e

Title: A Reconfigurable robot workCell for fast set-up of
automated assembly processes in SMEs

Acronym: ReconCell

Type of Action: Innovation Action
Contract Number: 680431

Starting Date: 1-11-2015

Ending Date: 31-10-2018

\

Deliverable Number:
Deliverable Title:

Type (Public, Restricted, Confidential):
Authors :

Contributing Partners:

D6.1

Technical report on software and hardware com-
ponents in the workcell

PU

Martin Bem, Robert Bevec, Miha Denisa, Tim-
otej Gaspar, Barry Ridge, Igor Kova¢, Minija
Tamosiunaite, Tatyana Ivanovska, Andrej Gams,
Christian Schlette, Norbert Kriiger, T. Rajeeth
Savarimuthu, Rune Larsen, and Ales Ude

JSI, UGOE, SDU, MMI, BOR

Estimated Date of Delivery to the EC:
Actual Date of Delivery to the EC:

31-10-2016
04-11-2016

Page 1 of 32

Contents

1 Executive Summary 3
2 Minimal Workcell Design 4
2.1 Hardware e 4
2.2 Software e 5
3 Hardware Architecture 6
3.1 Passive linear unit 7
3.2 Reconfigurable jig modules (hexapods) 8
3.3 Trolleys 8
3.4 Plug and Produce Connectors 8
3.5 Robot end-effectors 8
3.6 Quick tool changer Lo 9
3.7 Tool hanger module oo 9
4 Software Architecture 9
4.1 Simulink Real-Time Target Interface 9
4.2 Robot State Publisher oo 13
4.3 Robot Control Interface 15
4.4 State Machine Interface o 22
4.5 Simulation and Visual Programming Module 23
4.6 Vision Module Interface oL 23
4.7 Digital Interfaceo 24
References 25
Appendices 26
A Simulink Real-Time Target output data 26
B Simulink Real-Time Target input data 27

Page 2 of 32

1 Executive Summary

This deliverable describes the functions, inputs and outputs of different components in the
ReconCell hardware and software environment, which was developed to facilitate the set-up of
automated assembly solutions [7]. The information provided here is vital for partners who need
to interface with the components and as an in-depth description of the robot workcell structure.

In the first part of the deliverable we describe the minimal design of the reconfigurable
workecell that can be deployed. An overview of the minimal hardware and software components
is provided. ROS (Robot Operating System) [9] is used as a basis for software development.

In Section 3 we provide descriptions of all the components that attach to the minimal
workcell design and make it a functional, reconfigurable robotic workcell. The descriptions of
several reconfigurable elements are complemented with technical documentation in Deliverable
D1.1: Technical report on the design of innovative workcell elements.

Section 4 describes the software architecture of the reconfigurable workcell. While the
backbone is the same, ROS-based communication network as used in the minimal workcell
design, several aspects of the design and several optional software elements are described in
this section, including the integration of the VEROSIM software package for the visualization
and visual programming.

The appendices provide the technical specifications of the communication packages.

Page 3 of 32

2 Minimal Workcell Design

2.1 Hardware

The minimal workcell design encompasses only the framework that enables the cell to to be
upgraded with application specific modules. It consists of:

e Basic frame
e Robot Module

— Robot

— SLRT Server for robot control
— Quick tool changer

— Force/torque sensor

— Gripper /end-effector tool

e Computer running roscore and basic ROS nodes (Robot State Publisher, Robot Control
Interface, State Machine Interface)

e Plug & Produce connectors

The basic frame is made of structural square steel tubing connected with the BoxJoint system.
BoxJoint is a modular system for assembling beam frames without welding. It uses a system of
plates connected with nuts and bolts. The flexibility of the BoxJoint system enables the frame
to be changed depending on the application needs. The detailed frame design is described in
D1.1: Technical report on the design of innovative workeell elements (section “Reconfigurable
Frame”).

An essential part of the minimal core workcell design is a robotic arm. It is the core compo-
nent that executes the desired assembly task. It is fixed on the frame using the aforementioned
BoxJoint system, which allows mounting the robot at different positions on the frame depend-
ing on the task. A computer running real time OS (SLRT) is used for controlling the robot.
A force/torque sensor is mounted at the end-effector. Following the F/T sensor, the tip of
the robot is equipped with a pneumatic tool changer. It enables us to quickly exchange end-
effectors based on the task requirements. To provide maximum grasping reliability, a different
set of gripper fingers can be used for each assembly part. The tool changer increases the flexi-
bility by enabling end-effector changes with no human intervention, thus allowing the robot to
manipulate different assembly parts.

The basic frame can be expanded by connecting peripheral modules via the Plug and Pro-
duce connectors. The connectors provide mechanical coupling as well as power, communication
and pneumatic connections. A more extensive description of the Plug & Produce connectors is
given in Section 3.4.

Figure 1 depicts a variant of the minimal workcell with three Plug & Produce connectors on
each side (6 altogether) and the robot. Other minimal designs are possible. The same scheme
also refers to the software architecture, shown in Figure 2.

Page 4 of 32

Figure 1: Example rendering of the minimal workcell design.

2.2 Software

ReconCell’s core system also includes the necessary software tools to enable programming of
the robot’s motion. The essential elements of the software architecture are:

e a robot module,
e a computer with the ROS system running roscore.

Figure 2 shows a representation of the minimal software architecture.

Part of the robot module is a custom Simulink Real-Time Target Server (SLRT), which
was developed within the project to ensure that the robot can be reliably controlled with
the maximum frequency of the provided robot controller (125 Hz in case of UR10 robots).
Advanced trajectory generation methods and feedback control strategies are implemented on
this server. High sampling frequencies are for example necessary for high-quality force control.
Our real-time controller therefore runs with a higher frequency (1000 Hz) than the provided
robot controller. This means that in case of UR-10 robot, the real-time controller can process
8 samples from the force sensor before calculating new motor commands, which are sent to the
robot controller. This way we can improve force control.

Page 5 of 32

Legend

Ethernet
Plug and Produce
Connector

Robot control Robot Ethernet, Power,
Air, ROS

box
MOdU|e 1 communication
____________ Digital I/0

Gripper 1

SLRT Server

1
1
1 Module

Real-timetrajectory | | !
1
1
1

generation and

1
1
1
Tool exchange i
| feedback control loops

End effector tool 1

F/T sensor

ROS Master

Computer
Robot State Publisher
Robot Control Interface
State Machine Interface

Figure 2: Schematics of the minimal workcell software and hardware architecture.

