous learning of object properties in several directions. We
will make it more robust, include new, more complex properties and features, and improve the feature
selection process and association model. We want to develop a unified framework for continuous
learning of object properties as well as spatial relations, and object affordances. The main emphasis
will be on exploration of different learning strategies involving different levels of human supervision.
In this respect we want to address several challenging problems and answer related questions, like
what the correct sequence of learning strategies is, how the order of training images influences the
results, what can be learned in the image domain only, without having a word description of the scene,
what the best trade-off between the quality of the results and the number of necessary questions is,
how the number of attributes to learn and the number of extracted features influence the results and
the learning curve, how to introduce prior knowledge and other types of learning, etc.
One of the principle limitations for continuous and online learning is the inability to transfer knowl-
edge between multiple learning settings. The key idea is to enable transfer of knowledge across objects
by modeling not just entire object but also their respective part-structure and similarities to other ob-
ject classes. We therefore aim to develop and learn a part-object hierarchy in a cross-modal fashion
from language and vision. This hierarchy should enable the transfer of knowledge on the object part
level as well as in the super-ordinate and even higher level object categories.
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In the following pages, the scientific papers [1, 2, 4, 5] are attached as a part of this deliverable.
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Abstract

Learning is a fundamental capability of any cognitive system. To enable efficient
operation of a cognitive agent in a real-world environment, visual learning has to be
a continuous and robust process. In this article we present a method for subspace
learning, which takes these considerations into account. We present an incremental
method, which sequentially updates the principal subspace considering weighted in-
fluence of individual images as well as individual pixels within an image. We further
extend this approach to enable determination of consistencies in the input data and
imputation of the inconsistent values using the previously acquired knowledge, re-
sulting in a novel method for incremental, weighted, and robust subspace learning.
We demonstrate the effectiveness of the proposed concept in several experiments on
learning of object and background representations.

Key words: subspace learning, incremental learning, robust learning

∗ Corresponding author. Tel.: +386 1 4776631; Fax.: +386 1 4264647.
Email address: danijel.skocaj@fri.uni-lj.si.

Preprint submitted to Elsevier Science 7 June 2005



1 Introduction

Cognitive vision has become an important emerging discipline over the last
years caused by the growing need for visually-enabled cognitive systems. The
main scientific foundations of cognitive vision are, among others, the issues
of visual architecture, representations, memory, learning, and recognition [1].
There is no doubt, however, that learning plays a major role in developing
intelligent visual and cognitive systems. Cognitive systems need to acquire the
information about the external world through learning or association, as the
complex interrelationships between percepts and their contextual frames could
never be specified explicitly through programming [2] due to their complexity
and the need for adaptability. In this paper we will focus on two important
aspects of learning: incrementality and robustness.

In order to avoid evolutionary time-scales in the development of a cognitive
system, it has to initially encompass a certain level of predefined functionality.
It then has to be able to build new concepts upon the initial ones and keep
developing throughout its lifetime. It is therefore important that the repre-
sentations employed allow learning to be a continuous, open-ended, life-long
process. In other words, the representations should not be learned once and for
all in a training stage and then used in their fixed form for recognition, plan-
ning, and acting. They should be continuously updated over time, adapting
to the changes in the environment, new tasks, user reactions, user preferences,
etc. The learning process should facilitate such incremental way of building
and updating of representations. So there should be no strict distinction be-
tween the activities of learning and recognising — these activities should be
interleaved.

This is a non-trivial challenge. Most of the state-of-the-art algorithms for
visual learning and recognition do not consider continuous learning. They
follow the standard paradigm, dividing the off-line learning stage and the
recognition stage [3–10]. Most of these approaches are not designed in a way
that would enable efficient updating of the learned model, which is a basic
prerequisite for incremental learning.

There are two issues which are important for a reliable continuous learning.
Firstly, the representation, which is used for modeling the observed world,
has to allow for updating with newly acquired information. This update step
should be efficient and should not require access to the previously observed
data while still preserving the previously acquired knowledge. And secondly,
a crucial issue is the quality of updating, which highly depends on the cor-
rectness of the interpretation of the current visual input. When the correct
interpretation of the current visual input is given by a tutor, the update step is
risk-free in the sense that the algorithm can update the model with a high con-
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fidence. On the other hand, when the information, which is to be added to the
representation, is autonomously extracted by the agent in an unsupervised
manner (e.g., using a recognition procedure) there is a risk of propagating
an erroneous extraction from the data through the learning process. Conse-
quently, the representation could be corrupted with false data, resulting in
a poorer performance and a less reliable representation. Robust mechanisms,
which prevent such propagation of errors, play an important role in the process
of continuous learning.

Robustness is thus another important capability of a cognitive system. A cog-
nitive agent is equipped with imperfect sensors and effectors, and it is supposed
to operate in a partially unpredictable real-world environment. Nevertheless,
in the vision literature ideal training conditions are most commonly assumed.
They enable the construction of a reliable model of the environment, which
can then be used for determining outliers in new images and performing ro-
bust recognition. But yet, a fully operational cognitive system should be able
also to build the representation under non-ideal conditions. Robust learning
is, however, a greater challenge than robust recognition. During the learning
process a sufficient knowledge required for determining the relevance of visual
input is still to be acquired. Therefore, robust learning should strongly be in-
tertwined with the process of continuous learning, which could provide enough
redundant information to determine statistically consistent data (this infor-
mation can also be provided by a user acting as a tutor). Only the consistent
data would then be used to build the representations of objects, enabling ro-
bust learning (and updating of the representations) under non-ideal real-world
conditions.

Traditionally, learning is performed in a batch way. However, as discussed
above, batch methods are in most cases not appropriate for cognitive vision
systems; they are not biologically plausible and they are not feasible for very
large sets of data. Nevertheless, they serve as a good basis for evaluation of
incremental methods, since they have all original input data available and
can thus extract the information, which is the most important for building
a faithful representation. The incremental methods, on the other hand, have
only one or a few original input images available, and only the representations
of the previously seen (and learned) images. Therefore, one could expect that
in general the incremental methods produce somehow inferior results than
the batch methods. A very interesting and important question is, how severe
these degradations of the results are? What factors influence the results; i.e.,
does the order of training images influence the results? These questions may
be even more pronounced in the case of non-ideal training conditions: What
happens if most of the training images are corrupted? How important is it that
the images at the beginning of the learning sequence are of sufficient quality?
When designing a representation to be used in a cognitive vision system, these
questions need to be addressed.
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A plethora of representations and approaches to visual learning and recogni-
tion has been proposed in the past. However, in the context of cognitive vision,
it is very important that whatever the type of the representation is, it enables
continuous and robust learning. In the following sections we will present im-
plementation of these principles in the case of subspace-based visual learning
and recognition. Since the PCA-based approach is originally designed as a
batch method and is inherently non-robust to non-gaussian noise, we propose
several extensions of the standard approach, which enable incremental and
robust learning.

The paper is organized as follows. In Section 2 we present the subspace-based
approach to visual learning and recognition, expose its shortcomings, review
the previously proposed improvements, and outline our approach. In two fol-
lowing sections we elaborate our approach in detail. In Section 3, we first
present the basic algorithm for incremental learning. In Section 4 we extend
this algorithm into a weighted algorithm, which considers temporal and spatial
weights. Next, we present a special case of the algorithm, which can handle
missing data. This algorithm is then advanced into a robust incremental al-
gorithm, which can detect and discard inconsistencies in the input images.
In Section 5 we present the experimental results. Finally, we summarize the
paper, expose the contributions, and outline some work in progress.

2 Subspace-based modeling of objects and scenes

Appearance of an object combines effects of its shape, reflectance properties,
pose in the scene, and illumination conditions [11]. It proves to be very diffi-
cult to separate all these factors from a set of images in order to obtain a view
and illumination-invariant representation. In the appearance-based approach,
the separation of these physical properties is circumvented. However, in order
to obtain a complete appearance-based model of an object, one has to system-
atically observe the training object under different viewing and illumination
conditions, which may result in a rather large set of images. Consequently, they
have to be efficiently represented using a compact representation. A commonly
used technique for compression of training images is based on principal compo-
nent analysis (PCA) [12]. In PCA-based approach [11] an object is represented
with the projections of the training images into the principal subspace, thus
the object recognition is reduced to the searching of the closest point in this
low-dimensional space.
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2.1 Problem statement

The standard PCA approach in its original form has several shortcomings
with respect to the premises mentioned in Section 1. PCA-based learning is
traditionally performed in a batch mode, i.e., all training images are processed
simultaneously, which means that all of them have to be given in advance; the
obtained representation cannot be updated with new images without starting
the process from the scratch. To make updating of the previously learned rep-
resentation possible, one has to take an incremental approach to the principal
component analysis.

Besides, in the standard PCA approach all pixels of an image receive an equal
treatment. Also, all the training images have equal influence on the estima-
tion of principal axes. To enable a selective influence of individual images and
pixels, PCA can be generalized into a weighted approach, which considers in-
dividual pixels and images diversely, depending on the corresponding weights.

PCA in its standard form is also intrinsically non-robust to non-gaussian noise.
The recognition method can be extended such that non-gaussian noise in test
images is detected, and the recognition is performed by considering relevant
parts of the image only, providing that a consistent representation is given.
However, if the training images are taken under non-ideal conditions, the non-
desirable effects should be detected in the learning stage already and not
included into the representation. Thus, we need a method for robust learning,
which is able to detect inconsistencies in the training images and build the
representations from consistent data only.

In the following subsection we will first review some existing extensions of the
standard PCA approach, which can cope with the problems mentioned above.
Then we will outline our approach to the solution of these problems, which
will be described in detail in the following sections.

2.2 Previous work

Several authors faced the problem of decomposing large covariance matrices
obtained from a huge number of training images. To overcome this problem
several incremental algorithms for PCA have been proposed. The first algo-
rithm for incremental PCA in the computer vision community was proposed
by Murakami and Kumar [13]. Then, Chandrasekeran et al. proposed an al-
gorithm, which is based on SVD updating [14]. Incremental singular value de-
composition was often tackled also in the past (e.g., [16,17]), and recently [15].
All these methods keep the origin of the principal subspace in the origin of
the image space, assuming that the mean of the input images is always zero.
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This is not true in general and this assumption may degrade the results of
the classification [18]. By noting this problem, Hall et al. proposed a method
for eigenspace updating, which sequentially shifts the origin of the eigenspace
according to the new images, which are being added [18,19].

Several methods for weighted learning with different derivations but very sim-
ilar realizations have also been proposed. Wiberg [20] has proposed a method
for subspace learning when data are missing based on the weighted least
squares technique. This method was later extended by Shum et al. [21]. Gabriel
and Zamir [22] proposed a method for subspace learning with any choice of
weights, where each data point can have a different weight determined on the
basis of reliability. A similar approach was also used in the work of Sidenbladh
et al. [23] and De la Torre and Black [24]. All these methods operate in a batch
mode.

The only incremental methods that explicitly deal with spatial weights are
the methods for incremental singular value decomposition of data with miss-
ing values introduced by Brand [15] and the method for incremental PCA
very recently proposed by Li [25]. With respect to temporal weights, the lat-
ter method, as well as the incremental methods proposed by Liu and Chen [26]
and Levy and Lindenbaum [27] are tailored for temporally weighted learning
considering a decay parameter thus allowing newer images to have a larger
influence on the estimation of the current subspace than the older ones. There-
fore, their methods consider only a special case of temporal weights.

A severe limitation of the basic approach to the subspace visual modeling is its
non-robustness to noise, occlusions, and cluttered background. Different ap-
proaches have been proposed to improve the robustness of the recognition:
modular eigenspaces [28], eigenwindows [29], search-window [30], adaptive
masks [31], M-estimation [32,33], hierarchial approach [34], and subsampling
hypothesise-and-test-based approach [35]. However, all these methods intro-
duce the robustness in the recognition stage. They assume that the images in
the learning stage were ideal and that the correct visual model is available.

The robust learning is a much more difficult problem. Since in the learning
stage the model of the object or the scene is being built, there is no reliable
model at the beginning of the learning process, which could be used to estimate
outliers. The authors coped with this problem in different ways. Xu and Yuille
proposed an algorithm, which introduced robustness on the image level [36].
During the learning stage, they discard images, which are inconsistent with the
others. However, in many practical applications this is not satisfactory. The
robustness on the pixel level should be assured meaning that only single pixels
should be discarded and not the entire images. Gabriel and Zamir tried to solve
this problem using a weighted singular value decomposition [22]. Recently,
De la Torre and Black proposed a method for robust principal component
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analysis based on M-estimation [37,24]. This method, as well as the related
method proposed by Skočaj et al. [38], perform well on images with sufficient
temporal correlation, but are very time consuming. Very recently, Aanæs et
al. [39] proposed a method for robust factorization, which is tailored for a
different type of problems, however, some of its principles are relevant for
robust eigenspace learning as well. These methods also operate in a batch
mode, processing all training images simultaneously. Furthermore, they are
executed in an iterative manner by repeating time consuming procedures on
the entire set of training images. Therefore, the processing time is usually
very long, and even becomes prohibitive when the number of training images is
large. To overcome these problems, only very recently the incremental methods
for robust estimation of the principal subspaces were proposed [40,25].

