
EU FP7 CogX

ICT-215181

May 1 2008 (52months)

DR 5.5:

Combining basic cross-modal concepts into novel

concepts
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Cross-modal learning is an important characteristic of a system that is sup-
posed to be capable of self-extension. The system should exploit different
modalities and extend its current knowledge based on the information ob-
tained from different sources and based on the previously learned concept
models. In this deliverable we address the cross-modal learning in different
domains, ranging from self-supervised learning of object affordances through
hierarchical learning of representation of space to combining perception from
different modalities to facilitate high-level cross-modal learning.
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Executive Summary

An important characteristic of a robot that operates in a real-life environ-
ment is the ability to continuously expand its current knowledge, in a life-
long manner. The system has to create concepts by observing the envi-
ronment and also to extend these concepts and create novel concepts on
top of them while interacting with the environment as well as with other
cognitive agents and humans. Interactive continuous cross-modal learning,
which is the main research topic of Workpackage 5, is therefore an essential
characteristic of a self-extending cognitive system.

Different types of cross-modality are addressed in this deliverable. Firstly,
we present cross-modal learning of object affordances and action effects; here
the information arising from the visual subsystem is combined with the in-
formation from the manipulation subsystem. Also, different derived modal-
ities, or cues, from the visual subsystem are taken into account: colour,
depth (which is converted in 3D point cloud), and motion.

Then we present a hierarchical approach to building the representation
of space. Range data captured by the robot is used to learn a hierarchy of so
called parts. The parts represent concepts about spatial shape primitives,
which are very simple on the lowest layer, and are then combined into more
complex parts in the upper layers of the hierarchy.

And finally, we also address the problem of binding of modal concepts
from different modalities that facilitates high-level cross-modal learning.

Some of the work presented in this deliverable is a continuation of the
work performed in the previous years and mostly presented in the deliver-
ables DR.5.1. to DR.5.4. The work about hierarchical learning of space is
also highly related to Workpackage 3 on spatial cognition and the work on
learning action effects is very related to Workpackage 2 and the deliverable
DR.2.5 on models of object behaviour. There is also an overlap between
the work on cross-modal binding and learning presented in this deliverable
and the Workpackage 1 deliverable DR.1.5 on representations of gaps in
knowledge, since it is about beliefs, which play an important role in both
processes, cross-modal information fusion and learning, and knowledge gap
representation and management. This work is also highly related to Work-
package 7, since it presents the main principle for binding and reference
resolution implemented in the George system.

Role of Combining basic cross-modal concepts into
novel concepts in CogX

In the process of continuous interactive cross-modal learning, the system
tries to understand what it does know and what it does not, and act ac-
cordingly with the goal of updating the current concepts and building novel
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concepts on top of them. Therefore, the main research topic fits very well
with the main motto of the project: to self-understand to be able to self-
extend.

Contribution to the CogX scenarios and prototypes

In order to monitor and show progress on active and interactive continu-
ous learning, we have designed the George scenario (Interactive cross-modal
learning scenario) [37] (see also deliverable DR.7.5). This scenario has been
designed as a use case for guiding and testing the system-wide research and
for demonstrating methods developed in WP 5 and in some other workpack-
ages in a complex integrated working system. The management of beliefs
and cross-modal binding presented in this deliverable form the central part
of the George system, crucial for a consistent fusion of information from
different subsystems and for enabling consistent behaviour of the very het-
erogeneous system.
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1 Tasks, objectives, results

1.1 Planned work

This deliverable mainly tackles the problems addressed in Task 5.4 of Work-
package 5:

Task 5.4: Combining concepts into novel concepts. Develop a
system that is able to combine concepts learned in the previous
tasks into novel concepts; to learn complex concepts and hierar-
chies of concepts.

As such, it is addressing the following objectives as specified in the Tech-
nical annex:

1. A unified framework for representing beliefs about representations of
action effects, observation models, incomplete information and cate-
gorical knowledge. [WPs 1,4,5]

5. A theory of how to use these representations to identify learning op-
portunities, plan and execute plans in order to learn so as to perform
future tasks more effectively and efficiently. [WPs 4,5]

8. New representations and algorithms to allow a robot to extend its cat-
egorical knowledge by identifying gaps and learning the relationships
between different modalities (e.g. vision and language). [WP 5]

We will structure this deliverable according to several research lines that
have been addressed. First, let us look at our plans and goals that we had
set:

• Self-supervised learning of object affordances.

We planned to develop an algorithm for inducing causal relationships
of action/object complexes, in terms of the trajectory of objects, rep-
resented as a sequence of object poses, given some motor action (here
a pushing action). For this purpose, a quantization algorithm needed
to be developed which can discretize the sensorimotor space. Addi-
tionally, an algorithm that can extract causal relationships in form
of probabilistic transitions among discrete states had to be devised,
based on an algorithm for extracting substochastic sequential machines
(CrySSMEx) [15] from dynamic systems.

The CrySSMEx algorithm can find qualitative states depending on the
output function given by the output space. Thus, we planned to cluster
states that represent more abstract concepts from the sensorimotor
space of a pushing scenario.
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In addition to this, we also planned on improving our previously pro-
posed algorithm for self-supervised cross-modal learning [31] by us-
ing additional mechanisms to enhance its performance at acquiring
novel affordance concepts over short-term training periods. Specif-
ically, we were interested in developing feature relevance determina-
tion algorithms that could rapidly find the most discriminative feature
dimensions in the input space for predicting the naturally occurring
categories in the output space.

• Learning hierarchical representation of space.

The goal for this year was to develop an algorithm for learning a com-
positional hierarchical representation of space based on data obtained
with a range sensor. We aimed to extend the existing Learning the Hi-
erarchy of Parts algorithm [8], by incorporating rotational invariance
of parts into the model. We planned to learn as many layers of the
hierarchy as possible using only range scans as input data. We sought
to evaluate the performance of the learned concepts through the room
classification problem, and to validate our model in comparison with
other, state-of-the-art, approaches.

• Cross-modal binding and learning.

In Year 3 the cross-modal learning and binding concepts were used
in parallel to the belief structures. A Markov Logic Network engine
component was used for reference resolution. The aim for this year was
to enhance the dialogue between the robot and the tutor, which in turn
requires new enhanced reference resolution MLN. We also wanted to
bring MLN reasoning into the belief structure itself. MLNs should
have an important role in propagation of information between various
types of beliefs.

1.2 Actual work performed

1.2.1 Self-supervised learning of object affordances

We developed an online learning algorithm for quantization of spaces in the
pushing affordances scenario. After the robot performs a pushing action, a
density estimation (quantization) algorithm runs for the current sequence of
effector and object poses obtained, in order to estimate the density of this
sensorimotor space. Additionally, an output space is also discretized, which
corresponds to changes in rotation of the object. The output space is needed
to split the state space, which are representations of object poses at the next
time step. The quantization algorithm is based on the incremental Growing
Neural Gas (GNG) algorithm and the Minimum Description Length prin-
ciple for evaluation of clustering performance [33]. When a GNG network
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or graph reaches a stable state, the algorithm stops and a new action is
performed by the robot to continue learning.

After the quantization is performed, a state representing a set of in-
stances is split when the output or the next state differs (so that the entropy
is high). The transitions among states and its probabilities are obtained to
construct probabilistic machines that represent the behavior of these ac-
tion/object dynamical systems.