ROS architecture provides a good framework for connecting different devices on a shared
network. It enables programming of the desired robot actions using data from the connected
devices. The ROS Master Computer is running roscore, which is a collection of nodes and
programs that are pre-requisites of a ROS-based system. roscore is necessary in order for ROS
nodes to communicate. ROS master computer also hosts nodes that handle communication
between the robot module and the ROS system (Robot State Publisher and Robot Control
Interface). Robot State Publisher handles the communication of the robot state (and other
hardware included in the robot module) from the SLRT Server to the ROS-based system.
Robot Control Interface implements action servers and services and handles communication to
the SLRT Server. The programming of action sequences is done using State Machine Interface
(SMACH) [2], which also runs on ROS Master Computer.

3 Hardware Architecture

The hardware is composed of the following components:

e Minimal cell

Passive linear unit

Reconfigurable jig module

Trolleys

Plug & Produce connectors

Page 6 of 32

End effector
hanger module

Robot

Passive end effectors

linear unit

Minimum cell

Reconfigurable

jig module el

Plug and produce
connector

Figure 3: Hardware architecture consisting of the minimal cell and several peripheral elements.

Robot end-effectors

Quick tool changer

Tool hanger Module
Vision Module

e Simulation Module

Some of the above mentioned components can be seen in the extended workcell shown in
Figure 3. The complete software architecture is depicted in Figure 4. While the minimal
workcell was described in Section 2, in the following we explain the remaining components.

3.1 Passive linear unit

The purpose of the passive linear unit is to expand the work area of the robot with minimum
additional cost. Conventional actuated solutions are extremely expensive and thus inappropri-
ate for SMEs. A way to reduce the cost without significantly reducing the functionality is to
omit the actuation and position sensing from the linear unit. The robot itself is used to propel
itself along the linear rail. This is achieved by connecting the tip of the robot to the frame and
then by using the robot actuators and position control to move the base of the robot. This
approach is appropriate for applications where the need to move the robot is not too frequent.
A detailed description of the linear rail can be found in Deliverable D1.1. The unit uses the
digital interface described in Section 4.7 to release its breaks.

Page 7 of 32

3.2 Reconfigurable jig modules (hexapods)

Many robotic workcells use application-specific jigs. This is not a big issue in mass production
where the time intervals between production changes are typically long. In SMEs, however,
production often occurs in small series of highly customized parts. In this case, product-specific
jigs present a significant hindrance for the use of robots. To overcome this problem, it is useful
to develop affordable reconfigurable jigs. Aspects of reconfigurable fixture design are reviewed
in [6]. In ReconCell we use passive Stewart-Gough platforms for holding workpieces during
robotic operation, which are in this deliverable also referred to as hexapods. The hexapods are
not actuated and contain no position sensing equipment. To maintain the position, hydraulic
brakes are used in each leg of the hexapod. Reconfiguration is done by grabbing the top
platform of the hexapod with the robot and after releasing the brakes, moving it to a new
position. The detailed description of the reconfigurable jigs can be found in Deliverable D1.1.
The developed hexapods use the digital interface described in Section 4.7 to release the breaks
or trigger fixture clamps.

3.3 Trolleys

A fast method for inputing parts and peripheral equipment is needed. In ReconCell we are going
to use Plug & Produce connectable trolleys. The trolleys are still to be developed, but they
will be equipped with special trays that will maintain the position of the parts. The peripheral
equipment will be mounted directly to the trolley. This means that the position and orientation
of equipment and/or assembly parts will be known as soon as the trolley is connected to the
workcell. The proposed Plug & Produce connectors will also provide pneumatic and electric
connections to power the peripheral devices mounted to the trolleys. The detailed description
of the trolleys can be found in Deliverable D1.1.

3.4 Plug and Produce Connectors

To facilitate the reconfiguration process, we propose to use Plug & Produce connectors. One
end of the connector is to be mounted to the frame of the workcell, while the other will attach
to different peripheral modules. The connector provides mechanical coupling as well as all other
electrical and pneumatic connections to deliver full functionality of the peripheral module. The
connector locks by pushing both sides together. To disconnect it we need pneumatics, controlled
by the digital interface described in Section 4.7. The detailed description of the Plug & Produce
connector can be found in Deliverable D1.1.

3.5 Robot end-effectors

In order to manipulate objects and their parts, the robot needs different end-effectors. To
ensure reliable grasping it is common to develop task-specific end-effectors. In ReconCell we
are going to use parallel, angular and centric pneumatic grippers. Some of the task-specific
fingers have already been developed. All end-effectors are designed so that they can be stored
in the tool hanger module.

Page 8 of 32

3.6 Quick tool changer

Due to various task-specific grippers and end-effectors, the need for quick end-effector changes
arises. To comply with this demand, a Destaco QC-30 quick tool changer [4] has been integrated
into the workcell. It is composed of two parts, one permanently attached to the tip of the robot,
the other to different end-effectors. The two parts can be connected together using pneumatics,
controlled by the robot’s digital interface described in Section 4.7.

3.7 Tool hanger module

End-effectors currently not in use have to be stored within reach of the robot. The storing
positions must be known with sufficient accuracy so that a robot can later retrieve them. A
tool hanger module was developed for this purpose. It uses two centering pins to position
the end-effectors. All ReconCell end-effectors are compatible with the developed tool hanger
module. The detailed description of the tool hanger modules can be found in Deliverable D1.1.

4 Software Architecture

This section describes various software components that are either part of the minimal workcell
software architecture (described in Section 2.2) or are introduced for specific applications in dif-
ferent production settings. These software components are integrated into the overall software
architecture shown in Figure 4. In this section we provide a detailed description of software
components included in “Robot module”, which belongs to the core software of the workcell and
implements real-time robot control strategies and communication with the robot and peripheral
hardware attached to the robot. The non-real-time part of the system is implemented using
ROS (Robot Operating System) [9] and consists of several ROS nodes that run on ROS Master
Computer. Other ROS-based modules are added based on task requirements, e.g. “Vision
module” and “Digital interface unit”. These modules provide additional functionality to the
robot workcell. All software modules are connected to Ethernet and communicate via ROS [9].