2.3 Our approach

The incremental algorithm, which we will present in this paper, produces the
identical principal subspace as the method proposed by Hall et al. [18]. How-
ever, the subspace is obtained in a different way. A significant advantage of
our method is that it is able to treat different images differently, which enables
to extend it into a weighted incremental method. Furthermore, our method
maintains the low-dimensional representations of the previously learned im-
ages throughout the entire learning stage, therefore enabling that each training
image can be discarded immediately after the update.

Our weighted incremental approach considers arbitrary temporal and spatial
weights, thus it is more general than the methods proposed in [26], [27], and
[25]. The incremental method is also adapted for learning from incomplete
data, which, in contrast to the method presented in [15], considers also the
mean and updates its value at each step adequately. We also propose a method
for incremental robust learning, which sequentially determines consistencies
in the input images and reconstructs inconsistent pixels using the previously
acquired knowledge. All the proposed methods will be described and evaluated
in detail in the following sections.

3 Incremental PCA

In this section we propose a method for incremental learning. It takes the
training images sequentially and computes the new eigenspace from the sub-
space obtained in the previous step and the current input image.

Let us suppose that we have already built an eigenspace from the first n im-
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ages. In the step n+1 we could calculate a new eigenspace from the reconstruc-
tions 1 of the first n input images and a new image using the standard batch
method. The computational complexity of such an algorithm would be pro-
hibitive, since at each step we would have to perform the batch PCA on a set
of high-dimensional data. However, identical results can be obtained by using
low-dimensional coefficient vectors 2 of the first n input images instead of their
high-dimensional reconstructions, since coefficient vectors and reconstructed
images encompass the same visual variability, i.e., they are just represented
in different coordinate frames. Since the dimension of the eigenspace is small,
this algorithm is computationally very efficient.

The summarized procedure for one update of the current eigenspace is outlined
in Algorithm 1 3 . This algorithm increases the dimension of the subspace by
one. After the update, we can discard the least significant principal vector to
preserve the dimension of the subspace [41].

The initial values of the mean image, the eigenvectors, and the coefficients can
be obtained by applying the batch PCA on a small set of images. Alternatively,
one can simply set the first training image as the initial eigenspace by assigning
µ(1) = x1, U

(1) = 0M×1, and A(1) = 0. In this way, the algorithm is completely
incremental, requiring only one image to be available at each time instant.

It is worth noting that this algorithm produces the identical principal subspace
as the method proposed by Hall et al. [18]. However, the subspace is obtained
in a different way. In contrast to our method, which between the learning steps
passes coefficient vectors of all training images, the Hall’s method passes only
the eigenvalues. While one may consider this as an advantage, since less data
is being passed from step to step and calculation of the covariance matrix is
faster, this can also be disadvantageous, because the coefficients are not es-
timated and maintained during the learning process, thus less information is
available. Our algorithm calculates the coefficients at that time instant, when
the particular image is added to the model, and then maintains their values
throughout the process of incremental learning. This is slightly slower, how-
ever it has two advantages. The first advantage is, that each image can be
discarded immediately after it has been used for updating the subspace. This
is very appropriate (and possibly required) for on-line scenarios (e.g., naviga-

1 An image can be reconstructed by transforming its subspace coefficient vector
into the high-dimensional input image space.
2 Coefficient vectors are composed of coefficients, which are obtained by projecting
an image onto the principal axes spanning the eigenspace.
3 U ∈ IRM×k denotes a matrix of k M -dimensional principal axes, A ∈ IRk×n

is a matrix of n k-dimensional coefficient vectors, µ ∈ IRM is the mean image.
Superscript denotes the step which the data is related to (U(n) denotes the values
of U at the step n). 1m×n denotes a m×n matrix of ones. ‖r‖ denotes the L2 norm
of the vector r.
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Algorithm 1 : Incremental PCA

Input: current mean vector µ(n), current eigenvectors U(n), current coeffi-
cients A(n), new input image x.

Output: new mean vector µ(n+1), new eigenvectors U(n+1), new coefficients
A(n+1), new eigenvalues λ(n+1).

1: Project a new image x into the current eigenspace:
a = U(n)�(x − µ(n)) .

2: Reconstruct the new image: y = U(n)a + µ(n).
3: Compute the residual vector: r = x − y.

r is orthogonal to U(n).
4: Append r as a new basis vector:

U′ =
[
U(n) r

‖r‖

]
.

5: Determine the coefficients in the new basis:

A′ =

⎡
⎢⎣ A(n) a

0 ‖r‖

⎤
⎥⎦ .

6: Perform PCA on A′. Obtain the mean value µ′′, the eigenvectors U′′, and
the eigenvalues λ′′.

7: Project the coefficient vectors to the new basis: A(n+1) = U′′�(A′ −
µ′′11×n+1) .

8: Rotate the subspace U′ for U′′: U(n+1) = U′U′′ .
9: Update the mean: µ(n+1) = µ(n) + U′µ′′ .

10: New eigenvalues: λ(n+1) = λ′′ .

tion of mobile robots with limited memory resources). And finally, since more
information is encompassed in the model, our method can be advanced into
a method for weighted learning of eigenspaces, which can consider arbitrary
temporal weights.

We will demonstrate the behavior of the proposed algorithm on a simple 2-D
example. The 2-D input space contains 41 points shown as black dots in Fig. 1.
The goal is to estimate 1-D principal subspace, i.e., the first principal axis.
The eigenspace is being built incrementally. At each step one point (from the
left to the right) is added to the representation and the eigenspace is updated
accordingly. Fig. 1 illustrates how the eigenspace evolves during this process.
The principal axis, obtained at every sixth step, is depicted. The points, which
were appended to the model at these steps, are marked with crosses. One
can observe, how the origin of the eigenspace (depicted as a square) and the
orientation of the principal axis change through time, adapting to the new
points, which come into the process. At the end, the estimated eigenspace,
which encompasses all training points, is almost identical to the eigenspace
obtained using the batch method.

9
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Fig. 1. Incremental learning.

4 Weighted and robust approach

In order to achieve selective influence of pixels and images, the individual
pixels as well as images can be weighted with different weights. In practice,
it is useful to deal with two types of weights: temporal weights tw ∈ IR1×N ,
which put different weights on individual images and spatial weights sw ∈ IRM ,
which put different weights on individual pixels within an image 4 .

4.1 Temporal weights

Temporal weights determine how important the individual images are for the
estimation of principal subspace. If the temporal weight for one of the images
is higher than the weights for the other images, the reconstruction error of this
image should be smaller than the reconstruction errors of the other images.
Similarly, the contribution of its principal components to the estimation of
the variance should be larger in comparison with that of the other principal
components.

From this observation we can derive an algorithm for estimation of the prin-
cipal subspace considering temporal weights. The principal axes, which maxi-
mize the weighted variance of the projections of the input images onto the prin-
cipal axes, can be obtained by eigendecomposition (or, similarly, singular value
decomposition) of the weighted covariance matrix. If the matrix X̂ ∈ IRM×N is
composed from N re-scaled input vectors centered around the weighted mean:

x̂j =
√

twj(xj − µ), j = 1 . . .N , (1)

4 The left superscript is used to distinguish between temporal (tw) and spatial (sw)
weights.
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the weighted covariance matrix can be calculated as

C =
1∑N

j=1
twj

X̂X̂� . (2)

Using this algorithm, the estimated principal subspace does not depend on
all training images equally. For instance, if a training image has the weight
2, while all the other images have the weight 1, the result of this algorithm
equals the result of the standard PCA algorithm, which has two copies of the
particular image in the training set.

It is quite straightforward to incorporate the temporal weights into the incre-
mental algorithm. The core of this algorithm is still the standard batch PCA
on low-dimensional data (step 6 of Algorithm 1). We can replace this standard
batch PCA with the weighted algorithm, which considers temporal weights.
This is feasible, because our incremental algorithm maintains low-dimensional
coefficients of all input images throughout the process of the incremental learn-
ing (in contrast with the other incremental approaches). Therefore, the repre-
sentation of each image can be arbitrarily weighted at each update.

To illustrate the behavior of the proposed algorithm, we put different weights
on the training points from our simple 2-D example. We set temporal weights
to twj = j2, which gives a larger influence to the recent points. Fig. 2 depicts
the evolution of the eigenspace. By comparing this figure with Fig. 1 it is ev-
ident how the weights affect the learning process. At the end of the learning
sequence, the weighted mean vector is closer to the points at the end of the
point sequence, since the weights of these points have higher values. The prin-
cipal axis is oriented in such a direction that enables superior reconstruction
of these points.
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Fig. 2. Weighted incremental learning.
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4.2 Spatial weights

Spatial weights control the influence of individual pixels within an image.
Therefore, if a part of an image is not reliable or important for the estimation
of principal components, its influence should be diminished by decreasing the
weight of the corresponding pixels.

Incorporating spatial weights into the process of incremental learning is more
complex. After the current eigenspace is updated with a new input image, this
image is discarded and only its low-dimensional representation is preserved.
Therefore, in the later stages we can not associate weights to individual pixels.
This can be done only during the update.

Let us assume that the weights range from 0 to 1. If a weight is set to 1, it
means that the corresponding pixel is fully reliable and should be used as is.
If a weight is set to 0, it means that the value of the corresponding pixel is
irrelevant or erroneous. We can recover an approximate value of this pixel by
considering the knowledge acquired from the previous images. By setting the
weight between 0 and 1, we can balance between the influence of the value
yielded by the current model and the influence of the pixel value of the input
image.

We can achieve this by adding a preprocessing step to the update algorithm.
First we calculate the coefficients of the new image x by using the weighted
method. Instead of using the standard projection, the coefficients aj are ob-
tained by solving an over-determined system of linear equations

√
swixi =

√
swi

k∑
j=1

ajuij , i = 1 . . .M (3)

in the least squares sense. By reconstructing the coefficients we obtain the re-
constructed image y which contains pixel values yielded by the current model.
By blending images x and y, considering spatial weights by using the following
equation

xnew
i = swixi + (1 − swi)yi , i = 1 . . .M , (4)

we obtain the image which is then used for updating the current eigenspace.
In this way, a selective influence of pixels is enabled also in the incremental
framework.
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4.3 Missing pixels

In the real world applications, it is often the case that not all data is available.
The values of some pixels are missing or they are totaly non-reliable. Such
pixels are referred to as missing pixels. Estimation of the principal subspace
in the presence of missing pixels can be regarded as a special case of spatially
weighted PCA where the weights of missing pixels are set to zero.

The blending step in the algorithm for weighted incremental learning reduces
to the imputation of missing pixels. Before the current eigenspace is updated
with the new image, the missing pixels have to be optimally filled in. Since not
all pixels of an image are known, some coordinates of the corresponding point
in the image space are undefined. Thus, the position of the point is constrained
to the subspace defined with the values of the known pixels. Given the current
principal subspace U(n), which models the input data seen so far, the optimal
location is the point in the missing pixels subspace which is closest to the
principal subspace. This point is obtained by filling-in the missing pixels with
the reconstructed values, which are calculated from the coefficients estimated
from the known pixels only. Since this coefficients reflect the novel information
in the new image contained in the known pixels, we may assume that the
prediction in the missing pixels will be fine as well. Such an improved image
is the best approximation of the correct image that we can obtain from the
information contained in the known pixels and in the current eigenspace.

Thus, the new image x if first projected into the current principal subspace
U(n) by solving a system of linear equations (3) arising from non-missing pixels.
The obtained coefficient vector a is then reconstructed and the values in the
reconstructed image are used for filling-in the missing pixels. The resulting
image is then used for updating the current eigenspace.

A practically equivalent rule for imputation of missing pixels was proposed
also by Brand in the context of incremental singular value decomposition [15].
As shown in [15], such a rule for imputation of missing pixels minimizes the
distance of the vector representing a new image to the current subspace and
maximizes the concentration of the variance in the top singular values. Con-
sequently, such imputation rule minimizes the rank of the updated SVD guar-
anteeing parsimonious model of the data.

4.4 Robust approach

The developed method for subspace learning from incomplete data can be
further extended in a method for robust learning. In the robust framework
the positions of ‘bad’ pixels are not known in advance, however, we are aware
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that images may contain outliers. We treat as outliers all pixels, which are
not consistent with the information contained in other images. Since at each
step we have a current model of the object or scene seen so far, we can detect
outliers in the new image and treat them as missing pixels.