By using the extracted substochastic sequential machines (SSMs), we
were able to predict the object behavior accurately.

When the sensorimotor space is huge, it is appropriate to split it in dif-
ferent regions where different learning machines (in this case quantizers) can
be employed. We used these divide-and-conquer approaches to accelerate
the learning process and make it more efficient. The regions are split after
some time step and by employing a measure of variance in the sensorimotor
data sets.

The CrySSMEx algorithm also splits the state space in a similar way
but using other criteria, as explained above. However, it is in principle a
similar process. At the end, the state space is represented by a tree of Vector
quantizers, resembling a hierarchical clustering.

Once we obtained a quantization of the input space, we use these quantiz-
ers with other representations for the output space. We then discretized the
output space in such a way that we can distinguish among abstract object
behaviors like sliding, flipping over and tilting. The state space quantizer
then groups the states in a different way, splitting the space according to
this new output function. Thus, these new state space regions might be
viewed as components of a joint distribution.

Once again by using these new SSMs, we can predict with high accuracy
the classifications of object behavior (see Annex 2.1).

In our other work on self-supervised cross-modal learning described in
last year’s deliverable [31], we have developed methods for feature relevance
determination [32] that serve to augment the original algorithm. These
methods stem from ideas originally touched upon in the previous year’s
work, but have been more thoroughly developed, investigated and evalu-
ated this year. They are based on the idea of applying the Fisher criterion
score to learning vector quantization algorithms for online feature relevance
determination (see Annex 2.2).

In the attached paper [32], two new algorithms for LVQ-based relevance
determination are presented. Both methods exploit the positioning of the
prototype vectors in the input feature space to inform estimates of the Fisher
criterion score along the input dimensions, which are then used to form
online estimates of the relevance of the input dimensions with respect to
the classifier output. Both methods provide online updates that may be
used alongside regular LVQ updates or within the broader context of our
self-supervised cross-modal learning framework and neither method requires
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the specification of a learning rate, as in stochastic gradient descent. Per-
formance advantages are demonstrated in experiments on various popular
classification datasets, as well as on data from our object push affordance
learning experiments.

1.2.2 Learning hierarchical representation of space

In work described in Annex 2.3 we propose a new compositional hierarchical
representation of space, which is learned based on statistically significant
observations. We have focused on a two dimensional space, since many
robots perceive their surroundings in two dimensions using range sensors.
Range data is transformed into images and then a hierarchy of so called
parts is learned from those images. Parts, which are rotationally invariant,
represent concepts about spatial shape primitives. They are very simple on
the lowest layer, while their complexity and size increases with respect to the
height of the corresponding layer of the hierarchy. At the bottom, concepts
are represented as small fragments of lines in several different orientations.
On higher layers compositions of lower layer concepts are learned, forming
more and more complex shapes. Only shapes that have been observed most
frequently in the images used for learning are memorized, and then used to
model the environment. Only a few lower layers of the proposed hierarchy
are currently being learned. In the future, the image formation step will
be omitted and information from other modalities, like odometry, will be
used to combine the information from separate range scans into a unified
map, which will provide a more complete view of the environment. Based on
these maps even more complex shapes will be formed, which will introduce
the abstraction needed to learn higher level concepts. These will provide
good scalability of the model through sharing of same concepts between
different room categories. A cognitive system using our representation of
space would be able to make use of a large quantity of information, that has
been obtained in past observations, to extend it’s knowledge about general
characteristics of space, and then use this knowledge as a compact and
expressive description of it’s surroundings.

In this work we also propose a new low-level image descriptor, by which
we demonstrate the performance of our representation in the context of
the room classification problem based only on data obtained with a laser
range finder. Using only the lower layers of the hierarchy, we obtain state-
of-the-art classification results on demanding datasets. Room classification
methods, which are based on data obtained with range sensors have a poten-
tial to work faster than other, for example, vision based, approaches, since
the input information is of lower dimensionality, while on the other hand,
the stinginess of the data makes this approach much more demanding. Such
approach could therefore provide a cognitive system with a quick first im-
pression about room type, which could then serve as a reliable basis for the

EU FP7 CogX 8



DR 5.5: Combining basic cross-modal concepts into novel concepts D. Skočaj et. al.

use of temporally more costly classifiers to verify the proposed hypothesis.

1.2.3 Cross-modal binding and learning

In work described in Annex 2.4 we devised a new belief scheme that now
also supports MLN reasoning. The beliefs form a cognitive layer where
multi-modal and multi-agent information is associated and merged to a-
modal representations. In general a belief can be regarded as a high-level
representation of an element of the physical reality, grounded in one or more
sensory inputs, attributed to a specific agent or a combination of both.
The new belief scheme distinguishes five distinct belief categories. Private
beliefs reflect the robot perceptions of the environment based on its sensory
input. Assumed beliefs are used to establish cross-agent or cross-modal
common ground; they are created from private beliefs by translating the
modal symbols to the a-modal ones. Attributed beliefs contain information
that a robot attributes to another agent. Verified beliefs are created from
attributed beliefs; they essentially contain the acknowledged information
from the attributed beliefs. Merged beliefs combine information from verified
and assumed beliefs and represent the final a-modal situated knowledge,
ready to be used by the higher level cognitive processes (e.g. motivation,
planning). They contain as reliable information as possible and as much
information as available.

MLN components have a triple role in this Belief scheme: (i) They are
used for binding — the binding process associates between beliefs from dif-
ferent modalities or different epistemic origins (in George the binding prin-
ciples are used in reference resolution), (ii) as a translator between modal
and a-modal symbols and (iii) for information fusion. In the information
flow from sensory data to higher cognition, the information fusion can be
regarded as a next step after the binding.

1.3 Relation to the state-of-the-art

In this section we discuss how our work is related to, and goes beyond the
current state-of-the-art.

1.3.1 Self-supervised learning of object affordances

The problem of object prediction has already been tackled by using offline
learning algorithms [20], which lack incremental ways of learning when new
data sequences are added. In this new approach, we can estimate the density
of sensorimotor spaces in an online way.

We also extract probabilistic machines that can be used in planning
tasks a posteriori, since they are essentially graphs on which some reasoning
methods could be applied. They also encode an entropy based representation
of causal relationships that can be used for active learning.
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We obtain qualitative representations of temporal sequences of action/object
complexes, taking into account trajectory information like object and robot
poses. Traditionally, learning algorithms with abilities of temporal process-
ing like Hidden Markov Models (HMMs) [10], Recurrent Neural Networks
(RNNs) [34] and Dynamic Bayesian Networks [26] have been used in robotic
learning tasks. Substochastic sequential machines have been extracted from
RNNs to extract qualitative information learned by the RNNs [15, 11].
Substochastic Sequential Machines are similar to HMMs, in that they are
probabilistic finite state representations. Some characteristics of SSMs like
entropy based representation of uncertainty might be advantageous when
designing information-theoretic active learning methods.