4.1 Simulink Real-Time Target Interface

Universal robot UR10 [0] was selected as the default robot for the ReconCell system. Out of the
box UR10 allows the user to program movements using predefined control strategies. However,
the ReconCell software architecture provides an abstraction layer to support switching between
different robots. The aim is to provide a number of trajectory and feedback control strategies
independently of the selected robot and enable the programming of new strategies via a suitable
control interface. For this reason we developed a real-time server that runs at 1000 Hz and
communicates with the selected robot at the highest frequency allowed by the robot’s control
box. In case of URI10, the highest frequency is 125 Hz. The developed real-time server also
enables the implementation of advanced feedback control algorithms, e. g. force control, without
being limited to a specific robot.

Page 9 of 32

"SO[NPOW dIBMPIRY PUR 9IBM)JOS SNOLIRA [}IM [[0OXI0M DI}0(OI S[(RINSYUO0IDI B JO MIIAIOAO MAISAG :f 2INSTI]

(NISOY3A)
Jaindwo)

uone|nwiIs

Aajes

|
=< - -=="|-=-=—=--"- qaT=T - T
ae4I23U] BUILPRI eI T T B o | L e
90BJU91U| |043UOD 1000Y [endiq N et EEE L
Jayslignd a1e1s 1090y s
J91ndwo) T
OIN I
J91se|A SOY f==m7--- !

Asaydiiad Juspuadap uonesijddy

SINpoN

o/ [enbig
UoNEDIUNWIWOD
SOy 'Y

‘1amod ‘18uiayig
J10198UU0D
2onpo.d pue Hn|d

pCIDEINE]

puaba]

1~ Imm.IuFﬂu_ﬂml |“ | sohuod !

“ ajes i 1 N "

I Tsapoums o

“ Kyages

...... ' nin m——

Asayduiad juapuadap aoepal|
uopedy|ddy renbiq = s 1
| UOISIA "
1
—
— esawe)

3|NpPON
UOISIA

Josuas | /4
=TT TTT T T TA 100 1019343 pu3
“ sdoo| 04302 YoeqPaay "

1 pue uonesauad |
Aso3dafesy awn-|eay — 38ueydxa |00
_ L senas 1S I
1
e e 1 Jadduo
9|Npo|
T 3INPON oq
1ogoy |043u02 J0qoY

J0suas 1 /4
TTTTTTTTTTTA 1001 10393448 pu3
“ 5d00] |043U0 yoeqPIDY "

1 pue uonesauad I
Asoyalesy awny-jeay] a8ueyoxa [00]
_ 1 19AI3S 1415 I
1
D e | Jaddug
9|Npo
T SINPON on
uODOW_ |043u02 3040y

Page 10 of 32

The developed server (denoted as SLRT Server in Figs. 2 and 4) accepts higher-level com-
mands, e.g. action sequences, from the Robot Control Interface (see Section 4.3) and applies
the implemented control strategies and commands to execute the required robot motion. To
implement the server we used MATLAB Simulink Real-Time Target (SLRT) system as it pro-
vides a comprehensive user interface to program complex control algorithms that run in real
time. The SLRT Server also broadcasts information about the state of the robot and hardware
modules connected directly to the robot control box via Ethernet using custom UDP packets.
This information is received by Robot State Publisher (see Section 4.2) running on ROS Mas-
ter Computer and robot simulation system (see Section 4.5) running on a separate Simulation
Computer.

4.1.1 TCP/UDP Converter

In this section we describe how the communication between UR10 robot and SLRT Server
has been implemented. The UR10 robot controller provides the programming functionality
via URScript, a scripting language developed by Universal Robots. A program written in
URScript must run on the robot controller and nowhere else. We used URScript to write a
program that can accept robot control data over the network and control the robot accordingly.
Unfortunately, URScript language provides only TCP-based communication functions, which
are not compatible with the SLRT system, because the latter only allows UDP communication.
In order to make it possible for the two systems to communicate, we developed a program
for the UR10 control box that receives data via UDP, sends the received data via TCP and
vice versa. Thus the program accepts UDP data coming from the Simulink Real-Time Target
(SLRT) Server and passes the received data to the robot controller via TCP communication
protocol. It also receives data coming from the robot controller via TCP and re-sends the data
to the SLRT Server via UDP. The schematics is shown in Figure 5.

UDP TCP
1000 Hz 125 Hz
Robot status Robot status
125 Hz 125 Hz
Simulink Real-Time UDP/TCP Robot Controller
Target Converter
125 Hz 125 Hz
Control signals Control signals

Figure 5: Block diagram showing the functionality of the UDP/TCP Converter. The converter
runs on UR10 control box.

Page 11 of 32

4.1.2 Robot control modes

The Simulink Real-Time Target server controls the robot by sending the desired joint positions
to the robot via UDP. In order to achieve the desired robot motion, the server has to calculate
the new desired joints at every sample time. Various feedback control and trajectory generation
strategies were implemented on the server to meet the most common robot motion needs in the
context of automated assembly. Besides trajectory generation and feedback control strategies,
a mode that sets the robot into gravity compensation mode was also implemented. This
functionality was used to implement the recording of complex robot movements via kinesthetic
guiding. The recorded data are used to learn dynamic movement primitives (DMPs).

To start a motion according to the selected strategy, two packets should be sent to the
SLRT Server in the following order:

1. A packet with the data necessary to calculate the new trajectory or to directly control
robot joints.

2. A packet with the mode for the desired motion strategy.

These two packets are sent via two different ports.

Once the server receives the mode and the data necessary to execute the desired motion, it
will start sending new reference joint positions to the robot. The currently available strategies
and modes are listed in Table 1.

Table 1: Mode selection receiver

Mode selection

Port 10000
Size 1
Data type uint8
Motion strategy Mode byte value
Trapezoidal velocity profile joint space trajectory)
Minimum jerk positional trajectory & minimum jerk

SLERP trajectory for orientation 13
Dynamic Movement Primitive in Cartesian Space 12
Dynamic Movement Primitive in joint space 11
Direct joint control 4
Admittance force control with DMP adaptation 16
Gravity compensation 101

e Trapezoidal velocity profile joint space trajectory is a control strategy that gen-
erates a trajectory between two joint configurations so that the joints reach the desired
percentage of the maximum joint velocity at each joint throughout the motion [10]. The
maximum velocity and acceleration of each joint is described in the documentation of

UR10 robot.