This is achieved by projecting the new image into the current eigenspace in
a robust manner. Instead of a simple projection, a robust procedure based
on subsampling and hypothesize-and-select paradigm is used [35]. Coefficients
are obtained mainly from inliers, thus their reconstructions tend to the correct
values in outliers as well. Consequently, the reconstruction error in outliers is
large, which makes their detection easier. Therefore, to make the incremen-
tal learning robust, we first detect outliers in a new image and replace their
values with reconstructed values, which are good approximations of the cor-
rect values. Such an improved outlier-free image is then used for updating
the eigenspace. Providing that the outliers are detected during the learning
process using the robust procedure, the obtained eigenspace is robust as well.

We can refer to this procedure as a ‘hard’ robust algorithm, since the pixels,
which are detected as outliers, are replaced with reconstructed values, while
the remaining pixels stay intact. An alternative ‘soft’ approach is to weight
each pixel according to its reliability, which is determined with respect to
the reconstruction error. The new image x is thus projected into the current
eigenspace using the simple (and fast) standard projection and the obtained
coefficients are used for reconstruction (y). The obtained reconstruction error
yields the spatial weights (e.g., swi = 1/(|xi − yi| + 1)), which are then used
by the weighted algorithm to update the current principal subspace.

To demonstrate the behavior of the robust incremental algorithm, we signif-
icantly changed the values of the second coordinate of five points in our 2-D
example. Fig. 3 shows that when the non-robust incremental method is used,
these outlying points pull the origin in a wrong direction and incorrectly orient
the estimated principal axis. On the other hand, the robust method sequen-
tially detects the outlying coordinate values, replaces these values with their
reconstructions (shown as circles) and updates the eigenspace accordingly. At
the end, the principal axis obtained using this approach is very close to the
optimal one.

An important advantage of such incremental method is that it processes only
one image at each step, while the iterative batch robust methods process all
images at each iteration. For that reason, the incremental method is signif-
icantly faster and enables robust learning from a large number of training
images. Since the model is being incrementally updated with new images, this
method is very suitable for on-line applications as well.

On the other hand, it suffers (like all incremental methods) from a potential
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Fig. 3. Robust incremental learning.

danger of error propagation. If the initial eigenspaces, built in the early stages
of the learning process, encompass only a limited number of appearances of an
object or a scene, then all the pixels in the subsequent images, which signifi-
cantly differ from the appearances of the first images, are considered as outliers
and no novel information is added to the model. This particularly holds true
for the ‘hard’ robust version of the updating algorithm. Therefore, the initial
eigenspace, which is built in the beginning of the learning process, should be
reliable and stable. It should roughly model heterogeneous appearances of an
object or a scene and it should be obtained from a set of pixels containing as
few outliers as possible. When the model encompasses a sufficient number of
appearances it becomes more stable and this is no longer a problem [42].

5 Experimental results

5.1 Incremental PCA

Principal component analysis in its standard batch form is optimal in the sense
of the squared reconstruction error. Thus, its incremental version necessarily
degrades the results. But, how severe is this degradation? Are the results still
usable? What additional factors influence the results? To clarify these issues
and to evaluate the proposed algorithm we will explore the following questions:

• How much does the incremental method degrade the results in comparison
with the batch method?

• How does discarding of training images influence the results?
• How does the order of the training images influence the results?

To answer these questions we performed several experiments. First, we built
eigenspaces of various dimensions from 720 images of twenty objects from the
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COIL database (Fig. 4(a)). Such number of training images can be processed
using the batch method allowing a fair comparison. Fig. 4(b), depicts the mean
squared reconstruction errors (MSRE) of the images reconstructed from the
coefficients obtained by projecting the training images into the eigenspaces,
which were built using the batch method (in the plots indicated as batch)
and the proposed incremental method (incXseq). The results are very similar;
MSRE obtained using the incremental method is only 3.1% worse on the av-
erage. The curve incAseq represents reconstruction errors of images obtained
from the coefficients, which were calculated at that time instant, when the
particular image was added to the model and then maintained throughout
the process of incremental learning. Using this approach, an image can be
discarded immediately after the model is updated. As one can observe, the
squared reconstruction errors are still quite similar. In this case, the degrada-
tion of the results is 8.6% on the average.

In the first experiment the images were coming into the learning process in
a sorted order, i.e., first all images of the first object, then all images of the
second object, and so on. In the second experiment we changed this sequence
by giving the training images to the learning process in a random order. Thus,
the eigenspace in the early stage of the learning process already encompassed
images of several objects. Therefore, it was a good approximation of the final
eigenspace. The incoming training images in the later stages were just refin-
ing the current eigenspace. Consequently, the results have improved. MSRE
produced by incArnd and incXrnd approaches, are only 3.1% and 1.3% worse
than the results of the batch method, respectively.

Fig. 4(c) shows the MSRE of all 720 images for the dimension of the eigenspace
50. One can observe, that the curves representing the incremental approach
follow the curve produced by the batch method very closely without large
deviations over the whole sequence of images.

All the results clearly indicate that the incremental method is almost as effec-
tive as the batch. In all experiments the squared reconstruction error degraded
for less than 10%, which means that the coefficients are still estimated well
enough for most applications. It is also evident that the sequential order in-
fluenced the results. What really matters is the order of the training images
in the early stages of the learning process. To obtain very good results, these
images should be heterogeneous, encompassing different objects and views.
This assures that the evolving eigenspace is rich and comprehensive enough in
the beginning of the learning process already and that it is not specialized for
representing a specific object only. In this way, the eigenspace can be adapted
to the images of all objects more effectively.
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(a)
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Fig. 4. (a) Training images. MSRE produced by the batch and four versions of the
incremental approach: (b) for various dimensions of the eigenspace, (c) for dimension
50.

5.2 Incremental weighted method

Then, we put on each image a weight, which was proportional to the second
power of the image index, giving more influence to the objects and the images
at the end of the image sequence. The results of incremental and temporally
weighted method are depicted in Fig. 5. The reconstruction errors of the in-
cremental weighted method (WincA, WincX ) do not differ significantly from
the results of the batch weighted method (Wbatch). And certainly, the results
of the batch and the incremental weighted methods are better than the results
of the standard methods for images with larger weights. This is also reflected
in better weighted squared reconstruction errors as presented in Table 1.

Table 1
Weighted reconstruction errors of batch and incremental methods.

batch incA incX Wbatch WincA WincX

617 658 648 554 583 565

Next, we present the results of the proposed incremental method for learning
from incomplete data to improve the results of the visually-based localization
of a mobile robot [43]. In the learning stage, the representation of the environ-
ment (our lab in this case) is built from panoramic images taken from several
locations. We can simulate the in-plane robot rotation by shifting cylindrical
panoramic images and generating spinning images [44]. Three such views of
two locations are depicted in Figs. 6(a,b). We thus obtain all necessary views
of the environment, which are used for building the representation using PCA.
Later, in the localization stage, a novel image is taken and projected into the
eigenspace. The location of the robot is determined by searching for the closest
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Fig. 5. Reconstruction errors of batch and incremental standard and weighted meth-
ods.

projected training image.

However, due to the construction of the panoramic sensor, not only the envi-
ronment is captured in the image, but also the holder of the panoramic mirror
(the dark vertical bar in Figs. 6(a,b)) and the surface of the robot (lower part
of the images). If the robot is oriented differently in the localization stage,
the holder appears in a different position in the image, which makes the test
image less similar to the correct training image and the localization can fail.

The proposed method offers a solution to this problem. Since we know, that
the holder is not a part of the environment, we can mask it out during the
learning, and learn only the parts, which belong to the environment. We can
achieve this by using the incremental method for learning from incomplete
data considering undesirable parts as missing pixels (see Figs. 6(c)).

(a)

(b)

(c)

Fig. 6. (a,b) Spinning images from two locations. (c) Weights.

In the learning stage, the robot was moving from one part of the lab to the
other. In the localization stage, the robot returned to the starting position
following approximately the same path in the opposite direction. The results
are presented in Fig. 7. The gray levels represent coefficient errors; i.e., the
distances between the projections of the test images (given in the x axis) and
the projections of the training image (y axis). Since the path of the robot was
approximately the same as in the learning stage, we expect that the coeffi-
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cient error would be minimal on the diagonal of the error matrix. Since the
standard approach incorporated in the representation also the vertical holder,
which was in a different image position in the localization stage, the results of
the standard method are not very good (the diagonal of the error matrix in
Fig. 7(a) is very indistinct). In contrast, the proposed method did not incor-
porate the holder into the representation of the environment. Consequently,
the values around the diagonal in Fig. 7(b) are significantly smaller, which
makes the localization much more accurate and reliable.

(a) (b)

Fig. 7. Coefficient errors using (a) standard and (b) proposed method.

5.3 Incremental robust method

We will demonstrate the performance of the robust incremental algorithm
on the problem of the background modelling. The goal of the background
modeling is to build a model of the background by detecting and discarding the
objects (foreground) in a sequence of images [45,37,38]. Due to its incremental
nature and simplicity the proposed incremental PCA is very well suited for
solving such type of problems.

In order to obtain quantitative results of the proposed robust incremental
method, we first tested its performance on the images with known ground
truth. We synthetically applied gradual illumination changes and nonlinear
illumination changes (a shadow—the vertical “cloud”) to a set of 100 images.
In addition, we added, as an outlier area, a square on a randomly chosen
position in 80% of the images (see Fig. 8(a), the first row). The goal was
to learn the representation capturing the illumination variations (linear and
nonlinear) but discarding the outliers.

We tested several approaches to exhibit some properties of the proposed
method. The results are given using two measures. The first measure is the
mean squared reconstruction error of the reconstructed outlier-free (ground
truth) images (Table 2). Besides MSRE, a precision/recall curve is given for
each method in Fig. 8(b). In addition, some reconstructed training images are
visualized in Fig. 8(a) (rows two to five).
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First, we applied the standard batch method on ground truth images, i.e.,
training images without outliers (in the table and plot indicated as batchOnGT ),
which produced optimal results. Then, we applied the standard batch method
(batchStd) on the training images containing outliers, which generated poor
results, since the standard method is sensitive to occlusions. Next, we ap-
plied the robust batch method [38] (batchRob), which produced better results.
However, since significant occlusions were present in the training images, the
results were still not satisfactory.

Then, we tested the proposed robust incremental method. First we applied this
method under the assumption, that the occlusions were known and regarded as
missing pixels (robIncKnownOL). The results are excellent; they are very close
to the optimal ones. This means that the algorithm for updating the eigenspace
works fine even if some data in the input images are missing and that the
efficiency of the robust incremental algorithm mainly depends on the ability
to detect outliers. It turns out that this ability significantly depends on the
initial stage of the learning process. If the seed (the initial eigenspace, which
is used for the initialization of the incremental algorithm) is not reliable and
is affected by occlusions (robIncPoorSeed), the results of the proposed ‘hard’
robust incremental method are not very good. If the seed is too small and is
built from the training images, which are not dispersed over the whole image
sequence (robIncNonDispSeed), the results are very poor. To demonstrate this,
we built a seed using a few images from the first half of the image sequence.
Consequently, the first half of the images were reconstructed well, however
the images from the end of the sequence were reconstructed poorly. Since
not even a rough appearance of these images was encompassed in the initial
eigenspace, all the changes in these images were considered to be outliers and
were not added to the representation. For this reason, the vertical cloud was
not modelled correctly as can be observed in the fourth row of Fig. 8(a). At
last, we built the seed from the images with the lowest reconstruction errors
(images without outliers), which were evenly dispersed over the whole image
sequence (robIncGoodSeed). This approach produced excellent results, which
are rather close to the optimal ones. This indicates that when the eigenspace,
which is being updated, is stable enough, i.e., roughly encompassing different
views of objects or scenes, the outliers in the training images are successfully
detected and correctly reconstructed.

Table 2
MSRE obtained using different learning methods and seeds.

batch robInc

OnGT Std Rob KnownOL PoorSeed NonDispSeed GoodSeed

1.7 61.1 29.8 2.0 21.2 166.0 2.9

Then we performed the experiments on the real-wold PETS’2001 training
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(a) (b)

Fig. 8. (a) From top to bottom: Training images, reconstructions using batchStd,
batchRob, robIncNonDispSeed, and robIncGoodSeed approaches, respectively. (b)
Precision/recall curves.

sequences 5 . Six images from one sequence are depicted in Fig. 9(a). The goal
was to detect pedestrians, cars, and bikers, which are crossing the scene and
to adapt the background model accordingly. We built the eigenbackground
model consisting of eight eigenvectors. The backgrounds estimated at six time
steps of the modelling process (i.e., the reconstructed training images, which
were processed in those moments) obtained using three different approaches
are presented in Figs. 9(b-d).

