—

SEVENTH FRAMEWORK

PROGRAMME
Project Acronym: ACAT
Project Type: STREP
Project Title: Learning and Execution of Action Categories
Contract Number: 600578
Starting Date: 01-03-2013
Ending Date: 30-04-2016
Deliverable Number: D6.3
Deliverable Title: Repositories of software, data bases and benchmarks.
Type (Internal, Restricted, Public): PU
Authors : L. Bodenhagen, D. Nyga, B. Ridge, D. Vitkuté-
Adzgauskiené, M. Tamosiunaite, N. Kriiger

Contributing Partners: SDU, UoB, JSI, UGOE

Contractual Date of Delivery to the EC: 29-02-2016

Actual Date of Delivery to the EC: 02-03-2016

Page 1 of 13

Contents

Executive Summary 2
1 Introduction 3
2 Tools for ADT handling 3
3 Open-EASE e 5

3.1 The ACAT Chemistry Experiment 5

3.2 Natural-language understanding for intelligent robots 6

3.3 Execution of natural-language instructions in a robot simulator 7

3.4 Tools & algorithms for statistical relational learning 7
4 Compiler for textual instructions 9
5 Software for computer vision — CoViS 10
6 Software for robotics and simulation of robotic processes 10
7 Benchmarks 11
8 Summary 13
References o 13

Executive Summary

With this deliverable we provide an overview over the different software components and benchmarks
that have been developed during the ACAT project and are made accessible to the public. In total
10 software components and 3 benchmarks with 18 distinct performance indicators are available
now.

Page 2 of 13

1 Introduction

In the following we provide a brief overview on the individual software components and benchmarks
that have been developed during the ACAT project. The software components can be categorized
mainly in three different types: 1) tools for handling ADTs, typically based on scripts (section 2),
2) tools for processing instructions and deriving plans for robot actions, typically accessible by web-
interfaces (section 3 and 4), and 3) software related to the execution of robot actions, typically
libraries (sections 5 and 6). Software components that are not made available to the public, e.g.
internal repositories, are not listed in this deliverable.

2 Tools for ADT handling

adteditor

& /lwr_data
#- @ header
=8 ArmPose
E- @ position
M oim1
P ED\m 2
i Foms
B+ @ orientation
- @ FRYointAngle
@ layout
B8 data
-8 FRIoINtEStExtTorg
& FRYcintTorque
@ WrenchFiltered
=@ Wrench
B8 force
i EFom1
[A oim2
. HEoim3

@ torque

o s000 10000 15000

-

Figure 1: The ADT GUI editor with a sample rosbag being used. The blue selection indicates an
action chunk, the green selection is made by the user.

A collection of tools for handling Action Data Tables (ADTs), in particular creating, filling or
verifying ADTs, have been developed during ACAT. Two of these tools are organized in a suite which
can be downloaded using github' (detailed information and examples are given in D1.2, figure 1
shows the main interface) and comprises the following:

ADT XML Tool facilitates the generation of new, or population of existing ADT XML files
using ROS bag recordings. The ADT Tool creates a SEC matrix based on topics in the
rosbag indicating whether objects touch or not and includes action chunk timestamps as well
as information on object poses if available.

ADT GUI Editor acts as an interface to ADT Tool and can be used to both visualize the content
of the rosbag that is associated with an ADT and to annotate the content.

Furthermore, the following tools are accessible separately:

'https://github.com/barryridge/acat-adt-tools

Page 3 of 13

https://github.com/barryridge/acat-adt-tools

Extraction of movement primitives can be downloaded using git?. With this tool Movement
primitives are extracted using rosbag data on trajectories and forces and are based on signal
property changes inside action chunks of the ADT.

The following movement primitives are extracted:

e arm_move(goal _pose): Move the robot arm to the pose defined by goal pose

e arm_move_ periodic(V,w): Move the robot arm periodically along the direction of V
with frequency w.

e cxert(f) : Exert the force equal to f at the robot end effector.

e hand_move(goal _angles): Move the robot hand to the configuration specified by joint
angles denoted by goal angles

e grasp() : Grasp the object which is inside the fingers of the hand
e ungrasp(): Ungrasp the previously grasped object.