Page 12 of 32

e Minimum jerk positional trajectory and minimum jerk SLERP for orientation
is a trajectory generation strategy used for Cartesian space motion. The positional part
of the trajectory is calculated using minimum jerk principle [8], while the orientation part
is calculated using Spherical Linear Interpolation (SLERP) [3].

e Dynamic Movement Primitive in joint or Cartesian space is a trajectory gener-
ation strategy that can be used both for joint space control and Cartesian space control
with slight modifications. Dynamic Movement Primitive (DMP) [5] is a combination
of dynamical systems (second order differential equations) and provides convergence to-
wards the desired goal configuration, robustness to perturbation, and indirect dependence
to time. To send the desired DMP to the SLRT Server, it is only necessary to send the
DMP parameters. The server then decodes the trajectory and controls the execution of
the given trajectory. The Cartesian space DMP implementation follows the instructions
provided in [11]. The current implementation allows using up to 184 radial basis functions
per degree of freedom to approximate the desired movement. This limit corresponds to the
maximum allowed package size (1472 bytes) of a UDP receiver provided by the Simulink
Real-Time library. While the current limit was high enough in all our experiments, we
plan to update the SLRT Server in the future to remove this limit.

e Direct joint control is a mode that simply forwards the received joint positions to the
robot controller. It is up to the client to send a smooth trajectory to the SLRT Server,
one trajectory sample at a time.

e Admittance force control with Cartesian DMP adaptation is the mode in which
the robot follows the desired trajectory encoded as a Cartesian space DMP while minimiz-
ing the error between the reference force and the measured forces using the Force/Torque
sensor attached to the robot end-effector. In this mode, the movement of the robot
depends both on the sensed forces and the desired positions [1].

4.1.3 Output data

Besides sending the data to the robot controller, the SLRT Server also transmits robot module
data to the network. These data are used by higher-level programs to perform safety checks and
evaluate the executed trajectories and forces and torques. The data are broadcast at different
ports to ease the programming of receivers at the other end. The data broadcast to the network
are described in Appendix A.

4.2 Robot State Publisher

The robot state publisher is a ROS node, written in Python, that publishes the current robot
states to topics using standard ROS messages. It runs on ROS Master Computer (see Fig. 4).
To do this, it first reads the current robot states from the Simulink Real-time Target Server
(SLRT Server) over UDP ports, structures the data using various ROS message types, and
republishes them to ROS topics, which can be read by other ROS nodes. The topics broadly
fit into the following categories:

e Robot general states

Page 13 of 32

Robot general states:

joint _states

tcp __pose
digital outputs (GPIOs)

digital inputs (GPIOs)

Minimum jerk positional trajectory and

minimum jerk SLERP for orientation flags:

cart lin task received pulse
cart_lin task finished

Cartesian space DMP flags and data:

Force and torque sensor measurements:

forces sensor space
forces tool compensated

Robot general flags:

received control mode
mode sent to robot

robot_idle

running

finish successful

error

command _received pulse

cart dmp received pulse

cart _dmp id
cart dmp execute

cart dmp reset

cart _dmp_phase
cart dmp finished

Joint space DMP flags and data:

Trapezoidal velocity profile
joint space trajectory flags:

joint _dmp_received pulse
joint dmp_id
joint dmp execute

joint _dmp reset

joint dmp phase
joint_dmp finished

joint _trap vel received pulse

joint trap vel finished

Direct joint control flags:

joint direct received pulse

Table 2: Robot state publisher topics.

Force/torque sensor measurements

Robot general flags

Direct joint control flags

Trapezoidal velocity profile joint space trajectory flags
Minimum jerk positional trajectory and minimum jerk SLERP for orientation flags

Joint and Cartesian space DMP flags and data

Table 2 shows the topics that are published in more detail. The Robot Control Interface,
which implements action servers described in Section 4.3, makes heavy use of the data published
to these topics in order to check the current robot joint position states, the current sensor states
(e.g. forces and torques), whether or not DMPs are correctly loaded for execution, etc.

It is worth nothing here that the topics described in Table 2 are specified as relative (as
opposed to global or private) ROS names that may be associated with any given namespace.
Thus, if only one UR10 robot exists in the workcell, the topics might be associated with the

Page 14 of 32

/ur10 namespace, and thereby be referred to as, for example, /ur10/joint_states. How-
ever, if more than one robot exists in the workcell, ROS namespacing functionality can be
exploited by giving the robots separate namespaces, e.g. /ur10_1 and /ur10_2. Their respec-
tive state topics can thereby be referenced separately as for example /ur10_1/joint_states,
/url0_2/joint_states, etc., in a seamless fashion.

4.3 Robot Control Interface

The main function of the ROS-based Robot Control Interface is to define robot control modes
and provide the necessary data to the SLRT server to execute the desired robot movements. It
is implemented as an ensemble of action servers that run on ROS Master Computer (see Fig. 4).
Each control mode defines an action offered by the server. The benefit of using ROS provided
action servers to trigger robot motion is the ability to cancel the request during execution and
to get periodic feedback about how the request is progressing. If an action is preempted, the
robot does not enter an emergency state and does not require any restart procedure. The
client receives appropriate result messages in order to handle the preemption in its scheme and
continue with another action if desired.

Action servers are created using actionlib package, which is a part of the ros_base meta-
package and represents one of the core functionalities of ROS. This assures good support and
compatibility for future upgrades of ROS. The package provides client interface in order to send
requests to the SLRT server and read the feedback and result messages from the SLRT server
and possibly other ROS nodes if required by future needs of the ReconCell system.

4.3.1 Robot Module Actions and Services

The Robot Module currently offers the following motions
e Joint space trapezoidal velocity profile trajectory

e (Cartesian space input - joint space trapezoidal velocity profile trajectory

Cartesian space minimum jerk linear and minimum jerk SLERP trajectory

Joint space Dynamic Movement Primitive

e (Cartesian space Dynamic Movement Primitive

e (Cartesian space admittance force control with DMP adaptation
and control services

e Direct Joint Control

e Robot Controller Digital Outputs

Page 15 of 32

4.3.2 Joint space trapezoidal velocity profile trajectory

This action provides an interface for controlling the robot using a trapezoidal velocity profile in
joint space. It accepts a joint configuration and a relative speed value as a goal, forwards this to
the Simulink Real-Time Target (SLRT) server and triggers the motion. The robot moves from
the current joint configuration to the desired joint configuration taking into account the desired
relative speed: 0 < speed percent < 1, where the value of 1 corresponds to the maximum
velocity of each robot joint. Each joint accelerates to the desired velocity with a constant
acceleration value and then decelerates at the same rate to stop softly. During execution the
SLRT server publishes the actual joint configuration of the robot as feedback. The final joint
configuration is returned as the result after successful completion, preemption or failure. The
action server node name and message description is provided in Table 3. The implementation
on SLRT server is described in Section 4.1.