First we applied the proposed non-robust incremental method. One could
expect that the outliers (pedestrians and cars), which significantly differ from
the background, are considered as noise and are modeled with the eigenvectors
corresponding to small eigenvalues and as such are not included in the principal
subspace representations. However, this is not true in general; one can observe
that the cars are still included in the background model in the third and fourth
image in Fig. 9(b).

Then we applied the ‘hard’ robust method. This method successfully detected
the pedestrians and cars, reconstructed their values and excluded them from
the representation (Fig. 9(c)). In the subsequence of images around the images
presented in the third and the fourth columns in Fig. 9 one car leaves the
scene and another car parks in the spare lot. This changes are detected as
‘foreground’ and do not affect the background model. Using the ‘hard’ robust
procedure, the background adapts only to smooth changes, which are not
detected as outliers.

If a more flexible model is required, we can use the temporally weighted ‘soft’
robust method. In this case, the outliers are only down-weighted and are not

5 The images are publicly available on http://www.visualsurveillance.org/PETS2001.
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completely replaced. As a consequence, they are not included in the model, if
they appear only for a short period of time, however, if they appear for a longer
period, they are gradually incorporated in the model of the background. This
is evident from the last two images in Fig. 9(d). The car, which has left the
scene is not a part of the background any more, while the new car, which has
parked in the spare lot, has been integrated into the current background. In
this way, the eigenbackground model can be more adaptive, accommodating
to the current appearance of the scene.

(a)

(b)

(c)

(d)

Fig. 9. (a) Six input images from PETS’2001 training sequence. Background ex-
tracted by (b) non-robust IPCA, (c) ‘hard’ robust IPCA, and (d) temporally
weighted ‘soft’ robust IPCA.

6 Conclusion

Learning is a fundamental capability of any cognitive vision system. In order
to enable efficient operation of a cognitive agent in a real-world environment,
visual learning has to be a continuous and robust process. Learning should be
an incremental, open-ended, life-long process, which keeps continuously up-
dating the representations by adapting them to the changes in the changing
world. At the same time, this process should also be robust; it should be able
to filter out undesirable input signals and to update the representations using
relevant data only. It is important that regardless of the type of representa-
tion employed, a cognitive vision system should allow incremental and robust
learning. After discussing these requirements in general in the beginning of
this article, we then focused on the subspace-based representations, which in
their original form do not allow continuous nor robust learning. To overcome
these shortcomings, we extended the standard PCA approach.

22



We proposed a novel subspace method for weighted and robust incremental
learning. The proposed incremental algorithm for PCA has the same general
advantages over the batch method as other previously reported incremen-
tal approaches: it is significantly faster when the number of training images is
high, and it enables updating the current eigenspace to allow for on-line learn-
ing. In addition, there are two advantageous features that make our method
fundamentally distinct. Firstly, our method maintains the coefficients through-
out the process of learning, thus the original images can be discarded immedi-
ately after the update. For some applications with a limited amount of memory
resources (e.g., mobile platforms, wearable computing) this may be the only
option. Using other methods, the images have to be kept in the memory until
the end of the learning process, if we want to obtain their representations in
the final eigenspace. And secondly, since our method maintains the coefficients
of all images, it can be advanced into a weighted method, which considers an
arbitrary temporal weight at each image at every step. Furthermore, the pro-
posed weighted method also handles spatial weights, which can be set for each
pixel in every image separately. Finally, by adding the robust preprocessing
step, the method is suited for visual learning in non-ideal training conditions
as well. Due to its incremental nature, this method for robust learning of
eigenspaces is significantly faster than previously proposed batch methods.

The method is suitable for continuous on-line learning, where the model adapts
to input images as they arrive. The algorithm is flexible, since it is able to treat
each pixel and each image differently. Therefore, more recent (or more reliable,
or more informative, or more noticeable) images can have a stronger influence
on the model then others. The principles of short-term and long-term memory,
forgetting, and re-learning can be implemented and investigated. These topics
are the subject of our ongoing research along with applying these principles
to other types of representations.
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Telč, Czech Republic, February 6–8
Czech Pattern Recognition Society

Why to Combine Reconstructive and Discriminative Information for Incremental
Subspace Learning

Danijel Skočaj1, Martina Uray2, Aleš Leonardis1, and Horst Bischof2
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Abstract In the paper we propose a novel method for in-
cremental visual learning by combining reconstructive and
discriminative subspace methods. This is achieved by em-
bedding LDA learning and classification into the incremen-
tal PCA framework. The combined subspace consists of a
truncated PCA subspace and a few additional basis vec-
tors that encompass the discriminative information, which
would be lost by the discarded principal vectors. As such
it contains both sufficient reconstructive information to en-
able incremental learning, and the previously extracted dis-
criminative information to enable efficient classification as
well. We demonstrate that we are able to efficiently update
the current model with new instances of the already learned
classes as well as to introduce new classes.

1 Introduction

Visual learning and recognition/categorization has become
an important and popular research topic in the computer vi-
sion community. Several different methods have been pro-
posed in recent years. Based on the type of object repre-
sentations they use, most of them can be classified in one of
two main categories: reconstructive or discriminative meth-
ods. The reconstructive representations strive to be as in-
formative as possible in terms of well approximating the
original data. Their goal is predominantly to encompass
the variability of the training data and are as such not task-
dependent. On the other hand, discriminative methods usu-
ally do not provide good reconstruction of the data, they
are task-dependent, but spatially and computationally much
more efficient and often give superior classification results
compared to the reconstructive methods.

We will study the properties of these two types of meth-
ods from the perspective of incremental learning. Incremen-
tal learning is very often a desirable or even essential prop-
erty of an artificial cognitive system. In contrast to the batch
approaches, which process all training images simultane-
ously, incremental methods process one image after another.
Thus, only one image (or maybe a few of them) is processed
at each step, and only the representations of the previously
encountered images are available; the original training im-
ages are discarded immediately after being processed. The
advantages of an incremental over the batch method are that
not all training images have to be given in advance (enabling
online learning), that less calculation time is needed (to up-
date a model is less expensive than to build a new model
from scratch) and that less storage is required (since only
representations of the images are being kept). In the case of
reconstructive methods, these representations can be used as
a good approximations of the discarded training images but
in general, this does not hold true for discriminative meth-
ods due to the lack of the information that would enable a
good reconstruction. Thus, in order to enable incremental
updating of discriminative representations as well, we have
to combine them with the reconstructive methods.

This is the problem that we want to address in this pa-
per. We will create a representation, which combines the
reconstructive models and discriminative classifiers. The
reconstructive property of such a representation will bring
sufficient redundancy in the data to enable updating of the
representations, while the discriminative property of the rep-
resentation would still keep the representation efficient and
effective.

In this paper we focus on the Principal Component
Analysis (PCA) [11] and the Linear Discriminant Analysis
(LDA) [4]. PCA is a well known reconstructive method,
which encompasses the reconstructive task-independent in-
formation that can approximate the training data well. LDA,
on the other hand, is a discriminative method, which keeps
only the discriminative task-dependent information about
input images. While the LDA is recognized to be supe-
rior over the PCA in recognition tasks, it is less suitable for
incremental learning due to the reasons elaborated above.
Therefore we propose to combine both methods to achieve
the best of both worlds.

We thus embed the LDA learning and classification into
the PCA framework facilitating incremental updating of the
already learned representations. The combined subspace
consists of a truncated PCA subspace and a few additional
basis vectors that encompass the discriminative information,
which would be lost by the discarded principal vectors. As
such it contains both sufficient reconstructive information
to enable incremental learning, and the previously extracted
discriminative information to enable efficient classification
as well.
1
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The proposed method allows for two types of updating
the current representation, thus coping with different aspects
of incremental learning. It is possible to add new instances
of known classes such that the representations of the classes
improve and adapt to the new appearances of the known ob-
jects/subjects improving the classification results. Addition-
ally it is possible to add new classes such that previously not
observed classes can be introduced and their representations
can be created and then maintained through the process of
incremental learning. Both types of learning that fully ex-
ploit the reconstructive and discriminative nature of the pro-
posed method are presented and experimentally evaluated
demonstrating the advantages of the proposed approach.

The paper is organized as follows. First we discuss re-
lated work in Section 2. In Section 3 we introduce the nota-
tion and define the problem, while we describe the proposed
method in Section 4. To verify our claims we present the ex-
perimental results in Section 5. Finally, we summarize the
paper, expose the contributions, and outline some possible
extensions.

2 Related work
Several research topics are directly or indirectly related to
the method presented in this paper: combining the recon-
structive and discriminative methods, incremental learning,
and combining different subspace methods. In this section
we will discuss some of them and expose the differences
with respect to the method we are proposing.

Combination of generative and discriminative methods as
well as integration of representative and discriminant mod-
els have gained a lot of attention, which resulted also in
a plethora of methods published very recently [6, 10, 14].
Most of these methods aim at improving the classification
results or increasing the robustness. They do not, however,
consider incremental learning.

Incremental learning have been better studied in the do-
main of subspace methods, especially the reconstructive
ones. Many methods for incremental building of principal
subspaces have been proposed [3, 8] and different exten-
sions have also been introduced, such as weighted [12] and
robust incremental learning [13, 22]. These methods are un-
supervised and do not take into account the prior informa-
tion about object labels, thus they do not exploit all informa-
tion, which is available for classification.

Several methods for incremental LDA have also been al-
ready proposed [9, 15, 20, 21, 24]. Most of these methods
focus on the updating of the between class scatter matrix and
the within class scatter matrix, thus keeping the discrimina-
tive information only. In contrast, our method keeps updat-
ing the current representation of the images encompassing
the discriminative and reconstructive information as well.
The richer representation allows for updating of the acquired
knowledge in a more powerful way.

PCA and LDA have often been combined in the past.
Even some of the methods for incremental LDA mentioned
above involve the estimation of PCA subspaces. Also in
many other discriminative approaches PCA is first used as a
preprocessing step for dimensionality reduction or to avoid
2

singularity problems [1, 2, 23, 25]. In addition, many ap-
proaches aim at improving the classification power of dis-
criminative methods by incorporating the PCA information
in different ways [16, 17]. We rather focus on incremen-
tal aspects of the learning process; this is the main reason
for combining LDA with PCA. In our approach the methods
are tightly coupled in a principled way; the LDA-relevant
information is being considered during the creation of the
PCA subspace as well, resulting in a combined representa-
tion, which is the main novelty of the proposed approach.

3 Problem definition
Let n be the number of images in the training set, each of
them containing m pixels, aligned in the columns of the ma-
trix X ∈ IRm×n, let µ ∈ IRm be the mean image, and c the
number of classes the images belong to. The goal of sub-
space methods is to find subspaces that transform the input
data (images) in a way that enables efficient classification of
novel images. Reconstructive and discriminative methods
offer different solutions to this problem.

Reconstructive methods are designed to find a linear
representation that best describes the input data, i.e.1,

X ≈ UkAk + µ11×n (1)

where k vectors in the columns of Uk = [u1, . . . ,uk] ∈
IRm×k form the reconstructive basis and n vectors in the
rows of Ak = [aT

1 , . . . ,aT
n ]T ∈ IRk×n are referred to as

coefficient vectors, i.e., the k-dimensional representations
of the training images.

PCA looks for a low-dimensional representation of the
data which minimizes the squared reconstruction error [11].
Therefore it guaranties the best possible representation of
the input images in a linear subspace of a given dimension k.
PCA is thus an unsupervised method, which does not look
for differences between the images belonging to different
classes, but rather tries to model each image as well as pos-
sible. Hence it keeps as much information about the training
images as possible, and stores it in k-dimensional represen-
tations (usually c � k � n � m). Since the model is not
built for a specific task, it is general and task-independent.

Discriminative methods are designed in a different way
and are particulary suited for classification tasks. They as-
sume that prior knowledge about the classes of the train-
ing data is available, which is integrated in the supervised
learning process to produce a small number of hyperplanes
that are capable of separating the training data. To be more
specific, the objective of discriminative methods is to find a
linear function

g(x) = WT (x− µ) , (2)

where W = [w1, . . . ,w(c−1)] ∈ IRm×(c−1) is used for
transforming the data into a lower-dimensional classifica-
tion space upon which it is decided to which class a given
sample x belongs.

LDA finds the projection directions on which the intra-
class scatter is minimized whilst the inter-class scatter is

11m×n denotes a m× n matrix of ones.
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=
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maximized [4]. That is, it finds c − 1 vectors that can be
used for efficiently separating the images belonging to dif-
ferent classes. The model is thus very compact (c is usually
very small) and efficient, but it is task-dependent. And since
the projections of the images in the LDA space are very low-
dimensional ((c− 1)-dimensional) and W is not particulary
designed to encompass the reconstructive information, they
can not be used for reconstruction of the training images.