Learning vector quantization (LVQ) [18] provides an intuitive, and of-
ten highly effective, means for discriminative learning where prototype vec-
tors are used to quantize the input feature space and given labels to form
piecewise-linear classifiers using the nearest neighbour rule. Since their in-
troduction, LVQ algorithms have undergone various analyses and seen vari-
ous improvements to their design and much attention has also been paid in
recent years to the role that the distance metric plays in the effectiveness of
LVQ methods, which was the focus of our investigation in [32]. LVQ ordi-
narily relies on the Euclidean metric to measure the distance between data
points, which provides equal weighting to all input dimensions. Many of the
input dimensions, however, may have little relevance when considering the
desired output function and may even have a detrimental effect on the out-
put if considered with equal weighting in the metric to the more important
dimensions. One standard approach to this issue is to pre-process the data
using some form of feature selection or dimensionality reduction, but this
can be infeasible in many learning scenarios where the training data are not
available in advance, e.g. autonomous robotics.

One early adaptation of LVQ3 known as distinction sensitive learning
vector quantization (DSLVQ) [28] achieves this by using a heuristic to adjust
weights along each of the input dimensions to modify the Euclidean met-
ric. An adaptation of LVQ1 known as relevance learning vector quantization
(RLVQ) [3] uses Hebbian learning to do similar, by adjusting weights for each
of the input dimensions at every training step depending on whether they
contributed to the correct or incorrect classification of a training sample.
RLVQ was subsequently adapted for use with GLVQ producing a method
known as generalized relevance learning vector quantization (GRLVQ) [13]
such that the dimensional weight updates also adhere to gradient descent
dynamics in a similar way to the prototype updates. Another modified
version of GLVQ [43] uses Fisher’s discriminant analysis to create an al-
ternative metric to the weighted Euclidean distance that employs a matrix
transformation to reduce the feature space dimensionality. More recently,
an adaptive metric was used in combination with training data selection for
LVQ [27].
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By comparison, in our work described in Annex 2.2, an advantage pro-
vided by the proposed methods over other metric-adaptive LVQ methods
based on gradient descent, is that they do not require a learning rate or
other parameters to be specified. Moreover, they provide incremental up-
date rules that operate alongside regular LVQ update rules and can therefore
be applied to any algorithms based on the general LVQ paradigm. Exper-
imental evaluations were provided under various stress conditions and over
various datasets and the proposed methods were shown to perform compet-
itively against various other LVQ-based methods, and against SVM.

1.3.2 Learning hierarchical representation of space

Numerous spatial models have already been proposed. Metric representa-
tions use sensory information to accurately describe the geometry of space
to some desired extent [6, 1], topological representations use graphs to model
space [40, 5], hybrid approaches combine both of the above paradigms
[41, 42], while combining of one or even both of the approaches, metric
and topological, on multiple levels of abstraction results in hierarchical rep-
resentations [30, 21, 25, 44]. Perhaps the closest to our work is the work
presented by Mozos [25]. He generates a topology of the environment for
room classification based on laser scans. A major difference between his and
our idea is that he uses occupancy grids under the topological level, which
are not suitable for modelling large environments, since they scale poorly.
In our approach, rooms will be represented with parts, which will be shared
between different categories, and thus requiring less memory. Despite sev-
eral existing approaches, to the best of our knowledge, our work is the first
attempt of using a hierarchical compositional model for the representation
of space on the lowest semantic level, at which range sensors are usually
used to observe the environment.

However, compositional hierarchies have been used for some time by the
computer vision community [8, 9, 19, 7]. In this work we adapt the hierar-
chical model from [9] to develop a description suitable for representation of
space. It turns out that rotational invarance of parts is crucial for obtaining
a compact and expressive hierarchy for spatial representation. This prop-
erty is not present in the model of [9], therefore, we extended the model to
satisfy the above condition.

Various systems performing topological localization have been developed
for room classification. In [30] very accurate room classification is achieved
using multimodal information. Approaches using less information available
for classification have also been considered. Laser range data combined
with vision was used for classification in [24], and many approaches that
use vision only for the accomplishment of this task have also been presented
[29, 46, 2, 48]. The most related to our work are the approaches performing
room classification based only on data obtained with range sensors. In [39]
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3D Time-of-Flight infrared sensor was used for acquiring 3D information,
which allowed the distinction between three types of rooms (office, meeting
room and hall). Only laser range data was used in [23]. Their robot was
equipped with a 360 degree field of view range sensor and they were able
to distinguish between four classes (rooms, corridors, doorways and hall-
ways). The classification was performed with AdaBoost and it was based
only on a single scan. Laser range data was also used for classification in
[12], where Voronoi random fields (VRFs) were employed to label different
places in the environment, providing the distinction between four classes
(rooms, hallways, junctions and doorways). Their approach uses a state-
of-the-art SLAM technique to generate a metric occupancy grid map of an
environment, while the Voronoi graph is then extracted of this map. For
each point on the Voronoi graph, VRFs then estimate the type of place it
belongs to. Our approach to room classification is based on the proposed
hierarchical model. We have taken into consideration a set of room types
(living room, corridor, bathroom, and bedroom), which are in our opinion
more demanding than the ones presented in the related work [23, 12].

1.3.3 Cross-modal binding and learning

Many of the past attempts at binding information within cognitive systems
were restricted to associating linguistic information to lower level perceptual
information. Roy et al. tried to ground the linguistic descriptions of objects
and actions in visual and sound perceptions and to generate descriptions of
previously unseen scenes based on the previously accumulated knowledge
[35, 36]. This is essentially a symbol grounding problem first defined by
Harnad [14]. Chella et al. proposed a three-layered cognitive architecture
around the visual system with the middle, conceptual layer bridging the gap
between linguistic and sub-symbolic (visual) layers [4]. Related problems
were also often addressed by Steels [38].

Jacobsson et al. approached the binding problem in a more general way
[17] [16] developing a cross-modal binding system that could form associ-
ations between multiple modalities and could be part of a wider cognitive
architecture. The cross-modal knowledge was represented as a set of binary
functions comparing binding attributes in pair-wise fashion. A cognitive ar-
chitecture using this system for linguistic reference resolution was presented
in [45]. This system was capable of learning visual concepts in interaction
with a human tutor. A probabilistic binding system was developed within
the same group that encodes cross-modal knowledge into a Bayesian graph-
ical model [47]. In [22] a framework for constructing high-level cognitive
representations of the environment, called beliefs, was presented. Markov
logic was used as the main framework for various types of inference over
beliefs, including perceptual grouping, which comes very close to our defini-
tion of binding. All these systems ([17] – [22]) assumed static cross-modal
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knowledge.

EU FP7 CogX 13



DR 5.5: Combining basic cross-modal concepts into novel concepts D. Skočaj et. al.

2 Annexes

2.1 Roa et al. “Online Density Estimation in a Robotic Ma-
nipulation Scenario and its application to Learning of
Temporal Action/Object Models and Concepts”

Bibliography S. Roa and G.-J. Kruijff: “Online Density Estimation in a
Robotic Manipulation Scenario and its application to Learning of Temporal
Action/Object Models and Concepts”. Technical Report, 2012.