Table 3: Joint space trapezoidal velocity profile trajectory action name and message description.

joint _trap vel action

JointTrapVel.action | Variable Description
Goal float32|] joints 6 joints
float32 speed percent | € [0, 1]
Result float32|| joints 6 joints
Feedback float32[] joints 6 joints

4.3.3 Cartesian space input - joint space trapezoidal velocity profile trajectory

This action provides an interface for controlling the robot using a trapezoidal velocity profile
in joint space with Cartesian input. It accepts the desired task space pose (position and orien-
tation) and relative velocity value as a goal, sends these data to the SLRT server and triggers
the motion. The server calculates the desired joint configuration using inverse kinematics and
moves the robot in the same manner as described in Section4.3.2. During execution the server
publishes the actual pose of the robot as feedback. The final pose is returned as the result
after successful completion, preemption or failure. The action server node name and message
description is found in Table 4.

4.3.4 Cartesian space minimum jerk positional and minimum jerk SLERP orientational tra-
jectory

This action provides an interface for controlling the robot using minimum jerk positional tra-
jectories and minimum jerk SLERP orientational trajectories. It accepts the desired Cartesian
position and orientation of the robot’s end-effector, where the desired orientation is specified as
a unit quaternion, and the desired travel time towards the desired pose. This information is sent
to the SLRT Server, which triggers and controls the real-time robot motion. The robot moves
from the current position to the desired position in a straight line and along the shortest path
on the orientation manifold, which is calculated by SLERP [3]. If the desired travel time causes
joint velocities that would exceed the maximum robot speed, the movement is rejected before

Page 16 of 32

Table 4: Cartesian input, joint space trapezoidal velocity profile trajectory action name and
message description.

cart trap vel action

CartTrapVel.action | Variable Description
Goal float32[| position X,V,Z
float32[] orientation quaternion

float32 speed percent | € [0, 1]

Result float32[] position X,V,Z
float32[] orientation quaternion

Feedback float32]| position X,V,Z
float32|| orientation quaternion

execution. During execution the server publishes the current pose of the robot as feedback.
The final robot pose is returned as result after successful completion, preemption or failure.
The action server node name and message description is found in Table 5.

Table 5: Cartesian space minimum jerk positional and minimum jerk SLERP orientational
trajectory action name and message description.

cart lin task action

CartLinTask.action | Variable Description
Goal float32[] position X,V,Z
float32[] orientation quaternion

float32 desired travel time | in seconds

Result float32[] position X,V,Z
float32|[] orientation quaternion

Feedback float32[] position X,Y,Z
float32|| orientation quaternion

4.3.5 Joint space dynamic movement primitive

This action provides an interface for controlling the robot using dynamic movement primitives
(DMPs) in joint space [5]. The server accepts the desired DMP parameters as input and sends
these data to the SLRT server, which triggers and controls the real-time robot motion. During
execution the server publishes the actual joint configuration of the robot as feedback. The final
joint configuration is returned as result after successful completion, preemption or failure. The
action server node name and message description is found in Table 6.

Page 17 of 32

Table 6: Joint space dynamic movement primitive action name and message description.

[5] for the meaning of parameters.

See

joint _dmp action

JointDMP.action | Variable Description

Goal float32 N number of DMP kernel functions (V)
float32 a_z DMP parameter o,
float32 a_x DMP parameter o,
float32 tau DMP parameter 7
float32 id DMP ID
float32|| goal DMP goal ¢
float32[] y0 DMP starting position
float32|| dy0 DMP starting velocity
float32|| ¢ DMP parameter ¢ - kernel centers
float32[] sigma DMP parameter o
float32[] wl DMP weights for joint 1 motion, N weights
float32[| w2 DMP weights for jointjoint 2 motion, N weights
float32[] w3 DMP weights for jointjoint 3 motion, N weights
float32[] w4 DMP weights for jointjoint 4 motion, N weights
float32[| wb DMP weights for jointjoint 5 motion, N weights
float32[] w6 DMP weights for jointjoint 6 motion, N weights
float32[] tasktrans | task transformation matrix (default I)

Result float32|| joints 6 joints

Feedback float32[] joints 6 joints

Page 18 of 32

4.3.6 Cartesian space dynamic movement primitive

This action provides an interface for controlling the robot using dynamic movement primitives
(DMPs) in Cartesian space [11]. The server accepts the desired DMP parameters and sends
these data to the SLRT server, which triggers and controls the real-time robot motion. During
execution the server publishes the actual pose of the robot as feedback. The final pose is
returned as result after successful completion, preemption or failure. The action server node
name and message description is found in Table 7.

Table 7: Cartesian space dynamic movement primitive action name and message description.
See [11] for the meaning of parameters.

cart dmp action
CartDMP.action | Variable Description
Goal float32 N number of DMP kernel functions (V)
float32 a_z DMP parameter «,
float32 a_x DMP parameter a,
float32 tau DMP parameter 7
float32 id DMP ID
float32|| goal DMP goal ¢
float32]] y0O DMP starting position
float32[] dy0 DMP starting velocity
float32[] c DMP parameter c - kernel centers
float32|] sigma DMP parameter o
float32[] wl DMP weights for motion in z, N weights
float32[] w2 DMP weights for motion in y, N weights
float32[] w3 DMP weights for motion in z, N weights
float32[] w4 DMP weights for quaternion rotation (w;), N weights
float32[] wb DMP weights for quaternion rotation (w;), NV weights
float32[] w6 DMP weights for quaternion rotation (wy), N weights
float32[] tasktrans | task transformation matrix (default I)
Result float32[] position X,Y,Z
float32|| orientation | quaternion
Feedback float32[] position X,V,Z
float32[] orientation | quaternion

4.3.7 Cartesian space admittance force control with DMP adaptation

This action provides an interface for controlling and adapting a trajectory encoded as a Carte-
sian space DMP by minimizing the error between a reference force and the measured forces
using the Force/Torque sensor attached to the robot end-effector [1]. The server accepts the
desired DMP, offset and force reference parameters and sends these data to the SLRT Server,
which triggers and controls the real-time robot motion. The offsets can also be set to zero,

Page 19 of 32

in which case admittance force control is executed on the defined DMP. During execution the
server publishes the measured torques / forces and the robot pose as feedback. In case of
successful completion the server returns the offsets corresponding to the executed movement
and the current pose. The offsets can then be used in the next iteration to improve the refer-
ence tracking and task execution time. In case of failure or preemption just the robot pose is
returned. The action server node name and message description is found in Table 8.