The comparison between discriminative and reconstruc-
tive methods for classification tasks has been a subject of ex-
tensive research and testing [1, 18]. The general conclusion
was that discriminative methods outperform the reconstruc-
tive methods. The explanation for this is rather obvious: the
discriminative methods focus more on specific prior knowl-
edge, which can thus be more efficiently integrated into the
learning process. However, the latter observation can also
be disadvantageous, when we want to put learning in an
incremental framework. If the discriminative methods are
too focused to specific discriminative features sufficient for
classifying the given data, then many features, which may
be useful for discriminating in the feature, get discarded,
and the representations can not be adapted to new informa-
tion. Since the images get discarded in the training process,
and their representations are rather poor, there is not suf-
ficient information, which would enable reconsidering the
discarded training images. A new model, which would con-
sider the discarded images and the new ones, can not be cre-
ated. To overcome these deficiencies, the model should en-
compass also a certain level of reconstructive information.

4 Our approach
In this section we describe the algorithm for incremental up-
dating of LDA representations (Algorithm 1). It takes the
training images sequentially and computes the new repre-
sentation from the current representation and the new input
image.

Let n be the number of training images observed so far.
The idea is to represent these n images in a way that includes
both reconstructive and discriminative properties. Recon-
structive representation is based on PCA [22]. As most of
the visual variability of the images is contained in the first
k principal vectors (where k � n), only the k-dimensional
principal subspace is retained. However although the first
k coefficients contain most of the reconstructive informa-
tion, there is no guarantee that most of the discriminative
information is present in them as well. In order not to lose
discriminative information, we propose to augment the trun-
cated principal subspace with c− 1 additional basis vectors,
which keep all information relevant for LDA.

Now, let us suppose that we have already built an aug-
mented PCA subspace (APCA subspace) from the first n im-
ages. The current augmented reconstructive model therefore
consists of basis vectors2 Û(n) ∈ IRm×(k+c−1), mean vector
µ(n) ∈ IRm, and coefficient vectors Â(n) ∈ IR(k+c−1)×n. In
step n + 1 we can calculate a new APCA subspace from
the representations (coefficient vectors) of the first n input

2A superscript denotes the step which the data is related to (Û(n) de-
notes the values of Û at the step n).
images and a new image as proposed in [22]. Since the di-
mension of the APCA subspace is small, this update is com-
putationally very efficient. The procedure for one update of
the current APCA subspace is outlined in the first eight steps
of Algorithm 1.

Once we updated the current representations of the
images observed so far, we can perform LDA on these
updated low-dimensional coefficient vectors3 aligned
in A ∈ IR(k+c)×(n+1). LDA yields the discriminative
representation in the form of LDA vectors aligned in
V ∈ IR(k+c)×(c−1).

Until now, no reconstructive nor discriminative informa-
tion has been lost, since all the information contained in the
novel image has been incorporated into the model. How-
ever, as a consequence, the model has grown; the dimen-
sion of the APCA space has increased by one. To keep the
size of the model, we have to truncate the obtained matrix
U ∈ IRm×(k+c) (and consequently A and V) by one. We
propose to truncate U in a way, which preserves the discrim-
inative information, similarly to [5].

Note that the classification using the combination of
the reconstructive and discriminative representations is per-
formed as a two step procedure: first a novel image is pro-
jected into the augmented PCA basis and the obtained co-
efficient vector is then projected onto the low-dimensional
LDA vectors. The classification function is thus g(x) =
VT UT (x − µ(n+1)). Now we will show how to truncate
U and V by one dimension and still keep the classification
function unchanged.

Let us first divide the matrices U, A, and V on subma-
trices containing the first k dimensions we want to keep and
the last c dimensions we want to truncate by one4 (line 10
in Algorithm 1). Then let us orthonormalize Vc and up-
date the APCA basis, the coefficients and the LDA vec-
tors (lines 11 to 15 in Algorithm 1). We will show that
the obtained updated representation, which is of the same
size as at the beginning of the update step (Û(n+1) ∈
IRm×(k+c−1), Â(n+1) ∈ IR(k+c−1)×(n+1), and V̂(n+1) ∈
IR(k+c−1)×(c−1)) preserves the discriminative information.
To verify this, let us rewrite the new classification function
ĝ(x) := V̂(n+1)T Û(n+1)T (x− µ(n+1)) as

ĝ(x) = (Û(n+1)V̂(n+1))T (x− µ(n+1)) =

=
([

Uk,UcṼc

] [
Vk

(VT
c Vc)1/2

])T

(x− µ(n+1))

=
[
UkVk + UcVc

]T (x− µ(n+1)) =

=
([

Uk,Uc

] [
Vk

Vc

])T

(x− µ(n+1)) =

= (UV)T (x− µ(n+1)) =
= g(x) . (

3Note that also in the standard LDA (fisher space) approaches, LDA is
performed on the vectors of the PCA coefficients and not on the original
images to avoid the singularity problems LDA encounters when dealing
with high-dimensional data such as images. However, the complete vectors
of principal coefficients are used in these cases.

4We denote the first k columns of U, the first k rows of A, and the first
k rows of V with Uk , Ak , and Vk , respectively, and the last c columns of
U and rows of A and V with Uc, Ac, and Vc, respectively.
3
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It is therefore equivalent to the original classification func-
tion g(x), thus all the discriminative information has been
preserved.

Algorithm 1 : ILDA – incremental LDA
Require: current augmented principal subspace (mean vec-

tor µ(n), APCA vectors Û
(n)

, APCA coefficients Â
(n)

)
and new input image x(n+1).

Ensure: new augmented principal subspace (mean vector

µ(n+1), APCA vectors Û
(n+1)

, coefficients Â
(n+1)

),
new low-dimensional LDA vectors V̂(n+1) and class
centers ν(n+1).

1: Project a new image x(n+1) into the current eigenspace:

a = Û
(n)>

(x(n+1) − µ(n)) .

2: Reconstruct the new image: y = Û
(n)

a + µ(n).
3: Compute the residual vector: r = x(n+1) − y.
4: Append r as a new basis vector:

U′ =
[

Û
(n) r

‖r‖
]

.
5: Determine the coefficients in the new basis:

A′ =

[
Â

(n)
a

0 ‖r‖

]
.

6: Perform PCA on A′. Obtain the mean value µ′′ and the
eigenvectors U′′ .

7: Project the coefficient vectors to the new basis:
A = U′′>(A′ − µ′′11×(n+1)) .

8: Rotate the subspace U′ for U′′: U = U′U′′ .
9: Perform LDA on A. Obtain low-dimensional LDA vec-

tors V and class centers ν .
10: Divide U, A, and V on submatrices:

U =
[

Uk Uc

]
, A =

[
Ak

Ac

]
, V =

[
Vk

Vc

]
.

11: Orthonormalize Vc: Ṽc = Vc(VT
c Vc)−1/2 .

12: Update the mean: µ(n+1) = µ(n) + U′µ′′ .
13: Update the APCA basis:

Û(n+1) =
[

Uk UcṼc

]
.

14: Update the coefficients:

Â(n+1) =
[

Ak

ṼT
c Ac

]
.

15: New LDA vectors:

V̂(n+1) =
[

Vk

(VT
c Vc)1/2

]
.

16: New class centers: ν(n+1) = ν .

Using Algorithm 1 we can thus update the current recon-
structive and discriminative representations without losing
a valuable discriminative information and without enlarging
the reconstructive basis. Since at each step LDA is recal-
culated using low-dimensional APCA representations of the
training images, the update step is fast, while still enabling
various types of updating.

The model can be updated with an image of a known
class making the representation of this class more reliable.
Additionally an image of a novel class can be introduced.
In this case, a new class is initialized, c is incremented by
one, and consequently all the matrices keeping the represen-
tations are enlarged by one dimension. The performance of
4

the proposed method for these approaches is evaluated in the
next section.

5 Experimental results
In the experiments we focus on comparison of the proposed
method, which combines both reconstructive and discrimi-
native information, with the methods that exploit only one
type of information. We also always show the performance
of the standard batch LDA method (denoted as batchLDA)
giving the best results because it processes all training im-
ages simultaneously, therefore it can find the hyperplane
which is optimally suitable for the given data. Thus our aim
is to achieve similar results with the incremental training.

The idea of incremental learning is to start with a given
model (denoted as starting model) and update it when new
information is available. In the following we compare three
different approaches differing in the usage of discriminative
and reconstructive information.

ILDAonK is the incremental LDA based on a truncated
PCA basis keeping only k PCA-eigenvectors. It thus
predominantly contains the reconstructive information,
while some important discriminative information may be
discarded. On the other hand, ILDAonL does not keep
any additional reconstructive information. The training
images are represented only by (c − 1)-dimensional LDA
coefficient vectors, which are propagated in the updating
steps. Finally, ILDAaPCA, the proposed method, combines
both types of representations keeping the reconstructive as
well as the discriminative information.

In all experiments the dimension k of the truncated PCA
space is fixed such that the starting model contains 80% of
the energy (a fraction of the total variance). Since in the
case of ILDAaPCA method the truncated principal subspace
is augmented by (c − 1) basis vectors, we do not truncate
the principal subspace in ILDAonK approach at k but rather
at k + (c− 1) to enable a fair comparison. In this way both
approaches produce representations of the same size.

In the following we will show that ILDAaPCA is actually
capable of facing two challenges. It is possible to add im-
ages of already known categories and to add new categories.

We will test the above described methods on the pre-
cropped Sheffield Face Database [7]. It consists of 20 per-
sons with at least 19 images of each individual and the im-
ages cover poses from profile to frontal views. We took 9
images (every second one) of each person for training (e.g.,
see Figure 1) and 10 images for testing.

Figure 1: Training images for one person in the Sheffield Face
Database.
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Figure 2: Comparison of the recognition rate on Sheffield Face
Database of batchLDA, ILDAaPCA, ILDAonK and ILDAonK

Adding new instances: To build the starting model for the
first task we took two images of each class, having 40 im-
ages at the beginning and added 140 images, 7 of each class,
in the sequential updating steps.

For ILDAaPCA, ILDAonK and ILDAonK the eigenspace
was updated after each image was presented, while for
batchLDA the LDA space was always built from scratch us-
ing the current number of training images. In both cases the
recognition rate was calculated after adding 20 images, one
of each class, and repeated 7 times.

As can be seen in Figure 2, the recognition rate keeps
growing with increasing number of training images. This
demonstrates that new images bring additional knowledge
in the model and improve the current representations result-
ing in a better performance of the classifier. It is also evi-
dent that ILDAaPCA clearly outperforms ILDAonK and IL-
DAonK being nearly as good as batchLDA. As one could
expect, ILDAonK yields the worst results, since the very
low-dimensional discriminative representations do not suf-
fice for updating the model. We can also conclude that IL-
DAonK approach discards some discriminative information
and produce results inferior to ILDAaPCA method, which
preserves this discriminative information.

Adding new classes: Here we started with a basis created
from all training images of two subjects (18 images alto-
gether) and then added new faces one by one. The model
was updated with all the training images of the new class
before adding the next one. We classified only those test
images for which the model of the corresponding class was
already built.

The results are displayed in Fig. 3. As expected, the
recognition rate drops a little bit in all approaches by in-
creasing the number of classes, since it is more difficult to
discriminate between 20 classes then between only a few
of them. However, the results again clearly demonstrate that
the proposed ILDAaPCA method outperforms ILDAonK and
ILDAonK approaches.
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Figure 3: Recognition rate for test images of already trained
classes on Sheffield Face Database

To demonstrate that our method works for different tasks
too, we present the results of an object recognition task. The
experiment was performed on the Columbia image database
COIL20 [19]. It consists of 20 objects with 72 gray scale
images of views from 0 to 360 degrees in 5 degree steps. For
our tests we took 14 images for training and the remaining
58 for testing.

We started again with a basis created from two images of
each class, and then added the remaining images in 12 ∗ 20
update steps. As can be seen in Figure 4 the behavior of the
curves is similar to the experiment on faces, again showing
that ILDAaPCA achieves the highest recognition rate.
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Figure 4: Comparison of the recognition rate on COIL20 database

6 Conclusion
In this paper we proposed a method that combines recon-
structive models and discriminative classifiers to enable up-
dating of the already learned representations. To achieve
that, we enrich the discriminative LDA representations with
reconstructive information. This is realized by embed-
ding the LDA learning and classification into an augmented
5
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PCA subspace enabling incremental updating of the already
learned representations without discarding significant dis-
criminative information.