Abstract Cognitive Robotics implies the ability of robots to learn from
the environment by interacting with it and learning causal relations and
associations stemming from these interactions. In this paper, we address
the particular problem of interacting by manipulating objects, specifically
robot arm pushes. To solve this problem we come up with models which can
describe the behaviour of objects given some action. For a learning robot it
is essential to learn in an incremental way, after new information is coming,
without losing generalization and avoiding overfitting. We tackle this prob-
lem firstly by estimating the density of a sensorimotor space after a robot
performs a new action by using a modification of the incremental Growing
Neural Gas (RobustGNG) algorithm. RobustGNG performs a quantization
of the space which is robust to noise and overfitting issues. Subsequently,
we infer models useful for prediction of object trajectories in terms of ob-
ject poses. The same machinery is useful for obtaining more coarse-grained
predictions, for instance categorizations of object behaviours. Last, but
not least, these prediction models should provide a qualitative temporal de-
scription of the state space, so that they can eventually be used in planning
tasks. Thus, we infer cause-effect models by using a new version of the
CrySSMEx algorithm for extraction of substochastic finite-state machines
given the quantization obtained by means of RobustGNG.

Relation to WP This work is directly related to continuous learning of
cross-modal concepts, where crossmodality comes from sources like manip-
ulation and vision (in this case simulated). It also explores the problem
of deriving categorical knowledge from previously learned tasks, i.e. from
density estimation of the sensorimotor space.
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2.2 Ridge et al. “Relevance Determination for Learning Vec-
tor Quantization using the Fisher Criterion Score”

Bibliography B. Ridge, A. Leonardis, and D. Skočaj: “Relevance De-
termination for Learning Vector Quantization using the Fisher Criterion
Score”. 17th Computer Vision Winter Workshop, Mala Nedelja, Slove-
nia,February 1-3, 2012.

Abstract Two new feature relevance determination algorithms are pro-
posed for learning vector quantization. The algorithms exploit the position-
ing of the prototype vectors in the input feature space to estimate Fisher
criterion scores for the input dimensions during training. These scores are
used to form online estimates of weighting factors for an adaptive metric
that accounts for dimensional relevance with respect to classifier output.
The methods offer theoretical advantages over previously proposed LVQ
relevance determination techniques based on gradient descent, as well as
performance advantages as demonstrated in experiments on various datasets
including a visual dataset from a cognitive robotics object affordance learn-
ing experiment.

Relation to WP The two new algorithms were proposed in order to aug-
ment the short-term training discriminative capacity of our previously pro-
posed self-supervised cross-modal learning algorithm [31] which is capable
of generating novel object affordance concepts autonomously.
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2.3 Uršič et al. “Room Classification using a Hierarchical
Representation of Space”

Bibliography P. Uršič, M. Kristan, D. Skočaj, A. Leonardis. “Room
Classification using a Hierarchical Representation of Space”. Submitted
to IEEE/RSJ International Conference on Intelligent Robots and Systems
IROS 2012, 2012.

Abstract Mobile robots need an effective spatial model for the successful
operation in real-world environment. The model should be compact and
simultaneously possess large expressive power. Moreover, it should scale
well. In this work we propose a new hierarchical representation of space,
whose compositional structure is learned based on statistically significant
observations. We have focused on a two dimensional space, since many
robots perceive their surroundings in two dimensions with the use of a laser
range finder or a sonar. We also propose a new low-level image descriptor, by
which we demonstrate the performance of our representation in the context
of room classification problem. Using only the lower layers of the hierarchy,
we obtain state-of-the-art classification results on demanding datasets.

Relation to WP This work proposes a new hierarchical model of space.
Spatial shape primitives are being learned by combining simple concepts
into more complex ones, forming the hierarchical representation. Based on
previous observations, the hierarchy containing most frequently detected
shapes is learned and then used to derive new abstract concepts, like room
categories. Therefore, the work is related to Task 5.4.
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2.4 Vrečko et al. “Associating and merging multi-modal and
multi-agent information in a cognitive system”

Bibliography A. Vrečko, A. Leonardis and D. Skočaj: “Associating and
merging multi-modal and multi-agent information in a cognitive system”.
TR-LUVSS-02/2012, University of Ljubljana, Faculty of Computer and in-
formation science, May 2012

Abstract A critical ability for every cognitive system operating in a com-
plex environment is the ability to combine several representations of the
same physical reality into a single shared representation. Such combined,
a-modal representations are then ready to be used by higher level cognitive
processes, like motivation and planning. In this work we describe a cog-
nitive layer where multi-modal and multi-agent information is associated
and merged to a-modal representations. Furthermore we describe the appli-
cation of cross-modal binding principles to a specific problem of reference
resolution.

Relation to WP The technical report addresses the problem of cross-
modal binding and learning, as defined in WP 5. It describes the applica-
tion of these principles to a concrete problem of reference resolution. Fur-
thermore it describes the belief schema where multi-modal information is
associated and merged to a-modal representations.
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[25] Oscar Martinez Mozos. Semantic Labeling of Places with Mobile Robots.
PhD thesis, Springer Berlin Heidelberg, 2008.

[26] Jonathan Mugan and Benjamin Kuipers. Autonomously learning an
action hierarchy using a learned qualitative state representation. In
In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, 2009.

[27] C. E Pedreira. Learning vector quantization with training data selec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(1):157–162, 2006.

[28] M. Pregenzer, G. Pfurtscheller, and D. Flotzinger. Automated feature
selection with a distinction sensitive learning vector quantizer. Neuro-
computing, 11(1):19–29, 1996.

[29] A. Pronobis, B. Caputo, P. Jensfelt, and H. Christensen. A discrimi-
native approach to robust visual place recognition. IROS, pages 3829–
3836, 2006.

[30] Andrzej Pronobis and Patric Jensfelt. Large-scale semantic map-
ping and reasoning with heterogeneous modalities. In Proceedings of
the 2012 IEEE International Conference on Robotics and Automation
(ICRA’12), Saint Paul, MN, USA, May 2012.

[31] B. Ridge, A. Leonardis, and D. Skočaj. Self-Supervised Cross-Modal
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[47] Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanhiede,
Nick Hawes, Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff,
Pierre Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel Skočaj, and
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Faculty of Computer and Information Science,

University of Ljubljana, Slovenia
{barry.ridge, danijel.skocaj, ales.leonardis}@fri.uni-lj.si

Abstract. Two new feature relevance determination
algorithms are proposed for learning vector quanti-
zation. The algorithms exploit the positioning of the
prototype vectors in the input feature space to esti-
mate Fisher criterion scores for the input dimensions
during training. These scores are used to form online
estimates of weighting factors for an adaptive metric
that accounts for dimensional relevance with respect
to classifier output. The methods offer theoretical
advantages over previously proposed LVQ relevance
determination techniques based on gradient descent,
as well as performance advantages as demonstrated
in experiments on various datasets including a visual
dataset from a cognitive robotics object affordance
learning experiment.

1. Introduction

Learning vector quantization (LVQ) [9] provides
an intuitive, and often highly effective, means for
discriminative learning where prototype vectors are
used to quantize the input feature space and given
labels to form piecewise-linear classifiers using the
nearest neighbour rule. Since their introduction,
LVQ algorithms have undergone various analyses
and seen various improvements to their design. The
original formulations (LVQ1, LVQ2, LVQ3) [9] have
been shown to be divergent, inspiring the generalized
learning vector quantization (GLVQ) algorithm [14]
where prototypes are updated such that a stochastic
gradient descent is performed over an error function.
LVQ algorithms have also been shown to be a fam-
ily of maximum margin classifiers [3], thus provid-
ing excellent generalization for novel data with high-
∗This research has been supported by: EU FP7 project CogX

(ICT-215181), and Research program P2-0214 Computer Vision
(Republic of Slovenia).

dimensional inputs. More recently, the nearest neigh-
bour rule of LVQ has been modified to a k-nearest
neighbours rule using a local subspace classifier [7].