This mode has been tested but not yet fully integrated into ROS system. Therefore it is
not mentioned among the published robot states in Table 2.

Table 8: Cartesian space admittance force control with DMP adaptation action name and
message description. See [11] for the meaning of parameters.

cart admit dmp action

Cart AdmitDMP.action | Variable Description
Goal float32 N number of DMP and offset kernel functions (V)
float32 a_z DMP parameter o,
float32 a_x DMP parameter o,
float32 tau DMP parameter 7
float32 id DMP ID
float32|] goal DMP goal ¢
float32[] y0 DMP starting position
float32[] dy0 DMP starting velocity
float32]] ¢ DMP parameter ¢ - kernel centers
float32[] sigma DMP parameter o
float32[] wl DMP weights for motion in x, N weights
float32[] w2 DMP weights for motion in y, N weights
float32[] w3 DMP weights for motion in z, N weights
float32|| w4 DMP weights for quaternion rotation (w;), N weights
float32[] wb DMP weights for quaternion rotation (w;), N weights
float32[] w6 DMP weights for quaternion rotation (wy), N weights
float32|| tasktrans |task transformation matrix (default I)
float32[| ¢_o offset kernel centers
float32[] sigma_o |offset parameter o,
float32[] wlo position offset weights in z, N weights
float32[| w2o position offset weights in y, N weights
float32[] w3o position offset weights in z, N weights
float32[| w4o quaternion offset weights in i, N weights
float32[| who quaternion offset weights in j, N weights
float32[] wbo quaternion offset weights in k, N weights
float32 N_f number of force / torque reference kernel functions (Ny)
float32[] c¢_f kernel centers

float32|| sigma_f |parameter o

float32[] wlf force reference weights in , Ny weights

Page 20 of 32

float32[] w2f force reference weights in y, N; weights

[
float32[] w3f force reference weights in z, Ny weights
float32[] w4f torque reference weights around =, N; weights
float32[] whf torque reference weights around y, Ny weights
float32|] w6t torque reference weights around z, Ny weights
Result float32 N number of DMP and offset kernel functions (V)
float32[] c offset kernel centers

float32[] sigma offset parameter o,

float32[] wlo position offset weights in z, N weights
float32[] w20 position offset weights in y, N weights
float32[] w3o position offset weights in z, N weights
float32[] wdo quaternion offset weights in i, IV weights
float32[] who quaternion offset weights in 7, N weights
float32[] w6o quaternion offset weights in &, N weights

float32[] position |x,y,z
float32[] orientation | quaternion

Feedback Wrench forces
float32[| position |x,y,z

measured forces / torques

float32[] orientation | quaternion

4.3.8 Direct Joint Control

The Robot Module also offers direct joint control. This mode should generally NOT be used,
since all common control principles are covered by other control modes. Only a user that
designs his own controller requires this. The user takes over all responsibility for safety of the
robot, the workcell and anyone or anything in proximity to the robot. This control mode is
useful to enable direct control from our robot simulation system VEROSIM.

This mode is controlled by a ROS service, which accepts a boolean to turn this mode on or
off. The service responds with a boolean that indicates the success of changing the mode and
a string message for information, e.g. explanation of trigger failure. The robot must not be
executing any other action for this mode to be successfully turned on. While it is on, all other
action queries are rejected. The user must turn direct joint control off in order to again use
other control modes. The service message description is found in Table 9.

After direct joint control mode has been turned on, the robot joint configurations must
be sent to the SLRT Server directly. For security the SLRT Server is on a separate network,
therefore any client that wants to control the robot directly must connect to that network. The
SLRT Server accepts joints on a specific port as described in Appendix B and passes them to
the robot controller.

4.3.9 Robot Controller Digital Outputs

The control box provided by UR10 robot offers 10 general purpose digital outputs. These out-
puts can be sent to arbitrary hardware components, e.g. grippers. The outputs are controlled
over a ROS set_ output service, which is part of the Robot Control Interface and accepts an

Page 21 of 32

Table 9: Direct joint control service name and message description.

joint _direct switch

std _srvs/SetBool.srv | Variable Description

Request bool data true to turn on/ false to turn off

Reply bool success true if desired state achieved/ false otherwise
string message | description of failure

output number and a boolean value. These two values are sent to the SLRT Server which passes
the boolean value to the selected hardware component via UR10 control box. The service re-
sponds with a boolean that indicates the success of setting the output and an informational
message. The service message description is found in Table 10.

Table 10: Robot controller digital outputs service name and message description.

set output
Output.srv | Variable Description
Request uint8 outputNr | {0,1,...,9}
bool value true to turn on / false to turn off
Reply bool success true if desired state achieved / false otherwise
string message | description of failure or success

In order to make it easier to control hardware that appears in the ReconCell system often,
we designed additional services with more descriptive names. These services manage the same
outputs as the set output service, but do not require the user to remember which output
number the hardware is connected to. The names and description of these services are in

Table 11.

Table 11: Additional robot module services with descriptive names for specific hardware and

their message description.

set tool exchange, set gripper, set linear axis

std_srvs/SetBool.srv | Variable Description

Request bool data true / false

Reply bool success true if desired state achieved/ false otherwise
string message | description

4.4 State Machine Interface

The high-level programming of robot tasks is supported by a state machine framework called
SMACH |[2]. It is implemented as a separate ROS node running on ROS Master Computer.