The augmented PCA subspace thus contains sufficient re-
constructive information, which enables incremental learn-
ing, and the previously extracted discriminative information,
which enables efficient classification. In this way we are
able to efficiently update the current model with new in-
stances of the already learned classes and to introduce new
classes. In addition, this method could in principle also en-
able updating the current model to new tasks. Moreover, the
reconstructive representation would also enable detection of
outliers [5, 22], thus the proposed method could be further
extended in a robust approach for incremental learning of
LDA representations. This technique could also be applied
to other reconstructive and discriminative linear subspace
methods (Independent Component Analysis, Non-negative
Matrix Factorization; Canonical Correlation Analysis, Sup-
port Vector Machines). The combination of reconstructive
and discriminative methods thus offers a promise to achieve
best of both worlds; to enable successful discrimination us-
ing efficient task-dependent discriminative representations,
while at the same time enabling robustness, and adaptation
to new images using the reconstructive representations.
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Abstract

In this paper we address the problem of building object classrepresentations
based on local features and fast matching in a large database. We propose
an efficient algorithm for hierarchical agglomerative clustering. We examine
different agglomerative and partitional clustering strategies and compare the
quality of obtained clusters. Our combination of partitional-agglomerative
clustering gives significant improvement in terms of efficiency while main-
taining the same quality of clusters. We also propose a method for building
data structures for fast matching in high dimensional feature spaces. These
improvements allow to deal with large sets of training data typically used in
recognition of multiple object classes.

1 Introduction
Many of todays models and approaches for object class recognition are based on local fea-
tures. Local features are typically extracted from images and subsequently grouped into
appearance clusters [1, 12, 23]. Besides reducing the size of the feature space, appear-
ance clusters allow to capture a larger variability of localimage structure than individual
features, as well as to focus on parts which re-occur on many instances of the object class
and consequently generalize over new instances. While appearance clusters seem to be
an essential component of several successful approaches, they have been applied only to
a relatively small number of object classes using small training and test sets. A typical
feature detector might extract 10s-100s of features per image. Learning models for 100s
of object classes using 10s or even 100s of images per class would imply that the approach
has to deal with 100,000s to 1,000,000s of features during training. This number is but a
conservative estimate, since we might want to scale to many more object classes or use far
more images in the context of unsupervised learning or topicdiscovery [24]. It is however
unclear if and how approaches based on appearance clusters can deal with such massive
amounts of high-dimensional data.

In general, clustering is a powerful tool for finding structure in large data sets [10].
However, the question what is a good clustering method cannot be answered without the
context of a task. Our main interest is the use of clustering for object class recognition
using local-feature based approaches. When using appearance clusters for building object
models we can differentiate three aspects: 1)clusteringto obtain the appearance clusters,
2) matchingduring training and recognition, and 3) therecognitionmethod. In this paper
we focus on the first two aspects, namelyclusteringandmatching.

In computer vision, frequently used clustering strategiesare k-means [23, 26] and ag-
glomerative clustering [1, 12, 17]. Other methods like MeanShift [6] also become more
and more popular. However, their performance has not been compared for computer vi-
sion tasks, and no guidelines are available for judging the tradeoffs in representational



capacity, accuracy, and run-time. K-means is frequently used because of its computa-
tional simplicity. However, the clustering solution is suboptimal when the number of
outliers in the point distribution is large. Moreover, the solution depends on an arbitrar-
ily set number of clusters and random initialization, whichmakes it less attractive for
object categorization. In the agglomerative clustering scheme the number of clusters is
automatically determined. However, both the runtime and memory requirements are of-
ten significantly higher for agglomerative methods. Given the large amounts of data that
need to be processed, an efficient implementation of the clustering algorithm is therefore
crucial for its applicability.

The second important aspect is to efficiently match featuresto appearance clusters.
Numerous methods have been proposed for efficient search [3,19]. In high-dimensional
spaces, however, these methods are no longer effective. Many methods therefore use
approximate nearest-neighbor search techniques [2, 9, 14]. In object recognition and
categorization, however, we are interested in matches within a similarity distance to a
feature point. This type of volume search is much harder to doefficiently. In contrast to
k-means clustering, the result of agglomerative clustering can be used directly to obtain
a data structure for efficient volume search, namely a ball-tree [20]. In experiments we
observe speedup factors of 20- 200 for matching through the use of this technique.

In this paper we introduce several improvements to agglomerative clustering (Sec. 3),
making it tractable for large data sets while preserving cluster quality. We use the cluster-
ing results to build a data structure for efficient volume search in high-dimensional spaces
(Sec. 4). In the experiments we show significant speedup factors for matching and we
also compare the performance of k-means and the agglomerative scheme, both in terms
of computational cost and recognition performance (Sec. 5).

2 Recognition approach
We briefly describe two main stages of a recognition algorithm which are similar in many
state-of-the art approaches [1, 12, 17]. While there exist differences between the indi-
vidual approaches, the following describes an object classrepresentation and a matching
procedure which may be seen as a common basis of many approaches.

Object representation. In our approach clustering is used to build an appearance model
in which each cluster is represented by its center. For each cluster, an occurrence distri-
bution is computed, specifying where and at which scales thelocal appearance occurs on
the objects. The location distribution significantly increases the discriminative power of
the representation and it allows to localize the object within the image.

Matching. The next stage of many recognition methods is matching. Given a query im-
age, features are detected and matched to the object model represented by the appearance
clusters. Typically, this stage involves a distance measure, a similarity threshold, and a
search technique. The distance measure and similarity threshold depend on the feature
descriptor at hand. A fast search method is necessary if the object representation con-
tains a large number of clusters. The clusters that match to query features cast votes for
possible object identities, locations, and scales based onthe learned location distribution.
Finally, local maxima are searched in multi-dimensional voting spaces. Additional stages
can be applied to refine the hypotheses and improve detectionprecision [12].



3 Clustering methods
In this section, we present an efficient method for clustering large numbers of features. We
discuss two main clustering techniques, namely partitional K-means and agglomerative
method. We propose an efficient algorithm for the latter and introduce a multi-stage
procedure combining the benefits of both techniques.

K-means. The k-means algorithm [15] is one of the simplest and most popular cluster-
ing methods. It is initialized randomly byk seed points for the clusters. In all following
iterations, each data point is assigned to the closest cluster center, where the centers are
computed as the means of associated data points. In practice, this process converges to
a local optimum within a few iterations. Many approaches employ k-means because of
its computational simplicity, which is convenient for large data sets [23, 26]. Its time
complexity isO(Nkℓd) when clusteringN data points ofd dimensions withk centers and
ℓ iterations. However, the complexity is high whenk is comparable withN. It can be
improved by using kd-trees [22] or triangular inequality [8]. K-means is often initialized
randomly, which may result in different clustering solution from run to run. Several meth-
ods [21] were proposed to overcome this problem but they add computational overhead
to k-means. Finally, there is no guarantee that the obtainedclusters are visually com-
pact. Because of the fixed value ofk, some cluster centers may lie in-between several real
clusters, so that the centers are not representative.

Agglomerative clustering. Agglomerative clustering builds the solution by initiallyas-
signing each point to its own cluster and then repeatedly selecting and merging pairs of
clusters. Thus, it builds a hierarchical merging tree from the bottom (leaves) towards the
top (root). The key parameter here is the criterion used for selecting clusters to be merged.
We focus on the Group Average criterion (UPGMA in [11]), which measures the similar-
ity of two candidate clusters as the average pairwise similarity between their members.
Thus, the average-link criterion allows to specify the sizeor compactness of the resulting
clusters. This property is very useful in building compact appearance clusters and makes
the algorithm robust to outliers. A similarity threshold that produces visually compact
clusters only depends on the employed feature descriptors,thus can be estimated experi-
mentally and used on different data sets. Another advantageof agglomerative methods is
that given the clustering trace from a full hierarchical clustering, i.e. the indices of clus-
ters merged in every step and the similarities between them,we can rebuild the clusters
for a different similarity threshold at almost no computational cost.

The main drawback of the standard average-link algorithm isits O(N2 logN) run-time
andO(N2) space complexity. This comes from the requirement that clusters should be
merged in decreasing order of similarity and that the distances must be recomputed after
each agglomeration. In order to make agglomerative clustering applicable to large data
sets, both complexities have to be reduced. The improvementproposed here is based on
the insight from [4] that for some criteria the same clustering solution can be achieved
with different merging order. Furthermore, the similarities between clusters can be effi-
ciently recomputed based only on the centers and variances.

RNN algorithm. The improved clustering method is based on the constructionof re-
ciprocal nearest neighborpairs (RNN pairs), that is of pairs of pointsa andb, such that
a is b’s nearest neighbor and vice versa [4]. RNN is applicable to clustering criteria that
fulfill reducibility property[5] :

d(ci ,c j )≤ inf(d(ci ,ck),d(c j ,ck))⇒ inf(d(ci ,ck),d(c j ,ck))≤ d(ci ∪c j ,ck)



Algorithm 1 Average-Link algorithm with RNNs forRpoints.
last←−1
while R 6= /0 do

if last < 0 then // Initialize a new chain with a random point v∈R.
last← 0; Chain[last]← v∈R; R← R\{v}; Sim[last]← 0; (1)

s← findNearestNeighbor(Chain[last], R); sm← sim(Chain[last],s) (2)
if sm> Sim[last] then // No RNNs, add s to the chain.

last← last+1; Chain[last]← s; R← R\{s}; Sim[last]← sm; (3)
else // Found RNNs→ agglomerate the last two points in the chain

if Sim[last] > SimThresholdthen
s← agglomerate(Chain[last],Chain[last−1]); R← R∪{s}; last← last−2; (4)

elselast←−1 // Discard the current chain.

whereci ,c j andck are clusters andd(c j ,ck) is a distance measure. This property effec-
tively states that the agglomeration of a RNN pair does not alter the nearest-neighbor
relations of other clusters. It is fulfilled for the average-link criterion regardless of the
employed similarity measure. The key to an efficient implementation is therefore to en-
sure that RNNs can be found with as little computation as possible. This can be achieved
by building anearest-neighbor chain[4]. An NN-chain consists of an arbitrary point,
followed by its NN, which is again followed by its NN from among the remaining points,
and so on. Thus, each NN-chain ends with an RNN pair. The strategy of the algorithm is
thus to start with an arbitrary point (Alg. 1, step (1)) and build up an NN-chain (2,3). As
soon as an RNN pair is found, the corresponding clusters can be agglomerated (4). The
reducibility property guarantees that after the last two clusters from the chain are merged,
the NN assignments stay valid for the remaining chain members, which can then be used
in the next iteration. Whenever the current chain is empty, anew chain is started with
another random point (1). When a new cluster is created by merging an RNN pair, its
new distance to other clusters has to be recomputed. Insteadof expensively computing
the average of all distances between cluster members, we usethe following equivalence:

simEuclid(cx,cy) =
1

NM

N

∑
i=1

M

∑
j=1

(x(i)−y( j))2 = σ2
x + σ2

y +(µx− µy)
2

wherex andy are the cluster members,µx andµy are the centroids,σ2
x andσ2

y are the
variances. Both the mean and variance of the new cluster can then be computed incre-
mentally:
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)

An amortized analysis shows that this algorithm has a computational complexity ofO(N2d)
with only linear space requirements. This is an important improvement compared to the
standard algorithm, since it makes it possible to cluster 100,000s of data points, which
was not feasible before. However, the time complexity is still high whenN is large. In
the following, we present a strategy to further improve alsothe run-time efficiency.

Combined partitional-agglomerative algorithm (CPA). The idea of this improved
algorithm is to first partition the set of features and perform agglomerative clustering
within each partition independently [27]. However, there are several issues with this
method. The first is how to set the partitions so that they contain features that cluster
well. A possible solution is to use a natural partition of thedata points, stemming from
properties of the employed interest point detector. The scale invariant interest points are



detected at local maxima and minima of the Laplacian [13, 16]. If e.g. SIFT descriptors
are used, which make a clear distinction between bright and dark structures, these extrema
form two distinct groups which do not intersect. For other descriptors, this property has
to be verified. Anothers suitable partitioning method is k-means. The number of initial
partitions has to be small, otherwise k-means is not efficient. A problem occurs if a real
cluster is split over several partitions, since the agglomeration is initially done between
points which are NNs within one partition only. This can alter the cluster centers and
variances and thus produce a different clustering tree. To reduce the impact of this effect
on the final clustering solution, we agglomerate clusters within each partition only up to
a certain similarity threshold. Next, given the cluster centers and variances obtained from
all partitions, we continue the agglomeration up to the rootof the tree. If the similarity
threshold for initial clustering is smaller than for the final appearance clusters, then the
initial agglomeration provides small building blocks usedby the next level. However, the
initial threshold should produce a number of clusters whichis significantly lower than N,
otherwise the complexity reduction would be limited.