Perhaps just as significantly, much attention has
also been paid in recent years to the role that the dis-
tance metric plays in the effectiveness of LVQ meth-
ods. LVQ ordinarily relies on the Euclidean metric to
measure the distance between data points, which pro-
vides equal weighting to all input dimensions. Many
of the input dimensions, however, may have little rel-
evance when considering the desired output function
and may even have a detrimental effect on the out-
put if considered with equal weighting in the metric
to the more important dimensions. One standard ap-
proach to this issue is to pre-process the data using
some form of feature selection or dimensionality re-
duction, but this can be infeasible in many learning
scenarios where the training data are not available in
advance, e.g. autonomous robotics. Various refor-
mulations of LVQ have been proposed that can ad-
just the metric during training such that the impact
of the individual input dimensions are dynamically
re-weighted during training in accordance with the
data under consideration. This can make a crucial
difference, both during training for more efficient ad-
justment of the prototypes, and when classifying test
samples where the undue consideration of irrelevant
dimensions can mean the difference between a cor-
rect and incorrect classification.

One early adaptation of LVQ3 known as distinc-
tion sensitive learning vector quantization (DSLVQ)
[11] achieves this by using a heuristic to adjust
weights along each of the input dimensions to modify
the Euclidean metric. An adaptation of LVQ1 known
as relevance learning vector quantization (RLVQ) [1]
uses Hebbian learning to do similar, by adjusting
weights for each of the input dimensions at every



training step depending on whether they contributed
to the correct or incorrect classification of a train-
ing sample. RLVQ was subsequently adapted for
use with GLVQ producing a method known as gen-
eralized relevance learning vector quantization (GR-
LVQ) [6] such that the dimensional weight updates
also adhere to gradient descent dynamics in a similar
way to the prototype updates. Another modified ver-
sion of GLVQ [15] uses Fisher’s discriminant anal-
ysis to create an alternative metric to the weighted
Euclidean distance that employs a matrix transforma-
tion to reduce the feature space dimensionality. More
recently, an adaptive metric was used in combination
with training data selection for LVQ [10].

In this paper, two new algorithms for LVQ-based
relevance determination are presented. Both methods
exploit the positioning of the prototype vectors in the
input feature space to inform estimates of the Fisher
criterion score along the input dimensions, which are
then used to form online estimates of the relevance
of the input dimensions with respect to the classi-
fier output. Both methods provide online updates that
may be used alongside regular LVQ updates and nei-
ther method requires the specification of a learning
rate, as in stochastic gradient descent. The remain-
der of the paper is organized as follows. In Section
2 the background theory and related algorithms are
outlined. The new algorithms are described in Sec-
tion 3. Experimental results are provided in Section
4 and concluding remarks are provided in Section 5.

2. Related Algorithms

Let X = {(xi, yi) ⊂ Rn × {1, . . . , C} | i =
1, . . . , N} be a training set of n-dimensional vec-
tors and corresponding class labels. Let Xc ={

(xi, yi) ∈ X
∣∣yi = c

}
and N c = |Xc|. Simi-

larly, let W = {(wi, ci) ⊂ Rn × {1, . . . , C} | i =
1, . . . ,M} be a set of prototype vectors with
corresponding class labels, and let Wc ={

(wi, ci) ∈ W
∣∣ci = c

}
and M c = |Wc|. Given

a vector x ∈ Rn, denote its components as
(x1, . . . , xn). Letting x be an n-dimensional data
vector and w be an n-dimensional prototype vector,
then a weighted squared Euclidean distance between
both vectors may be defined as

d2(x,w) =

n∑

i=1

λi(xi − wi)
2, (1)

where the λi are weighting factors for each dimen-
sion. Adding such weights to the Euclidean metric

allows for the possibility of re-scaling each of the in-
put dimensions depending on their respective influ-
ences on the classification output. Moreover, it en-
ables the metric to be made adaptive such that the
weights are adjusted dynamically during training de-
pending on the data.

Prototype vectors have associated receptive fields
based on the metric and classification of samples
is performed by determining which receptive fields
those samples lie in, or alternatively, which proto-
type vectors are closest to the samples. The recep-
tive field of prototype wi is defined as: Ri = {x ∈
X | ∀(wj , cj) ∈ W, d2(x,wi) ≤ d2(x,wj)}. Given
a sample (x, y) ∈ X , we denote by g(x) a function
that is negative if x is classified correctly, i.e. x ∈ Ri

with ci = y, and is positive if x is classified incor-
rectly, i.e. x ∈ Ri with ci 6= y. We also let f be
some monotonically increasing function.

The goal of GLVQ [14] is to minimize

E =

m∑

i=1

f(g(xi)) (2)

via stochastic gradient descent. The update rules for
GLVQ and many other LVQ algorithms can be de-
rived using the above notation. In the following, the
LVQ1 [9], RLVQ [1], GLVQ [14] and GRLVQ [6]
algorithms will be reviewed, before introducing the
proposed relevance determination methods.

2.1. LVQ1

Given a training sample (x, y) ∈ X , by letting
f(x) = x and g(x) = ηdj where dj = d2(x,wj)
with wj being the closest prototype to x and {λi =
1}mi=1 (i.e. equal weights for regular Euclidean dis-
tance), with η = 1 if x is classified correctly (i.e.
cj = y) and η = −1 if x is classified incorrectly (i.e.
cj 6= y), the following stochastic gradient descent
update rule may be derived for LVQ1 [9]:

wj
t+1 =

{
wj

t + α(x−wj
t ), if cj = y

wj
t − α(x−wj

t ), otherwise,
(3)

where α is the learning rate and the t subscripts de-
note prototype states at different training steps. How-
ever, it should be noted that the error function as de-
fined here is highly discontinuous, and thus can lead
to instabilities in the algorithm. GLVQ, discussed
next, was designed to resolve this issue.



2.2. GLVQ

Here, dj = d2(x,wj) is defined where wj is
the closest prototype to x with label cj = y and
dk = d2(x,wk) where wk is the closest prototype
to x with some other label. By letting

g(x) =
dj − dk
dj + dk

(4)

and
ft(g(x)) =

1

1 + exp−g(x)t
, (5)

which is a sigmoidal function that redefines the er-
ror function (Eq. 2) such that it is continuous over
borders between the receptive fields for wj and wk.
When minimized, the error function yields the fol-
lowing update rules for wj and wk [14]:

wj
t+1 := wj

t + αν
dk

(dj + dk)2
(x−wj

t ) (6)

wk
t+1 := wk

t + αν
dj

(dj + dk)2
(x−wk

t ) (7)

where

ν = f ′t(g(x)) = ft(g(x))(1− ft(g(x)). (8)

GLVQ, unlike LVQ1 or the rest of Kohonen’s origi-
nal LVQ formulations, has been shown to be conver-
gent [14, 6], although it is sensitive to the initializa-
tion of the prototype vectors. This is demonstrated in
the experimental results of Section 4.