Script for transforming Open-EASE data into ADTs can be downloaded using git®. This
is Python code for transforming action logs, collected at UoB, from the OWL format into
ADTs. Contact events and trajectory information are automatically extracted from the logs
and an ADT is generated.

’https://git.physik3.gwdg.de/ACAT/movement_primitives
*https://git.physik3.gudg.de/ACAT/adt_transforms

Page 4 of 13

https://git.physik3.gwdg.de/ACAT/movement_primitives
https://git.physik3.gwdg.de/ACAT/adt_transforms

3 Open-EASE

OpenEASE is a web-based knowledge service providing robot and human activity data. It contains
semantically annotated data of manipulation actions, including the environment the agent is acting
in, the objects it manipulates, the task it performs, and the behavior it generates. The episode
representations can include images captured by the robot, other sensor datastreams as well as
full-body poses. A powerful query language and inference tools, allow reasoning about the data
and retrieving requested information based on semantic queries. Based on the data and using the
inference tools, robots can answer queries regarding to what they did, why, how, what happened,
and what they saw.

In section 3.1 we give a brief overview on the chemistry experiments (details can be found
in D5.5) for which the knowledge base is accessible and section 3.2 covers the natural-language
understanding which is available via a web-interface. Furthermore, an extension of the system for
execution action plans is outlined in section 3.3 and a tools for learning and reasoning are covered
in section 3.4.

3.1 The ACAT Chemistry Experiment

The ACAT chemistry experiment is centered around robotic assistants in chemistry labs and consists
of different actions performed by Raphael, our PR2 robot:

e Fetching and placing of chemistry tools
e Pipetting of liquids
e Screwing and unscrewing of bottle and tube caps

Chemical laboratories are very structured environments which host activities that should be
executed according to precise procedures. The manipulation of dangerous substances for different
experiments makes chemical laboratories hazardous. These aspects make autonomous mobile robots
ideal candidates for performing chemical experiments. Our robot successfully performed several
steps of a DNA extraction procedure for “Ocean Sampling Day”, an event organized by “Micro B3,
a project aiming to stimulate the analysis and indexation of the whole planetary ocean DNA.

Typically, the instructions of a particular chemical experiment are described in natural language.
Our autonomous mobile robot relies on a couple of mechanisms for performing an experiment
from such a description. |Initially, it infers the meaning of each natural language instruction to
be performed and uses the background knowledge to chose and parametrize the most appropriate
plan from the plan library for each given instruction. Then each chosen plan queries the vision
system for the objects to be manipulated and runs the constraint motion controller to perform
the necessary motions. Finally the logging mechanism records all details concerning how was the
chemical experiment performed.

The logs can be used to answer a wide range of questions concerning the performed experiment,
improving the way future experiments can be performed. The Knowledge Base for this experiment
is accessible through the web platform?.

Page 5 of 13

i 0 p en E ASE w Universitat Bremen E'A}I Imssigance

PROBABILISTIC racon)

ACTION CORES

prac

(Y

an
Parametarization

1001

Conditional Probability

has_pos(pick-1,VB)
dobj(pick-1,pipette-3)
root(ROOT-0,pick-1)

has_pos(the-2,DT)
has_pos(pipette-3,NN)

det(pipette-3,the-2)

argmax P action_core

PRAC Inference

Natural-language instruction: ‘
‘ Add some water to the purine. E]|

Inference

Figure 2: Screenshot of PRAC interface processing the instruction “Add some water to purine”

Show Inference settings Step-by-stepinferﬂ

3.2 Natural-language understanding for intelligent robots

Knowledge about actions and objects is represented as Probabilistic Robot Action Cores (PRAC)
[R3], which can be thought of as generic event patterns that enable a robot to infer important
information that is missing in an original natural-language instruction. PRAC models are represented
in Markov Logic Networks, a powerful knowledge representation formalism combing first-order logic
and probability theory. On the openEASE web platform an implementation of PRAC can be directly
accessed®, figure 2 shows a screenshot of the web interface.