To summarize the approach, we first partition features on twosets of Laplacian max-
ima and minima. Then we apply k-means to each set to further partition the features. Ag-
glomerative clustering is applied within each partition. Finally, the agglomerative method
is applied once more on all the cluster centers computed in the previous step. This com-
bined partitional-agglomerative method leads to an approximate clustering solution, but
as the experimental results show, the difference from the exact solution is negligible.

4 Fast matching
In this section, we propose a data structure for fast search in high dimensional feature
spaces. Many fast NN search methods are based on hypercube orhyperrectangle ap-
proximations [2, 19]. They partition each feature dimension independently and trim the
candidates for NN dimension by dimension. However, in this approach the efficiency de-
pends critically on the size of the hypercube. It also relieson the fact that a single NN
is searched in the whole space, for which theLinf (hypercube) norm can be used. How-
ever, in object class recognition we are often interested infinding all features which are
similar to our query point, for which theL2 (hypersphere) norm is needed. AlthoughL2

is bounded byLinf , in high-dimensional spaces the corners of the hypercube contain far
more volume (data points) than the inscribed hypersphere. Asolution to this problem is
a data structure based on theL2 norm. We describe a fast data structure and an algorithm
for range search based only on a triangle-inequality-obeying distance metric.

4.1 Ball tree search
Ball tree structure. A ball tree (or metric tree) is a hierarchical structure for represent-
ing a set of points with the only assumption that the distancefunction between points is
a metric [25]. Each node(a...r) of the tree is represented by two parameters: center and
radius (Fig. 1(a)). The node center is a mean vector of all thechildren nodes, and the
radius is determined by the point farthest from the center. The radius can also be smaller
if we are ready to accept a subset of the points similar to the query in return for a possible
speedup. We propose to set the radius as a quantile of orderedfeature distances from the
node center.

Building ball trees. The problem of building an optimal ball tree structure is inherently
similar to that of agglomerative clustering [18, 20]. In theagglomerative tree each node
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Figure 1: (a) Ball tree data structure. (b) Corresponding ball-tree. (c) Agglomerative tree.

contains two child nodes, since the algorithm merges two clusters at a time. However,
given the clustering trace which contains the indices of merged clusters and their sim-
ilarities, we can easily reconstruct a tree in which the number of children of a node is
determined as a function of their similarity. This is illustrated in Fig. 1(b,c). Intermediate
nodesta,tb andte are merged with correspondinga,b ande. The size of the nodes is
increasing from the leaves to the root of the tree. Thus we obtain a ball-tree structure
from the agglomerative clustering trace with minimal additional cost.

Ball-tree search. A range search is a simple recursive procedure, which is illustrated
in Figs. 1(a) and 1(b). We start by computing the similarity of a query pointq to the top
nodesa andb and use the triangle inequality property. The search is continued if the
distance to the node center minus the nodes radius is less than the query radius, i.e. if the
query ball intersects with the node ball. The search is continued further to all children
nodes that intersect with the query ball. Exhaustive searchis applied within each node.
The speed of the search thus depends on the number of tree levels, the node radii, and the
query radius. The number of levels and the node radii can be chosen experimentally at a
low cost using the precomputed clustering trace. If we are only interested in the NNs, the
search can be made more efficient, since the search radius canbe progressively reduced
with each new NN candidate that is found.

5 Experiments
In this section we present and discuss the evaluation results.

5.1 Test Data
Our test data consists of 1,000,000 scale invariant features provided by Harris-Laplace
and Hessian-Laplace detectors [16] with SIFT descriptor [13]. Features are detected in
5,000 images from the Caltech database and the PASCAL set1, containing pedestrians,
cars, motorbikes, faces, and cows. To validate the results,we also compare the recog-
nition performance of the baseline approach using the proposed clustering and matching
methods and the UIUC multi-scale car set [1]. Additional experiments on more object
classes can be found in [17].

5.2 Clustering
Similarity measure. As described in Section 3, the agglomerative clustering method
is driven by the similarity measure and a threshold. To produce meaningful clusters we
determine a reasonable range for the similarity distance using the evaluation protocol
from [16], originally developed for matching pairs of images. It computes precision (i.e.
the ratio of correct to false matches) and recall of matches with respect to the similarity
threshold. Precision is high up to a given similarity threshold and decreases for larger

1http://www.pascal-network.org/challenges/VOC/
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Figure 2: (a) Matching precision vs. similarity distance. (b) Run-time vs. number of
features. (c) Run time vs. number of clusters.

thresholds (cf. Fig. 2(a)). The useful thresholds are in thesteep part of the curve. For
small thresholds, only very similar features match, resulting in a poor generalization of
the model to new object instances. For large thresholds, false matches dominate, thus the
recognition performance is low and the complexity increases. The above method provides
a reliable and computationally inexpensive insight on the similarity thresholds that can
be used for agglomerative clustering. In contrast, the sizeand distribution of k-means
clusters depend on thek parameter, which is difficult to optimize if the real distribution of
features is unknown.

Run-time. Given a set of features, we first run the RNN method with a fixed similarity
threshold obtained from Fig. 2(a), which results in a numberof clusters. We then run
standard k-means for the same number of clusters with the maximum number of iterations
set to 25. Finally, we run the CPA method with initial number of k-means partitions set
to #f eatures/20000, and the initial agglomerative threshold set to half the one obtained
from Fig. 2(a). Thus the methods are compared for the same number of features and the
same number of clusters. Fig. 2(b) shows the run-time with respect to the number of
features in the database. The run-time of CPA is an order of magnitude lower than for k-
means and 2 orders of magnitude lower than the RNN algorithm.For example, clustering
of 1M features takes 555h for RNN2, 41h for k-means, and 5h for CPA.

Fig. 2(c) shows the run-time with respect to the number of resulting clusters, using
200k features. For k-means, the run time increases linearlywith k. This is to be expected
since the complexity is directly related to the number of clusters if the exhaustive search
is used during clustering. However, it is important to note that this is the upper bound,
since the run time can be shorter if convergence is obtained in less iterations,k≈ N, fast
NN search techniques [22], or other speedups [8] are used. The run-time of the RNN is
high but almost independent of the number of clusters, sincemost of the computation is
spent at the bottom of the clustering tree, when the number ofclusters is still large. For
a large number of clusters, the run-time for k-means exceedsthe one for RNN. From our
experience, the compression ratio #f eatures/#clusterswhich gives the best recognition
performance is in the range, where the proposed CPA method outperforms k-means.

Cluster quality. Fig 3(a) displays the average intra-class variance of clusters obtained
with the three methods. The results are reported with respect to the number of features,
and using the same number of clusters as in Fig. 2(b). Single-member clusters were dis-
carded from this experiment in order not to bias the results.The diagram shows that the
variance of clusters obtained for both agglomerative methods is lower than for k-means

2The run-times for RNN agglomerative clustering in the rangeof 500,000-1,000,000 points are estimated
since we were not able to run the clustering due to time constraints.
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Figure 3: (a) Average variance of clusters. (b) Average number of matched clusters per
feature. (c) Average percentage of matched features per matched cluster.

clusters. The variances for RNN and CPA are nearly the same. To compare the distribu-
tion of cluster centers and the compactness of the clusters,we carried out an additional
experiment. We count the number of cluster centers which arewithin a given similarity
radius of a query point (cf. Fig. 3(b)). For k-means, the number of matched clusters per
query feature is significantly larger than for RNN and CPA. InFig. 3(c) we measure how
many cluster members do indeed match to the query feature. The percentage of matched
cluster members is higher for agglomerated clusters. Together, these results show that the
k-means clusters are less compact and therefore match to more features compared to ag-
glomerated clusters, and that k-means cluster centers are less representative for the cluster
members.

5.3 Matching
In this section we compare the efficiency of the ball tree algorithm to exhaustive search.
We report the speedup factor as the ratio of run-times for 1,000 random queries. The effi-
ciency depends on several parameters: the number of features in the dataset, the number
of tree levels, the node radii, and the query radius. We have chosen experimentally 10
levels between the size of the appearance clusters (bottom nodes) and the size of the top
node. The impact of the other parameters on the speedup is investigated in the following
experiments. We use 200k of 128 dimensional descriptors and200k of 36 dimensional
descriptors obtained with PCA. To show the results for different numbers of features, we
also use a set of 50k points with 128-dim. descriptors.

Fig. 4(a) shows the speedup factor with respect to the fraction of lost matches. We
vary the radius of the nodes and compare the efficiency and thereturned matches with
exhaustive search. If we are looking for the exact matches, the ball tree is nearly 80 times
faster than exhaustive search (for 200k features of 128 dim). This factor significantly in-
creases up to 200 with 20% of lost matches3. The gain is smaller for the dataset of 50k
points and for low dimensional features, which indicates that we can expect further im-
provement with increasing number of features and dimensions. Fig. 4(b) shows the results
for different query radii (as a fraction of the top node size). The efficiency significantly
drops as the size of the query increases, since many more nodes have to be examined. In
most of our recognition experiments, the root node radius was 10 times larger than the
size of the appearance clusters. Thus, the useful query radius is in the range of 0.1-0.2.

5.4 Recognition performance.
Finally, we compare the recognition performance of object class representations obtained
with the different clustering methods. We use the UIUC multi-scale car database and

3While it is difficult to make a general claim how many lost matches are acceptable we experimentally
observed that we can accept 10% and more lost matches withoutany loss in recognition performance
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Figure 4: (a) Ball-tree speedup factor vs. number of lost matches. (b) Ball-tree speedup
factor vs. query radius. (c) Recognition performance.

the evaluation criteria from [1]. We learn object representations on a training set of 50
car images from the PASCAL collection (cf. Sec. 5.1), from which we extract a total of
10,351 features with 36 dimensions. We use the evaluation criteria from [1] based on the
overlap of ground truth and detected bounding boxes.

Fig. 4(c) shows precision-recall performance at the equal error rate (EER) as a func-
tion of the the number of clusters for both k-means and the agglomerative method. The
solid curves depict the performance when the simple recognition approach is used (cf.
Sec. 2); this performance can then still be improved by applying the MDL verifica-
tion [12], as shown by the dashed curves. We make three observations. First, the recog-
nition score is higher for agglomerated clusters (EER: 78.4%) than for k-means (EER:
68%). The methods reach different performance levels initially, but can both be taken to
approximately the same performance (EERs: 96.4% and 92.1%)by the verification stage.
Second, for both clustering schemes the performances degrade gracefully for different
number of clusters, which is a result of our soft matching within a search hypersphere.
Third, since the cost of the soft matching increases with thenumber of clusters that fall
inside the search radius and k-means does in fact produces many more such matches for
the same number of clusters (see Fig. 3(b)) we conclude that agglomerative clustering is
preferable to k-means in terms of recognition costs.

Conclusions
Many of todays object class recognition approaches use clustering and matching of local
features to build object models. While k-means is the most popular method, this paper
shows that agglomerative clustering has several inherent properties that make it highly at-
tractive for object class recognition: first, matching can be done efficiently using ball-tree
search in high-dimensional spaces and with large numbers ofclusters; second the clusters
reflect the distribution of features resulting in fewer matches and lower complexity; and
third, recognition performance is often better than for k-means clusters.

This paper introduces various improvements of agglomerative clustering in the con-
text of processing large numbers of high-dimensional features. In addition, it shows how
to use the clustering result to build a data structure for efficient matching. These improve-
ments result not only in a practically feasible and efficientclustering scheme (we report
clustering results up to 1,000,000 features), but also in significant speedups for matching
(up to 200 times faster). Last but not least, the proposed algorithms and the expected
improvements are experimentally validated.

Acknowledgments. This work has been funded, in part, by the EU project CoSy (IST-2002-
004250).
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O različnih načinih inkrementalnega
učenja vizualnih lastnosti

Za vsak spoznavni sistem, tudi umetni, je zelo
pomembno, da se je sposoben učiti in pridobljeno
znanje nadgrajevati. V tem članku obravnavamo ra-
zlične načine inkrementalnega učenja, ki to omogoča.
Predstavimo učenje, pri katerem uporabnik oz.
učitelj zagotovi umetnemu sistemu vse potrebne in-
formacije, ki jih potrebuje, nato učenje, pri katerem
sistem zahteva od uporabnika informacije glede na
stopnjo nedoločenosti, ter učenje, pri katerem sis-
tem nadgrajuje svoje znanje popolnoma brez pomoči
uporabnika. V članku tudi predstavimo metodo,
ki omogoča inkrementalno učenje vizualnih lastnosti
predmetov na vse tri načine. Z eksperimentalnimi
rezultati vse tri pristope tudi ovrednotimo.