2.3. RLVQ and GRLVQ

The LVQ prototype update equations can be ac-
companied by updates that also alter the λi in Eq.
(1) dynamically during training, hence allowing for
an adaptive Euclidean metric. In RLVQ [1], LVQ1
training is adjusted such that the following weight-
ing factor update rule is applied alongside Eq. (3):

λl :=

{
λl − β(xl − wj

l )
2 if cj = y

λl + β(xl − wj
l )

2 otherwise,
(9)

for each l-th dimension where β ∈ (0, 1) is a learn-
ing rate for the weighting factor adjustments. The
weights are normalized at each update such that∑n

i=1 λi = 1. The motivation for the above comes
from Hebbian learning, the idea being that when
wj classifies the sample x correctly, the weights
for the dimensions that contributed to the classifica-
tion the most are increased, whereas the weights of

those that contributed the least are decreased. When
wj incorrectly classifies x, the weights for dimen-
sions that contributed most are decreased, whereas
the weights for dimensions that contributed the least
are increased. GRLVQ [6] is an application of the
above idea to GLVQ, such that the updates for the
weights for the metric also follow a stochastic gradi-
ent descent on the error function defined by GLVQ.

One disadvantage of both RLVQ and GRLVQ is
that they require the specification of an additional
learning rate, β, which can be difficult to specify ap-
propriately with respect to its α counterpart in the
prototype updates. Another disadvantage is that they
fail to take into consideration the additional statis-
tical information provided by the remaining proto-
types other than the ones currently being updated at a
given training step when making relevance estimates.
These issues are addressed with the following two
proposed LVQ relevance determination algorithms.

3. Proposed Algorithms

The Fisher criterion, while ordinarily associated
with Fisher’s discriminant analysis [4], can also serve
as an effective means for relevance determination
when applied across individual data dimensions. Let-
ting xA = 1

N

∑
xi∈A x

i be the mean of a set of points
A with cardinality N , the Fisher criterion score for a
given individual dimension l is defined as

F (l) =
SB(l)

SW (l)
, (10)

where

SB(l) =

C∑

c=1

N c
(
xX

c

l − xXl
)2

(11)

is the between-class variance and

SW (l) =
C∑

c=1

∑

x∈Xc

(
xl − xX

c

l

)2
(12)

is the within-class variance over the l-th dimension.
With regard to relevance determination for LVQ,

F (l) could be calculated for each dimension over the
entire training set X in advance of LVQ training and
applied to the weighting factors in Eq. (1) by set-
ting λl = F (l) for all l to form a weighted metric.
However, for many applications it is more desirable
to have an online feature relevance training mecha-
nism that is not reliant on having access to the en-
tire training set at once. Two such online algorithms
where estimation of the Fisher criterion score is inte-
grated into the training scheme are presented next.
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Figure 1. A simple 2D, 2-class example of how the Fisher criterion score (see Eq. (10)) can fail as a feature relevance
metric over multi-modal distributions. (a) shows uni-modal class data distributions, linearly separable in the x-dimension,
but with large overlap in the y-dimension. The score reflects the relevance of each dimension to class discrimination. (b)
by comparison, shows the same number of data points, but with a multi-modal distribution (yet still linearly separable in
x). The score is significantly lower for the x-dimension in this case. (c) shows the improvement provided by calculating
the score between pairs of clusters with centers at points A1, B1, A2 and B2. See Section 3 for more details.

3.1. Algorithm 1

With the first algorithm, rather than calculating
F (l) over the data in X , at a given timestep t the
score is estimated over the values of the prototype
vectors in W . This is plausible since the distri-
bution of the prototype vectors should approximate
the distribution of the data over time. During train-
ing, certain prototypes will quantize more significant
modes of the distribution than others, thus to account
for this, weighted means and variances are calcu-
lated for each class based on the classification accu-
racy of each of the prototypes of that class, then the
Fisher criterion score is calculated over the weighted
means and variances for all classes. Firstly, the def-
inition of W is altered to W = {(wi, ci, pi) ⊂
Rn×{1, . . . , C}×R | i = 1, . . . ,M } where, given
random variable (x, y), pi = p(x ∈ Ri|y = ci) is the
conditional probability of x lying in receptive field
Ri of prototype wi given that wi correctly classifies
x. The pi form probability distributions over class
prototypes such that

∑
pi∈Wc pi = 1 for each class

c. A definition of the estimated Fisher criterion score
may now be formed as

F (l) ' F̂ (l) =
ŜB(l)

ŜW (l)
, (13)

where

SB(l) ' ŜB(l) =
C∑

c=1

N c

N

(
ŵW

c

l − ŵWl
)2

(14)

is the estimated between-class variance over the l-th
dimension,

SW (l) ' (15)

ŜW (l) =
C∑

c=1

N c

N

∑

(wi,ci,pi)∈Wc

pi
(
wl − ŵW

c

l

)2

(16)

is the estimated within-class variance over the l-th
dimension, and

ŵW
c

l =
∑

(wi,ci,pi)∈Wc

piwi
l (17)

is a weighted mean over the l-th dimension of proto-
types in a given setWc ⊆ W .

The λm relevance factors may then be updated at
each timestep by taking a running mean of the nor-
malized estimated Fisher criterion score:

λl,t+1 := λl,t +

F̂ (l)∑n
l=1 F̂ (l)

− λl,t
t+ 1

. (18)

While the Fisher criterion score is suitable for fea-
ture relevance determination in many cases, its main
drawback is that it does not cope well with multi-
modal feature distributions. An example of this is
shown in Figure 1. This problem remains in the esti-
mation proposed above, since Eq. (14) and Eq. (16)
are calculated over all class prototypes. The second
proposed algorithm was designed to account for this.

3.2. Algorithm 2

The second proposed algorithm is based on the
idea of calculating the Fisher criterion score between



single prototype vectors of opposing classes, where
the assumption is made that each class prototype vec-
tor may be quantizing different modes of the under-
lying class distribution. During training, Gaussian
kernels are used to maintain estimates of the accu-
racies of each of the prototypes over the parts the
data distribution accounted for by each of their re-
ceptive fields. At a given training step, the nearest
single prototypes of each class to the training sam-
ple are found, and their Gaussian kernels are used to
calculate an estimate of the Fisher criterion score for
that local portion of the distribution, which is subse-
quently averaged over the entire training period.

The definition ofW is this time altered to accom-
modate a Gaussian estimate of the accurate portion
of the receptive field for each prototype, such that

W = {
(
wi, ci,N (x;µi,Σi)

)
⊂ Rn × {1, . . . , C}×

(Rn × Rn×n) | i = 1, . . . ,M } , (19)

where N approximates R̃i =
{
x ∈ Ri|y = c

}

with mean µi and covariance matrix Σi =
diag([si1, . . . , s

i
n]) where the

{
sil
}n
l=1

are variances
along each l-th dimension. During LVQ training,
given a random sample (x, y) ∈ X at training step
t, if the closest prototype wj classifies x correctly,
i.e. cj = y, then µjl and sjl are updated in each l-th
dimension as follows [8]:

µjl,t := µjl,t−1 +
xl − µjl,t−1

t
(20)

ŝjl,t := ŝjl,t−1 + (xl − µjl,t−1)(xl − µ
j
l,t) (21)

where µjl,t is the running mean estimate and sjl,t =

ŝjl,t
t−1 is the running variance estimate for the l-th di-
mension at training step t. If cj 6= y, then the above
updates are not performed. Assuming a sufficient
number of updates have been performed on the rel-
evant prototypes up until step t, a Fisher criterion
score estimate may be calculated between