‘http://www.open-ease.org/robotic-agent-performing-chemical-experiments-overview/
5https ://data.open-ease.org/prac/pracweb

Page 6 of 13

http://www.open-ease.org/robotic-agent-performing-chemical-experiments-overview/
https://data.open-ease.org/prac/pracweb

PRACWeb - Google Chrome

Qir M@ =
org % leo W Wikip. & Mensa B CRAM B Lisp BB Prolog B8 PRAC M Pracweb BEROS B8 JS BE Gazebo B8 gzweb BESublime B ML Bm Data B Latex BN Publikationen [scrible [B] Box €) danielnyga/prac »

@) universitt Bremen

Real Time: 00 00:09:51
Sim Time: 00 00:03:08

e (an object (type centrifuge.n.o1)))

Sending CRAM plan to execute...

Figure 3: Screenshot of the PRAC system executing the natural-language instruction “start the
centrifuge” in the browser-based Gazebo simulator.

3.3 Execution of natural-language instructions in a robot simulator

The PRAC reasoning system has been extended by a connection to the CRAM® plan executive,
which is able to interpret the formal robot plans generated by PRAC. CRAM executes the generated
robot plans either on a real robot or in the Gazebo simulator. In order to make the natural-language
instructions directly executable in PRAC, the browser-based web interface to PRAC was enriched
with the GzWeb extension of Gazebo, a JavaScript interface for making Gazebo accessible from
a browser. A screenshot the PRAC system executing a natural-language instruction in the web
simulator is shown in figure 3.

3.4 Tools & algorithms for statistical relational learning

pracmiIn® is an open source toolbox for statistical relational learning and reasoning and as such
also includes tools for standard graphical models that has been developed in context of ACAT and
represents the learning and reasoning engine of PRAC. pracmln is a statistical relational learning and
reasoning system that supports efficient learning and inference in relational domains.

pracmin was designed with the particular needs of technical systems in mind. Our methods are
geared towards practical applicability and can easily be integrated into other applications. The tools
for relational data collection and transformation facilitate data-driven knowledge engineering, and
the availability of graphical tools makes both learning or inference sessions a user-friendly experience.

Shttp://www.cram-system.org
"http://www.gazebosim.org
8http://www.pracmln.org

Page 7 of 13

http://www.cram-system.org
http://www.gazebosim.org
http://www.pracmln.org

Scripting support enables automation, and for easy integration into robotics applications, we provide
a client-server library implemented using the widely used ROS (Robot Operating System) middleware.

Page 8 of 13

4 Compiler for textual instructions

Insert sentence for preprocessing

Move slider to release magnet from magnet

- . ; : Search
dispenser. Pick magnet and insert into
press between axel and rim of press tube.
Preprocessing results
[Move| slider to \:release] magnet from magnet dispenser . + ADT information
mainaction | main object primary object 4+ Ontology Information

\Pick: magnet and:insertj\ into press between axel and rimof press tube. & ADT information

+ Ontology Information

main object main action secondary object

Figure 4: First step of textual instruction compiler — parsing of a textual instruction.

The textual compiler developed in the ACAT project is accessible through a web-interface? (illustrated
in figure 4). The interface allows to enter textual instructions into a web page form, and displays
the results of the textual instruction compiler:

e semantic roles, recognized in the instruction sentence - main action, main object, primary
object, secondary object

e missing action related information extracted from the ontology

e instruction-specific data by means of Action Data Tables (ADTs)

The initial step for the compilation is to enter the instruction in the compiler dialog window.
The following step of the compiler execution consists of the parsing of the instruction. Results for
a sample instruction are shown in figure 4.

Further, in the next step, links to Action Data Tables (ADTs) that are related to semantic role
keywords, identified in the instruction, are provided (figure 5). The best matching ADT is used
to form an “ADT Blueprint”, an ADT pre-filled with symbolic information for the corresponding
instruction. All ADTs are directly downloadable via this interface.