Page 22 of 32

The SMACH framework provides a set of Python libraries to easily create new states,
connections between them, transfer variables between states and visualize the programmed
state machine. A SMACH state machine is able to subscribe or publish to various topics in the
ROS system and consequently also trigger robot movements and other action through Robot
Control Interface. A simple state machine for moving the robot upon key-press is shown in
Figure 6. This state machine is only given as an example to illustrate SMACH framework and
is not part of the ReconCell system.

4.5 Simulation and Visual Programming Module

VEROSIM simulation system is an additional module in the ReconCell software architecture
that enhances the workcell with advanced robot simulation capabilities. It provides a visual
programming environment to enable user-friendly programming of robot tasks, enables workcell
modeling and adaptation, dynamic simulation, collision detection, motion planning, sensor
simulation, etc. The details on VEROSIM are explained in detail in Deliverable D4.1.

The integration of VEROSIM into ReconCell software architecture is shown in Fig. 7. At
this stage communication is one directional and intended for visualization of current robot joint
positions. VEROSIM connects to the system in two different ways. Firstly, VEROSIM can
read robot data via Simulink Real-Time Target server using UDP protocol. The second option
for communication uses the implemented Robot State Publisher node and works by subscribing
to the appropriate ROS topic to acquire information about the state of the robot (see Table 2).

4.6 Vision Module Interface

Since the vision module heavily depends on the selected cameras, which are task specific, it
necessarily contains a specialized software component to capture data from the selected cameras.
The output of the Vision Module to the ROS framework is the result of the image processing
task, e.g. object pose and/or other measurements. Camera images are sent over ROS only for
GUI visualization purposes and even then, bandwidth should be used conservatively.

SM_ROOT

|

WA|T|NGFORKEYPR@vmngikeyipressed

Key_o_pressed Key_s_pressed

MOVEROBOTTOP1 SENDROBOTIDLE

SendAction PacketSent

(rosyprme)

Figure 6: A simple state machine created with SMACH.

Key_p_pressed

MOVEROBOTTOP2

PacketSent

FendAction

/
SENDCOMMANDTOROBOT

Page 23 of 32

Legend

Ethernet
Plug and Produce

. . Connector
S|mu|at|0n NS Ethernet, Power,
Air, ROS
comarnx] » Computer - cémmu/mmion
Digital I/O
J (VEROSIM)
Gripper |

1 Module

Tool
exchange

End effector
tool

Robot
F/T sensor — Module

\ﬁ

ROS Master

Computer
Robot State Publisher
Robot Control Interface
State Machine Interface

Figure 7: Current VEROSIM integration. Compared to Fig. 4 we have a direct connection
between SLRT Server and Simulation Computer. This grants the simulation environment the
ability to bypass ROS communication and access real-time data.

The Vision Module ROS interface will be similar to the one implemented in Robot Control
Interface node. It will offer actions and services for different tasks where synchronous com-
munication is needed. The Vision Module will execute code written using OpenCV libraries
and /or other software packages and return the result using standard ROS message types.

4.7 Digital Interface

The digital interface module serves as a bridge between the ROS network and the application
dependent periphery. Common industry components often connect to programmable logic con-
trollers (PLCs) for control, but in ReconCell we offer the digital interface for these standard
components over ROS, which runs on a micro controller, e. g. Raspberry Pi. The interface fol-
lows the standard introduced in Section 4.3.9 for robot controller digital outputs. Components
like passive linear unit, reconfigurable jig module and other periphery use this digital interface
to release breaks, trigger grippers, etc.

Page 24 of 32

References

1]

2l
13l
4]

[5]

(6]

7]

8]
9]
[10]

[11]

F. J. Abu-Dakka, B. Nemec, J. A. Jgrgensen, T. R. Savarimuthu, N. Kriiger, and A. Ude.
“Adaptation of manipulation skills in physical contact with the environment to reference
force profiles”. In: Autonomous Robots 39.2 (2015), pp. 199-217.

J. Bohren. SMACH (State MACHine), a task-level architecture for rapidly creating com-
plex robot behavior. http://wiki.ros.org/smach. Accessed: 2016-10-31.

E. B. Dam, M. Koch, and M. Lillholm. Quaternions, Interpolation and Animation. Tech.
rep. DIKU-TR-98/5. Denmark: University of Copenhagen, 1998.

Destaco Automatic & Manual Tool Changers: QC-30. http://www.destaco.com/tool-
changers-effectors/QC-30. Accessed: 2016-10-31.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. “Dynamical Movement
Primitives: Learning Attractor Models for Motor Behaviors”. In: Neural Computation 25.2
(2013), pp. 328-373.

M. Jonsson and G. Ossbahr. “Aspects of reconfigurable and flexible fixtures”. In: Produc-
tion Engineering Research and Development 4.4 (2010), pp. 333-339.

N. Kriiger, A. Ude, H. G. Petersen, B. Nemec, L.-P. Ellekilde, T. R. Savarimuthu, J. A.
Rytz, K. Fischer, A. G. Buch, D. Kraft, W. Mustafa, E. E. Aksoy, J. Papon, A. Kram-
berger, and F. Worgotter. “Technologies for the Fast Set-Up of Automated Assembly
Processes”. In: Kiinstliche Intelligenz 28.4 (2014), pp. 305-313.

A. Piazzi and A. Visioli. “Global minimum-jerk trajectory planning of robot manipula-
tors”. en. In: IEEE Transactions on Industrial Electronics 47 (2000), pp. 140-149.

M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with ROS: A Practical
Introduction to the Robot Operating System. Sebastopol, CA: O’Rilley Media, 2015.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics, Modelling, Planning and
Control. Springer, 2009.

A. Ude, B. Nemec, T. Petri¢, and J. Morimoto. “Orientation in Cartesian space dynamic
movement primitives”. In: IEEE International Conference on Robotics and Automation
(ICRA). Hong Kong, 2014, pp. 2997-3004.