W ′ = {ωk =
(
wk, ck,N (x;µk,Σk)

)
∈ W

| ∀wi, ci = ck, d(x,wk) ≤ d(x,wi) } ,
(22)

the closest prototypes of different classes (including
wj), as follows:

F (l) ' F̃ (l) =
S̃B(l)

S̃W (l)
, (23)

where

SB(l) ' S̃B(l) =
1

C

C∑

c=1

(µcl − µl)2 (24)

is the between-class variance estimate in the l-th di-
mension with

µl =
1

C

∑

ωk∈W ′
µkl , (25)

and
SW (l) ' S̃W (l) =

∑

ωk∈W ′
skl (26)

is the within-class variance estimate in the l-th di-
mension. The relevance factors may then be updated
in a similar way to Eq. (18), this time using the new
estimates:

λl,t+1 := λl,t +

F̃ (l)∑n
l=1 F̃ (l)

− λl,t
t+ 1

. (27)

Since each prototype carries an accompanying Gaus-
sian kernel that estimates its accuracy, it is now pos-
sible to estimate the Fisher criterion score using only
single prototypes from each class, as opposed to
the previous algorithm where multiple prototypes in
each class have to be considered to achieve variance
estimates. Though the model is made more complex,
it is more capable of successfully handling the multi-
modal distribution issue described in Fig. 1 as shown
by the experimental results in the next section.

4. Experiments

The proposed algorithms were evaluated over sim-
ulated data, datasets from the UCI repository, and a
real-world dataset from a cognitive robotics object
affordance learning experiment. In the following, the
datasets are described in more detail and experimen-
tal results are provided in Section 4.1. Two simu-
lated datasets were proposed in [1, 6], the first of
which was replicated for the experiments here. The
data is composed of three classes, each separated
into two clusters with some small overlap to form
multi-modal class data distributions in the first two
dimensions. Eight further dimensions are generated
from the first two dimensions as follows: assuming
(x1, x2) is one data point, x3 = x1 + η1, . . . , x6 =
x1 + η4 is chosen where ηi comprises normally-
distributed noise with variances 0.05, 0.1, 0.2, and
0.5 respectively. The remaining x7, . . . , x10 com-
ponents contain pure noise uniformly distributed in



[−0.5, 0.5] and [−0.2, 0.2]. This dataset is multi-
modal for each class in the two relevant dimensions
and thus provides a good test for the potential differ-
ence between the two proposed algorithms.

Dataset # Features # Samples # Classes
Simulated 10 90 3
Iris 4 150 3
Ionosphere 34 351 2
Wine 13 178 3
Soybean 35 47 4
WBC 30 569 2
Affordance 11 160 2

Table 1. An attribute list for the datasets in Section 4.

Five different datasets from the UCI repository
[5] were tested: Fisher’s Iris dataset, the ionosphere
dataset, the wine dataset, the soybean dataset (small),
and the Wisconsin breast cancer (WBC) dataset. A
dataset from a cognitive robotics object affordance
learning experiment [13] was also tested. It con-
sists of eight household objects separated into two
classes, four rolling objects and four non-rolling ob-
jects, and labeled as such, accompanied by eleven
different shape features, two of which measure the
curvature of 3D points from stereo images of the ob-
jects and the remainder of which were derived from
2D silhouettes of the objects.

4.1. Results

The primary goal of the investigation was to eval-
uate whether or not the new algorithms when applied
to standard LVQ methods such as LVQ1 and GLVQ
offer performance improvements over those methods
in their original form, as well as over other relevance
determination techniques for LVQ, such as RLVQ
and GRLVQ. The results of these comparisons are
outlined in Table 2 and are discussed in more detail
in the following. In the results, the proposed Fisher
criterion score-based relevance determination algo-
rithms are referred to as FC1LVQ1 and FC2LVQ1
respectively when applied to LVQ1, and FC1GLVQ
and FC2GLVQ when applied to GLVQ.

A secondary consideration was to test the meth-
ods under the duress of various different conditions.
GLVQ, for example is known to perform poorly if the
prototype vectors are not initialized within the data
distribution [12], thus in our evaluations, both ran-
dom prototype initializations as well as initializations
where the prototypes are placed at the mean points
of class clusters were considered. Note that random
prototype initialization in this case refers to selecting

random values for each prototype dimension scaled
within the data range. K-means clustering was used
to determine class clusters in the latter case.

The performance of LVQ algorithms over short
training periods is not often considered in the liter-
ature, which tends to favour evaluations of the al-
gorithms over several hundred training epochs un-
til convergence is reached. Given that LVQ algo-
rithms have online training mechanisms, and that the
relevance determination techniques proposed above
were explicitly developed to also function online,
sample-by-sample without access to the rest of the
training set, such short-term training evaluations are
important if the methods are to be considered useful
in real-world online settings, e.g. cognitive robotics
[13], where the entire training set is often unavailable
at any given point during training.

Thus, the results in Table 2 are divided into four
main evaluations: both 1 epoch and 300 epochs of
training from random initialization, and both 1 epoch
and 300 epochs of training from class cluster mean
initialization. The 300 epoch sessions used the rel-
atively slow learning rates of α = 0.1 for the pro-
totype updates (cf. Eq. (3), Eq. (6) & Eq. (7))
and β = 0.01 for the dimensional relevance updates
where required (cf. Eq. (9)), whereas the 1 epoch
training sessions used the faster rates of α = 0.3 and
β = 0.1. Note that the FC1 and FC2 methods do not
require the additional β learning rate. In each of the
1 epoch evaluations, 20 trials of ten-fold cross val-
idation were performed with random data orderings
in each trial, and results were averaged over test data
performance, whereas in the 300 epoch evaluations,
5 trials were performed. 10 prototypes were used for
every dataset and the data dimensions were scaled
prior to training.

The results in Table 2 show that when trained over
a single epoch from random initialization, of the al-
gorithms tested FC2LVQ1 and FC2GLVQ achieved
higher mean classification scores than their counter-
parts in many cases. Over long-term training of 300
epochs from random initialization, the results for all
algorithms aside from GLVQ, tend to improve with
FC2LVQ1 and FC2GLVQ again tending to be com-
petitive with their counterparts. It is worth noting
here the impact relevance determination has on im-
proving the results of GLVQ when exposed to poor
prototype initialization. When the prototypes are ini-
tialized optimally at the class cluster mean points the
results tend to improve dramatically across all of the



Dataset LVQ1 RLVQ1 FC1LVQ1 FC2LVQ1 GLVQ GRLVQ FC1GLVQ FC2GLVQ
Random Initialization, 1 Epoch of Training, 20 Trials

Sim 53± 18% 64± 22% 54± 19% 69± 18% 37± 17% 63± 22% 51± 20% 70± 19%
Iris 90± 8% 91± 9% 93± 9% 95± 5% 63± 24% 89± 13% 83± 19% 88± 15%
Iono 81± 8% 75± 11% 85± 6% 84± 7% 66± 13% 80± 9% 82± 7% 84± 7%
Wine 93± 6% 79± 13% 92± 9% 94± 6% 52± 19% 92± 8% 85± 14% 94± 7%
Soy 89± 17% 83± 24% 89± 18% 85± 21% 34± 27% 84± 22% 83± 21% 85± 20%
WBC 92± 4% 86± 8% 93± 4% 93± 3% 71± 19% 93± 5% 90± 10% 94± 3%
Afford 97± 7% 93± 10% 98± 4% 99± 3% 78± 22% 96± 9% 84± 20% 98± 6%