Detailed information on the textual instruction compiler is provided in deliverable D3.1.

http://strazdas.vdu.1lt:8080/

Page 9 of 13

http://strazdas.vdu.lt:8080/

ADT blueprint

- slider magnet dispenser

4 A >

| main action H main object H primary object

Select ADT, which contains exactly the same main action, main object,

Rank 1 primary object and secondary object as in instruction ADT: -
Select ADT, which contains exactly the same main action, main object . .
Rank 2 and secondary object as in instruction and different primary object ADT (14)' move, Sllder
Rank 3 Select ADT, which contains exactly the same main action, main object ADT: -
and primary object as in instruction and different secondary object .
Select ADT, which contains exactly the same main action, primary .
Rank 4 object and secondary object and different main object ADT: -
Rank 5 Select ADT, which contains exactly the same main action and main 5
el object and different primary object and secondary object ADT: -
Rank 6 Select ADT, which contains exactly the same main object
and different main action, primary object and secondary object ADT: -
Select ADT, which contai tly th in acti .
Rank 7 elec which contains exactly the same main action ADT:

and different main object, primary object and secondary object

Figure 5: Links to corresponding ADTs provided by the compiler.

5 Software for computer vision — CoViS

The Cognitive Vision Software (CoViS) is the implementational basis for the Vision system which is
being developed at SDU. The CoViS library has thus been utilized in various contexts ranging from
drivers assistance to robotic manipulation and is also the basis for the work on pose estimation [R2]
done in the ACAT project (mainly associated to WP4). CoViS can be downloaded free of charge
from GitLab!?.

6 Software for robotics and simulation of robotic processes

RobWork [R1] is a collection of C++ libraries, accessible at RobWork.dk'! for simulation and
control of robot systems. It provides amongst others tools for kinematic modelling of various types
of robots, path-planning and optimization, and grasp planning. In addition a graphical user interface
is provided (RobWorkStudio) as well as a dynamic simulator (RobWorkSim). In ACAT in particular
the simulation tools have been applied and developed which was the basis for e.g. the learning of
task-specific grippers[R4]. While we in ACAT utilized several workstations running in parallel (see
also D5.3), the software can also be used on a standard computer without modifications.

Ohttps://gitlab.com/caro-sdu/covis
Uhttp://www.robwork.dk

Page 10 of 13

https://gitlab.com/caro-sdu/covis
http://www.robwork.dk

7 Benchmarks

In the ACAT project benchmarks, focusing on following three different aspects, have been defined
(see also deliverable D5.2-update for further details on benchmarks and key performance indicators):

1. End-User oriented benchmarks
2. Language oriented Benchmarks

3. Basic Research-Oriented Benchmarks

While End-User oriented benchmarks are targeting aspects relevant to industry, the two other
benchmarks are rather relevant in an academic context. In the following we provide an overview of
the three benchmark groups and the associated key performance indicators (KPIs). The KPIs are
provided on the ACAT web-page!? and will be filled with concrete results achieved by the ACAT
project as soon as benchmark evaluations are completed.

End-User oriented benchmarks focus on the degree of involvement of the end-users, e.g.
the operator of the robot. Various key-performance indicators target different types of interaction
such as the setup-time or the robustness of the system. Obviously, lower setup-times and fewer
interactions for compensating failures during run-time imply that the system is more valuable for
the end-user.

The key-performance indicators for this benchmark group are defined as:

KPI1.1a Setup time for execution of a known task

KPI1.1b Setup time for execution of a known task with unreliable pose inputs
KPI1.1c Setup time for execution of a semi-known task with unreliable grasp inputs
KPI1.1d Setup time for execution of a semi-known task with similar model information
KPI1.2 Robustness during setup

KPI1.3 Robustness during execution

KPI1.4 Cycle time during execution

KPI1.5 Training time required

KPI1.6 Demonstration efficiency

KPI1.7 User-Friendliness: The combination of training time, the setup time and the demonstration
efficiency define the user friendliness of the system.

2http://www.acat-project.eu/index.php?page=benchmarks

Page 11 of 13

http://www.acat-project.eu/index.php?page=benchmarks

Language oriented benchmarks target the domain-oriented ontologies which form a backbone
in the ACAT project. The ontologies are formed by extracting verbs and associated objects from
textual sources such as instruction sheets, documentation or guides. If available, the texts can
be supplemented with additional information, e.g. image or shape information. Since a successful
processing of new instructions requires relevant information to be available in the domain specific
ontology, the amount of information reflected in the ontology indicates the applicability of it. The
key-performance indicators therefore address e.g. the number of action verbs the associated objects
and the number of filled ADTs stored in the process memory.