1 Introduction

In a real world environment, a cognitive system
should possess the ability to learn and adapt in a con-
tinuous, open-ended, life-long fashion from the vari-
able input that such an environment would present.
As an example of such a learning framework, we need
look no further than at the successful application of
continuous learning in human beings. For example,
a child will learn to recognise what a cat is by seeing
a few examples of one. Later, as the child encounters
more cats that are different to the original examples,
he/she will not only recognise the new cats as being
cats, but will also update his/her representation of
what a cat is, based on the salient properties of the
new examples and without having visual access to the
previous examples.

While the primary focus of this idea is on the in-
cremental nature of the knowledge update, another
key aspect is the scrutinisation of various visual fea-
tures and the determination of which features are
useful for representing the visual attributes of the ob-
ject in question. Since a continuous learning frame-

∗ This research has been supported in part by the following
funds: Research program Computer Vision P2-0214 (RS), EU
project CoSy, and EU project VISIONTRAIN.

work would not retain complete data from previously
learned samples, it would not have the luxury of be-
ing able to reference specific details across multiple
samples in order to learn. Given this restriction, con-
tinuous learning perhaps lends itself to an abstract
multi-modal system involving interaction with a user.

In this paper we discuss such cross-modal learn-
ing, namely association between words and simple
visual features, such as hue or intensity values of the
corresponding pixels. In particular we will present
a method for learning visual attributes (e.g., colour,
shape) and their qualitative values (e.g., red, yellow;
circular, square). The problem of coupling words and
images involves computer vision and linguistic meth-
ods, therefore it has been tackled by the researchers
from both communities (see e.g., [1, 3]). In their work
the emphasis is on association mechanisms, which are
mainly based on batch approaches. In this paper we
instead focus on an incremental learning paradigm
and different types of incremental learning mecha-
nisms that require different levels of supervision pro-
vided by a tutor.

The paper is organised as follows. In the next sec-
tion we propose a general framework for continuous
learning. In Section 3 we present a specific method
for incremental learning and embed it in the proposed
framework. We then present the experimental results
in Section 4. Finally, we summarise the paper and
outline some work in progress.

2 Continuous learning framework

The interaction between a tutor and an artificial
cognitive system plays an important role in a con-
tinuous learning framework. One goal of the learn-
ing mechanism could be to find associations between
words spoken by the tutor and visual features auto-
matically extracted by the cognitive visual system,
i.e. to ground the semantic meaning of the visual ob-
jects and their properties into the visual features [2].

When implementing a continuous learning mecha-
nism, two main issues have to be addressed. Firstly,
the representation, which is used for modeling the
observed world, has to allow for updates when pre-



sented with newly acquired information. This update
step should be efficient and should not require access
to the previously observed data while still preserving
the previously acquired knowledge. Secondly, a cru-
cial issue is the quality of the updating, which highly
depends on the correctness of the interpretation of the
current visual input. With this in mind, several learn-
ing strategies can be used, ranging from completely
supervised to completely unsupervised learning. In
this paper we discuss three such strategies:
• Tutor-driven approach (TD). The correct

interpretation of the visual input is always cor-
rectly given by the tutor.

• Tutor-supervised approach (TS). The sys-
tem tries to interpret the visual input. If it suc-
ceeds to do this reliably, it updates the current
model, otherwise asks the tutor for the correct
interpretation.

• Exploratory approach (EX ). The system up-
dates the model with the automatically obtained
interpretation of the visual input. No interven-
tion from the tutor is provided.

We further divide tutor-supervised learning into two
sub-approaches:
• Conservative approach (TSc). The system

asks the tutor for the correct interpretation of
the visual input whenever it is not completely
sure that its interpretation is correct.

• Liberal approach (TSl). The system relies
on its recognition capabilities and asks the tutor
only when its recognition is very unreliable.

Similarly, we also allow for conservative and liberal
exploratory sub-approaches (EXc, EXl).

To formalise the description of these approaches,
let us assume that the recognition algorithm always
gives one of the following five answers when asked
to confirm the interpretation of the current visual
scene (e.g., the question may be: “Is this red?”): ‘yes’
(YES), ‘probably yes’ (PY), ‘probably no’ (PN), ‘no’
(NO), and ‘don’t know’ (DK). Table 1 presents ac-
tions that are undertaken after an answer from the
recognition process is obtained. The system can ei-
ther ask the tutor for the correct interpretation of the
scene (or the tutor provides it without being asked),
update the model with its interpretation, or do noth-
ing. As can be seen from Table 1, the system can
communicate with the tutor all of the time (TD learn-
ing), often (TSc), occasionally (TSl) or even never
(EX learning).

To speed up the initial phase of the learning pro-
cess and to enable development of consistent basic
concepts, one could start with mainly tutor-driven
learning with many user interactions. These concepts
would then be used to detect new concepts with lim-
ited help from the user. Later on in the process, when
the ontology is sufficiently large, many new concepts
could be acquired without user interaction.

Table 1: Update table.
YES PY PN NO DK

TD ask ask ask ask ask
TSc upd ask ask / ask
TSl upd upd / / ask
EXc upd / / / /
EXl upd upd / / /

3 Our method

The main task of the learning algorithm is to
assign associations between visual features and at-
tribute values. It has to consider two main issues:
consistency and specificity. It must determine the vi-
sual features that are consistent over all images shar-
ing a particular visual attribute and that are, at the
same time, specific for that visual attribute only.

With these requirements in mind, we have de-
signed algorithms for incremental learning and recog-
nition of visual properties based on a generative
representation of features associated with visual at-
tributes. Each visual attribute is associated with a
visual feature that best models the corresponding im-
ages according to the consistency and specificity cri-
teria mentioned above. The learning algorithm thus
selects from NF one-dimensional features (e.g., me-
dian hue value, area of segmented region, etc.), the
feature whose values are most consistent over all im-
ages sharing the same visual attribute (i.e. the vari-
ance is small and the feature values are concentrated
around the mean value). At the same time it also en-
sures that the same does not hold true for some other
visual attribute, thus satisfying the specificity crite-
rion. A visual attribute value is therefore represented
with the mean and variance of the best feature.

The main idea is described in an algorithmic form
in Algorithm 1. In the basic batch form, the algo-
rithm requires all training images to be given in ad-
vance, together with a list of attribute values (e.g.,
red, large, square) for each image. Since the mean
and variance of a set of feature values can be calcu-
lated in an incremental way without losing any infor-
mation, this algorithm can be incrementalised. Al-
gorithm 2 shows the pseudo-code of one update step.
Using this algorithm, the model can be sequentially
updated by considering only one image at a time.

Once the models of visual attributes have been ac-
quired, the system is able to recognise visual prop-
erties of a novel object using Algorithm 3 (e.g., an-
swering the question “Is this red?”). If the value of
a feature associated with a particular attribute value
is quite close to the values observed during learning
(i.e. it is very close to the mean of previously ob-
served values), then the system answers ‘yes’. Based
on the distance from the typical value of the feature



(considering variance as well), the system may also
answer “probably yes”, “probably not”, or “no”. By
changing the thresholds Tyes, Tpy, and Tno, we can
achieve more conservative or more liberal behaviour
of the recognition algorithm. Combining this recog-
nition algorithm with the incremental learning algo-
rithm and by considering the update table presented
in Table 1, we arrive at the incremental learning
framework described in the previous section.

Algorithm 1 : Batch learning
Input: Set of training images X , list of attribute val-

ues AV i for every training image Xi

Output: Models of attribute values mAVi, i =
1 . . .NAV

1: Extract all visual features Fj , j = 1 . . .NF from
every training image in X .

2: for each AVi, i = 1 . . .NAV do
3: Find a set of images Xi containing all images

labeled with AVi.
4: Calculate means and variances of the values of

every feature Fj over all images in Xi.
5: end for
6: Calculate min and max of all the values of every

feature Fj .
7: Normalise all the variances with the obtained in-

tervals of feature values, i.e.,
nvarij = varij/(maxV arj − minV arj)2,
i = 1 . . .NAV , j = 1 . . .NF .

8: for each AVi, i = 1 . . .NAV do
9: Select the feature Fj with the smallest nor-

malised variance nvarij .
10: Store mean and variance of the selected Fj to

form mAVi, a model of AVi.
11: end for

Algorithm 2 : Update step
Input: Models of attribute values mAVi, i =

1 . . .NAV , feature statistics FS, new image X
and corresponding attribute value AV

Output: Updated mAVi, i = 1 . . .NAV and FS
1: If the model for AV has not been learned yet,

initialise it.
2: Update feature means and variances related to

AV (stored in FS).
3: Update total feature mins and maxs.
4: Proceed with the steps 7-11 of Algorithm 1.

4 Experimental results

We tested the algorithms by running a number of
experiments on both artificial and real data. Basic
shapes of various different colours and sizes were se-
lected as test objects. Some of them are depicted in

Algorithm 3 : Recognition
Input: Image X , question “Is this AV?”
Output: Answer.
1: If the model for AV has not been learned yet,

answer ‘Don’t know.’
2: Determine which feature Fj the attribute value

AV is associated with in the model mAV .
3: Extract the value of this feature Fj from the im-

age X .
4: Calculate d = (Fj − mAV.mean)/

√
mAV.var.

5: If d ∈ [0, T yes], answer ‘Yes.’
6: If d ∈ (Tyes, T py], answer ‘Probably yes.’
7: If d ∈ (Tpy, Tno], answer ‘Probably not.’
8: If d ∈ (Tno,∞), answer ‘No.’

Fig. 1. We considered three visual attributes (colour,
size and shape), and ten values of these visual at-
tributes altogether (red, green, blue, yellow; small,
large; square, circular, triangular, and rectangular).

The objects were first perspective-rectified and
segmented from the background. Then the visual
features were extracted. We used six simple one-
dimensional features; three colour features (median
of hue, saturation and intensity over all pixels in the
segmented region) and three simple shape descriptors
(area, perimeter and compactness of the region). The
main goal was to find associations between ten given
attribute values and six extracted features.

We put half of the images in the training set and
other half in the test set (64 per half in the case of syn-
thetically generated images and 70 per half in the case
of real images). We embedded the proposed learning
method in the learning framework and kept incremen-
tally updating the representations with the training
images using different learning strategies. At each
step, we evaluated the current knowledge by recognis-
ing the visual properties of all test images. The eval-
uation measure we used is recognition score, which re-
wards successful recognition (true positives and true
negatives) and penalises incorrectly recognised visual
properties (false positives and false negatives).

Results (the curves of the evolution of the recog-
nition score through time) of the experiment on the
synthetic images (averaged over 40 trials on different
sets of generated images with added noise) are pre-
sented in Fig. 2(a). All different learning strategies

(a) (b)

Figure 1: (a) Synthetic images. (b) Perspective-
rectified and segmented real images.



presented in Section 2 were tested. First, we applied
the incremental learning process from the very be-
ginning, starting with one training image (denoted as
TSc1, TSl1, etc.). Then we repeated the experiment
by first applying the batch algorithm on the first 10
images, and then continuing by incrementally adding
the rest of the images (TSc10, TSl10, etc.). Fig. 2(a)
shows the plots of recognition scores, while Fig. 2(b)
plots the number of questions the system asked the
tutor at each step (i.e., how much data were given to
the system by the tutor).

In the experiment on the synthetic images,
the tutor-driven learning successfully associates the
colours of the input objects with the hue feature,
their sizes with the area feature and their shapes with
the compactness feature. Recognition of visual at-
tributes is very successful; it almost gets the maximal
score (640 in this case). Tutor-supervised learning
proved to be quite successful as well. In this case con-
servative strategy yields better results, since it asks
the tutor for reliable information more often. This is
also evident from Fig. 2(b). In the beginning the sys-
tem does not have a lot of knowledge, so the tutor is
asked for help more frequently. After the knowledge
is acquired, the number of questions decreases. The
explorative approach, which does not involve inter-
action with the tutor from the very beginning, does
not significantly improve the model. So, as expected,
there is a trade-off between the quality of results and
the wish to decrease the need for user interaction.
Similar conclusions can also be drawn from the results
of the experiment on real data shown in Fig 2(c).

5 Conclusion

In this paper we presented a framework for con-
tinuous learning, which enables three modes of learn-
ing requiring different levels of tutor supervision. We
proposed a method for incremental learning of visual
properties by building associations between words de-
scribing objects’ visual properties and visual features
extracted from images. By embedding this method
into the proposed learning framework, we were able
to experimentally evaluate three learning strategies.
The main conclusion is that the learning process
should start with tutor-driven learning to enable de-
velopment of consistent basic concepts. Once these
concepts are acquired, the system can take the ini-
tiative and keep upgrading the knowledge in a tutor-
supervised way, and when the knowledge is stable
enough, even in an exploratory way.

Beyond this initial work, we aim to improve the
learning method as well as to further analyse the
proposed framework and evaluate different learning
strategies under various conditions and in various ap-
plications.
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Figure 2: (a) Rec. score and (b) number of questions
on synthetic images, (c) rec. score on real images.
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