Random Initialization, 300 Epochs of Training, 5 Trials
Sim 79± 14% 79± 13% 77± 16% 87± 12% 38± 17% 96± 7% 90± 12% 94± 9%
Iris 92± 7% 92± 8% 95± 5% 96± 5% 47± 24% 96± 5% 91± 16% 96± 4%
Iono 85± 7% 80± 10% 86± 8% 85± 7% 60± 16% 90± 5% 90± 6% 89± 6%
Wine 95± 5% 77± 11% 95± 5% 96± 5% 42± 18% 96± 5% 97± 4% 98± 3%
Soy 99± 6% 97± 10% 100± 4% 98± 7% 33± 26% 97± 8% 97± 7% 96± 9%
WBC 93± 3% 87± 7% 94± 3% 94± 3% 62± 20% 96± 3% 96± 3% 96± 2%
Afford 99± 2% 95± 7% 99± 2% 99± 3% 67± 24% 99± 2% 99± 2% 99± 2%

Class Cluster Mean Initialization, 1 Epoch of Training, 20 Trials
Sim 82± 12% 98± 5% 78± 17% 93± 8% 90± 9% 91± 9% 85± 13% 93± 8%
Iris 96± 5% 96± 5% 96± 5% 96± 5% 95± 5% 95± 5% 95± 5% 96± 5%
Iono 87± 6% 80± 10% 88± 6% 88± 6% 90± 5% 88± 6% 89± 5% 90± 5%
Wine 95± 5% 86± 11% 96± 5% 96± 5% 97± 4% 97± 5% 97± 5% 97± 5%
Soy 100± 2% 95± 10% 100± 3% 99± 5% 100± 2% 99± 4% 100± 2% 99± 5%
WBC 95± 3% 88± 7% 94± 3% 94± 3% 96± 3% 96± 3% 97± 3% 95± 3%
Afford 99± 2% 98± 4% 99± 2% 99± 2% 99± 2% 99± 2% 99± 2% 99± 2%

Class Cluster Mean Initialization, 300 Epochs of Training, 5 Trials
Sim 84± 11% 86± 16% 87± 12% 91± 10% 90± 9% 97± 6% 90± 10% 96± 8%
Iris 96± 5% 95± 6% 96± 4% 96± 5% 96± 6% 95± 5% 97± 4% 96± 4%
Iono 88± 5% 82± 9% 89± 5% 88± 5% 89± 5% 90± 5% 90± 5% 91± 5%
Wine 96± 5% 82± 12% 97± 4% 96± 5% 97± 4% 98± 3% 98± 3% 98± 3%
Soy 100± 0% 94± 11% 99± 6% 98± 7% 100± 0% 98± 8% 99± 5% 99± 6%
WBC 96± 2% 89± 5% 95± 3% 95± 3% 96± 3% 96± 3% 97± 2% 97± 2%
Afford 99± 2% 98± 3% 99± 2% 99± 2% 99± 3% 99± 2% 99± 2% 99± 2%

Table 2. 10-Fold cross validation, 10 prototypes. Highest scores for LVQ1 & GLVQ based algorithms are shown in bold.

classifiers in short-term training, with both FC1 and
FC2 relevance determination doing well over both
short-term and long-term training periods, with FC1
out-performing FC2 in some cases and vice versa.
Over all the evaluations, FC1GLVQ and FC2GLVQ
trained over 300 epochs with class cluster mean ini-
tialization tended to score well when compared with
the other methods. It should also be noted that, when
the class distribution in the data is multi-modal, as is
the case with the simulated dataset, FC2-based meth-
ods tend to be a better choice than FC1-based meth-
ods, as predicted.

A third consideration was to compare the new
methods to a state-of-the-art batch method such as
the support vector machine (SVM). Batch methods,
as opposed to online methods that are trained sample-
by-sample, have access to the entire training set dur-
ing training, and therefore usually provide superior

results. Table 3 shows the results of a compar-
ison between FC1GLVQ, FC2GLVQ and a multi-
class SVM trained with a radial basis function (RBF)
kernel [2]. For this comparison, the results for
FC1GLVQ and FC2GLVQ from the 300 epoch, class
cluster mean-initialized evaluation described previ-
ously were used, while ten-fold cross validation over
five trials was also used for the SVM, where the test
data results were averaged over the five trials and
SVM parameters were optimized using cross valida-
tion over the training data prior to training. The re-
sults show both FC1GLVQ and FC2GLVQ perform-
ing well when compared with SVM over the vari-
ous datasets, particularly in the case of the simulated
multi-modal dataset.

It is difficult to evaluate the performance of the
algorithms with respect to the estimation of the λl
weighting factors themselves, but examples of the



Dataset FC1GLVQ FC2GLVQ SVM
Simulated 90±10% 96±8% 78±14%
Iris 97±4% 96±4% 96±6%
Ionosphere 90±5% 91±5% 94±4%
Wine 98±3% 98±3% 98±3%
Soybean 99±5% 99±6% 100±0%
WBC 97±2% 97±2% 98±2%
Affordance 99±2% 99±2% 99±3%

Table 3. FC1GLVQ & FC2GLVQ versus SVM. Highest
mean scores are shown in bold.

mean values for certain datasets are provided here.
For the simulated dataset, λFC1GLVQ = {0.10, 0.42,
0.07, 0.06, 0.10, 0.06, 0.04, 0.03, 0.07, 0.04} and
λFC2GLVQ = {0.40, 0.43, 0.06, 0.01, 0.01, 0, 0, 0, 0,
0}, thus demonstrating that FC2GLVQ does indeed
do a better job of handling the multi-modal distri-
bution. For the Iris dataset, λFC1GLVQ = {0.02, 0.02,
0.55, 0.40} and λFC2GLVQ = {0.03, 0.07, 0.37, 0.53}.
For the object affordance dataset, λFC1GLVQ = {0.04,
0.56, 0.05, 0.05, 0.03, 0.05, 0.04, 0.04, 0.01, 0.09,
0.05} and λFC2GLVQ = {0.05, 0.34, 0.07, 0.07, 0.07,
0.08, 0.01, 0.08, 0.06, 0.12, 0.06}, where one of the
3D curvature features is favoured in each case.

5. Conclusion

In conclusion, two new relevance determination
algorithms have been proposed for LVQ that ex-
ploit the positioning of prototypes in the input fea-
ture space to calculate Fisher criterion score esti-
mates in the input dimensions for an adaptive met-
ric. An advantage provided by these methods over
other metric-adaptive LVQ methods based on gra-
dient descent, is that they do not require a learning
rate or other parameters to be specified. Moreover,
they provide incremental update rules that operate
alongside regular LVQ update rules and can therefore
be applied to any algorithms based on the general
LVQ paradigm. Experimental evaluations were pro-
vided under various stress conditions and over vari-
ous datasets and the proposed methods were shown
to perform competitively against various other LVQ-
based methods, and against SVM. With regard to fu-
ture work, it would be interesting to apply the pro-
posed techniques to prototype-based methods other
than LVQ, such as supervised neural gases.
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