Page 25 of 32

http://wiki.ros.org/smach
http://www.destaco.com/tool-changers-effectors/QC-30
http://www.destaco.com/tool-changers-effectors/QC-30

Appendices

A Simulink Real-Time Target output data

Robot general states
Port number 15000
Total size in bytes 360
Detailed packet content description Data type | Vector size
Actual robot joints double 6
Desired robot joints double 6
Actual robot joint velocities double 6
Desired robot joint velocities double 6
Actual robot TCP position double 3
Actual robot orientation quaternion double 4
Measured forces in sensor space double 6
Measured forces after tool compensation double 6
Desired digital outputs double 1
Digital inputs state double 1
Robot general flags
Port number 15001
Total size in bytes 7
Detailed packet content description Data type | Vector size
The received control mode uint8 1
The mode sent to the robot uint8 1
Robot idle uint8 1
Error uint8 1
Running uint8 1
Command received pulse uint8 1
Finish succesful uint8 1
Joint direct control flags
Port number 15002
Total size in bytes 1
Pulse when a package was received uint8 1
Joint control with trapezoidal velocity flags
Port number 15003
Total size in bytes 2

Page 26 of 32

Trapezoidal velocity trajectory received pulse uint8
Trapezoidal velocity trajectory finished uint8
Cartesian minimum jerk trajectory

Port number 15004
Total size in bytes 2
Cartesian trajectory received pulse uint8

Cartesian trajectory finished uint8

Cartesian DMP flags
Port number 15005
Total size in bytes 48
DMP trajectory received pulse double 1
Loaded DMP’s ID double 1
DMP execute double 1
DMP reset double 1
DMP phase double 1
DMP finished double 1
Joint space DMP flags

Port number 15006
Total size in bytes 48
Detailed packet content description Data type | Vector size
DMP trajectory received pulse double 1
Loaded DMP’s ID double 1
DMP execute double 1
DMP reset double 1
DMP phase double 1
DMP finished double 1

Table 12: Simulink Real-Time Target output data description.

B Simulink Real-Time Target input data

Mode selection

Port number 10000

Total size in bytes 1

Detailed packet content description Data type | Vector size

Desired control mode uint& 1

Page 27 of 32

Joint direct control

Port number

20000

Total size in bytes

48

Detailed packet content description Data type

Vector size

Desired joint positions double

6

Cartesian space DMP parameters

Port number

25000

Total size in bytes

192

Detailed packet content description Data type | Vector size
N double 1
a, double 1
Uy double 1
T double 1
g double 7
Yo double 7
dyo double 6
Cartesian DMP parameters - ¢
Port number 25001

Total size in bytes

1472

Detailed packet content description Data type

Vector size

c double 184
Cartesian DMP parameters - o

Port number 25002

Total size in bytes 1472

Detailed packet content description Data type

Vector size

o double 184
Cartesian DMP parameters - weights (1 - 6)

Port number 25003 - 25008

Total size in bytes 1472 each

Detailed packet content description Data type

Vector size

wy ... Weg double

184

Cartesian DMP execution flags

Port number

25009

Page 28 of 32

Total size in bytes

16

Detailed packet content description Data type | Vector size

Execute uint8 1

Reset uint8 1
Cartesian DMP phase stopping flag

Port number 25010

Total size in bytes

1

Detailed packet content description Data type | Vector size

Phase stopping uint8 1
Joint space DMP parameters

Port number 25100

Total size in bytes

176

Detailed packet content description Data type | Vector size
N double 1
a, double 1
Qg double 1
T double 1
g double 6
Yo double 6
dyo double 6
Joint space DMP parameters - ¢
Port number 25101

Total size in bytes

1472

Detailed packet content description Data type | Vector size

c double 184
Joint space DMP parameters - o

Port number 25102

Total size in bytes 1472

Detailed packet content description

Data type

Vector size

g

double

184

Joint space DMP parameters - weights (1 - DOF)

Port number

25103 - 25108

Total size in bytes

1472 each

Detailed packet content description

Data type

Vector size

Page 29 of 32

Wy ... WDOF double 184
Joint space DMP execution flags
Port number 25109
Total size in bytes 16
Detailed packet content description Data type | Vector size
Execute uint8 1
Reset uint8 1
Joint space DMP phase stopping flag
Port number 25110
Total size in bytes 8
Detailed packet content description Data type | Vector size
Phase stopping uint8 1
Adaptation offset - ¢
Port number 27000

Total size in bytes

800

Detailed packet content description Data type Vector size

& double 100
Adaptation offset - o

Port number 27001

Total size in bytes 1472

Detailed packet content description Data type

Vector size

o double

184

Adaptation offset - weights (1 - 7)

Port number

27002 - 27008

Total size in bytes

1472 each

Detailed packet content description Data type

Vector size

wy ... Wy double

184

Reference Force and Torque profile parameters - ¢

Port number

28000

Total size in bytes

1472

Detailed packet content description Data type

Vector size

c double

184

Page 30 of 32

Reference Force and Torque profile parameters - o

Port number

28001

Total size in bytes

1472

Detailed packet content description

Data type

Vector size

g

double

184

Reference Force and Torque profile parameters - weights (1 - 6)

Port number

28002 - 28007

Total size in bytes

1472 each

Detailed packet content description Data type Vector size

wy ... We double 184
Joint trapezoidal speed profile parameters

Port number 26000

Total size in bytes 56

Detailed packet content description Data type | Vector size

Desired joint positions double 6

Desired speed percent (1 being 100%) double 1
Joint trapezoidal speed profile parameters

Port number 27000

Total size in bytes 64

Detailed packet content description Data type | Vector size

Desired cartesian position double 3

Desired cartesian orientation in quaternions double 4

Desired travel time double 1
Desired digital outputs

Port number 11000

Total size in bytes

8

Detailed packet content description Data type | Vector size
Desired GPIO value double 1

End effector tool data
Port number 12000

Total size in bytes

8

Detailed packet content description

Data type

Vector size

Tool translation offset

Page 31 of 32

double

3

Tool rotation in quaternions
Tool mass center point

Tool weight (in kg)

Sensor force offset

Sensor torque offset

double
double
double
double
double

W W o~ W

Table 13: Simulink Real-Time target input data description.

Page 32 of 32

	Executive Summary
	Minimal Workcell Design
	Hardware
	Software

	Hardware Architecture
	Passive linear unit
	Reconfigurable jig modules (hexapods)
	Trolleys
	Plug and Produce Connectors
	Robot end-effectors
	Quick tool changer
	Tool hanger module

	Software Architecture
	Simulink Real-Time Target Interface
	Robot State Publisher
	Robot Control Interface
	State Machine Interface
	Simulation and Visual Programming Module
	Vision Module Interface
	Digital Interface

	References
	Appendices
	Simulink Real-Time Target output data
	Simulink Real-Time Target input data