The key-performance indicators for this benchmark group are defined as:

KPI2.1 Linguistic action ontology: Number of action verbs in the ontology and number of synsets
KPI2.2 Object categories: Number of object categories saved in the process memory

KPI2.3 Number of action grounding instances

KPI2.4 Action categories: Number of ADTs saved in the process memory

Basic Research-Oriented Benchmarks target the benchmarking of research platforms, in par-
ticular cognition-enabled robots, where the measurements of e.g. execution times or robustness are
not indicative for the capabilities if the system. Therefore, these benchmarks rather focus on the
ability of the system to interpret potentially incompletely formulated tasks correctly or to commu-
nicate the understanding of the scene as well as the consequences of executing an action in this
scene. Since such abilities are difficult to quantify, the key-performance indicators rather build on
directing a set of request to the system and identify how often e.g missing information on objects
or or quantities could be inferred correctly.

The key-performance indicators for this benchmark are defined as:
KPI4.1 Causal relations correctly understood

KPI4.2 Vague quantities: Inferring vaguely formulated quantities
KPI4.3 Missing objects: Inferring missing objects and roles

KPI4.4 Disambiguation: Inferring correct meanings of ambiguous words

Page 12 of 13

8 Summary

With this deliverable we provide an overview of the different software tools and libraries, which have
been developed or extended during the ACAT project. Table 1 provides a concise overview of the
different components mentioned in this deliverable and indicates links to the relevant work packages.

In total 10 software components have been made available.

Furthermore, this deliverable provides a concise overview of benchmarks defined in ACAT project
and indicates the web address on the ACAT web-page where the results of benchmarking will be

submitted before the end of the project.

Titel Partner Related WP Source

CoViS SDU WP4 Git repository
RobWok SDU WP2, WP5 SVN repository
ADT Tool Suite JSI WP1 Git repository
OpenEASE UoB WP3, WP4 Web-interface
pracmln — Markov logic networks in Python = UoB WP2, WP3 Git repository
PRAC — Probabilistic Action Cores UoB WP3 Web-interface
Textual Compiler VDU WP3 Web-interface
Extraction of movement primitives UGOE WP1 Git repository
OWL to ADT conversion UGOE WP1 Git repository

Table 1: Overview over publicly available components.

References

[R1]

[R2]

[R3]

[R4]

L.-P. Ellekilde and J. A. Jorgensen. “RobWork: A Flexible Toolbox for Robotics Research
and Education”. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th
German Conference on Robotics (ROBOTIK) (2010), pp. 1 7.

L. Kiforenko, A. G. Buch, and N. Kriiger. “Object Detection Using a Combination of Mul-
tiple 3D Feature Descriptors”. In: Computer Vision Systems. Ed. by L. Nalpantidis, V.

Kriiger, J.-O. Eklundh, and A. Gasteratos. Lecture Notes in Computer Science. Springer
International Publishing, 2015, pp. 343-353.

D. Nyga and M. Beetz. “Cloud-based Probabilistic Knowledge Services for Instruction
Interpretation”. In: International Symposium of Robotics Research (ISRR). Sestri Levante
(Genoa), Italy, 2015.

A. Wolniakowski, J. A. Jorgensen, K. Miatliuk, H. G. Petersen, and N. Kruger. “Task
and context sensitive optimization of gripper design using dynamic grasp simulation”.
In: Methods and Models in Automation and Robotics (MMAR), 2015 20th International
Conference on. 2015, pp. 29-34.

Page 13 of 13

https://gitlab.com/caro-sdu/covis
http://www.robwork.dk
https://github.com/barryridge/acat-adt-tools
https://data.open-ease.org/prac/pracweb
http://www.pracmln.org
https://data.open-ease.org/prac
http://strazdas.vdu.lt:8080/
https://git.physik3.gwdg.de/ACAT/movement_primitives
https://git.physik3.gwdg.de/ACAT/adt_transforms

	Executive Summary
	Introduction
	Tools for ADT handling
	Open-EASE
	The ACAT Chemistry Experiment
	Natural-language understanding for intelligent robots
	Execution of natural-language instructions in a robot simulator
	Tools & algorithms for statistical relational learning

	Compiler for textual instructions
	Software for computer vision – CoViS
	Software for robotics and simulation of robotic processes
	Benchmarks
	Summary
	References

