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Abstract—A potential Mars Sample Return (MSR) architecture
is being jointly studied by NASA and ESA. As currently envi-
sioned, the MSR campaign consists of a series of 3 missions:
sample cache, fetch and return to Earth. In this paper, we
focus on the fetch part of the MSR, and more specifically
the problem of autonomously detecting and localizing sample
tubes deposited on the Martian surface. Towards this end, we
study two machine-vision based approaches: First, a geometry-
driven approach based on template matching that uses hard-
coded filters and a 3D shape model of the tube; and second, a
data-driven approach based on convolutional neural networks
(CNNs) and learned features. Furthermore, we present a large
benchmark dataset of sample-tube images, collected in rep-
resentative outdoor environments and annotated with ground
truth segmentation masks and locations. The dataset was ac-
quired systematically across different terrain, illumination con-
ditions and dust-coverage; and benchmarking was performed to
study the feasibility of each approach, their relative strengths
and weaknesses, and robustness in the presence of adverse
environmental conditions.
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1. INTRODUCTION
Determining the habitability of past and present martian
environments continues to be the focus of current and future
missions to Mars. Indeed, studying the geological history of
Mars holds the key to both understanding the origins of life
on Earth and in the Solar System. While recent and ongoing
robotic missions have revolutionized our understanding of the
red planet [1], [2], the results from orbital and in-situ surface
robotic missions alone are not sufficient to fully answer the
major questions about the potential for life, past climate, and
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Figure 1. NASA’s Mars Perseverance rover, which serves as
the first stage of the MSR campaign, will store rock and soil

samples in sealed tubes on the planet’s surface for future
missions to retrieve, as seen in this illustration.

the geological history of Mars. Even if an orbital or in situ
mission were to discover putative evidence for the existence
of past or present life on Mars, confirming these results would
necessitate that samples be collected, returned to Earth, and
verified by multiple rigorous laboratory analyses on Earth.
As a result, returning samples from Mars back to Earth was
identified as the highest priority planetary science objective
in the Planetary Science Decadal Survey [3].

In response to that, a potential concept for a Mars Sample
Return (MSR) architecture is being jointly studied by NASA
and ESA [4]. As currently envisioned, the MSR campaign
consists of a series of 3 missions: sample cache, fetch and
return to Earth. First, NASA’s Perseverance Rover, launched
in 2020, will collect scientifically selected samples and store
them in sealed tubes on the planet’s surface (see Figure1), for
possible return to Earth. Then, a potential future mission,
with a Sample Retrieval Lander (SRL), would collect the
sample tubes and load them into an Orbiting Sample (OS)
payload in a Mars Ascent Vehicle (MAV). The MAV would
release the OS into Martian orbit. The third mission, an Earth
Return Orbiter (ERO), would rendezvous with the samples in
Mars orbit and ferry them back to Earth.

This work focuses on the SRL mission concept [5] to collect
and retrieve the sample tubes. The SRL mission would deploy
a lander in the vicinity of Jezero Crater, where the Mars
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Perseverance rover plans to land and collect and cache sam-
ples during its 1.25-Mars-year primary surface mission. Key
payloads on SRL would include an ESA-provided Sample
Fetch Rover (SFR) and Sample Transfer Arm (STA), and
a NASA-provided OS and MAV. Once on the surface, the
SFR would egress from SRL and begin its surface mission
to retrieve samples previously cached by Mars Perseverance
Rover at one or more depot locations. The solar-powered
SRL mission would then carry out its surface activities during
Martian spring and summer, maximizing available power, and
would complete its surface mission and launch the retrieved
samples into orbit before start of northern hemisphere fall,
prior to significant decrease in available solar power and in
advance of the potential for global dust storms. According to
the currently envisioned surface mission timeline, this would
allocate ∼ 150 sols for SFR to complete this retrieval and
return to SRL. This constrained surface mission timeline,
combined with SFR drive distances predicted to be up to 4-
km roundtrip, drives the need for high levels of SFR auton-
omy to enable efficient tube pickup and transfer operations.

In this paper, we study the problem of autonomously de-
tecting and localizing sample tubes deposited on the Martian
surface directly from camera images. In Section 4 we discuss
the first of two machine-vision approaches that we studied,
a geometry-driven approach based on template matching that
uses hard-coded filters and a 3D shape model of the tube; and
in Section 5 we discuss the second, a data-driven approach
based on convolutional neural networks (CNNs) and learned
features. In Section 6, we present a large benchmark dataset
of sample-tube images, collected in representative outdoor
environments and annotated with ground truth segmentation
masks and locations. The dataset was acquired systematically
across different terrain, illumination conditions and dust-
coverage. Finally, in Section 7, we describe the bench-
marking evaluations that were performed using well-known
metrics to compare and assess the two methods using this
data.

2. RELATED WORK
Mars Sample Return

Several studies have been conducted over the last few decades
with the goal of defining science objectives for Mars Sam-
ple Return [3], [6], [7], [8] and potential mission concept
architectures [9], [10], [11], [12]. Furthermore, to enable
this vision, several research and technology development
efforts [13] have been under way - from autonomous rover
technology [14], [15] to OS design and capture-systems [16],
[17]. Our work is closely related to, and a continuation of,
the efforts to demonstrate robust localization and autonomous
retrieval of sample-tubes from a Mars-like environment for
potential Mars Sample Return. While [18] served as an
initial proof-of-concept, subsequent work [19], [20], [21]
further studied the problem of direct and indirect sample-tube
localization in an analog indoor testbed. In this work, we do
a comprehensive study on the performance of sample-tube
detection algorithms on a benchmark dataset collected in a
representative outdoor environment.

Image-based Object Detection and Localization

Object detection and localization, as of one the most fun-
damental and challenging problems in machine vision, has
received great attention in recent years - see [22] for a review.
Traditionally, the problem of object detection and localization
is tackled by matching feature points between 3D models and

images [23], [24]. However, these methods require that there
are rich textures on the objects in order to detect features for
matching. As a result they are unable to handle texture-less
objects like sample-tubes. More recently, with the advent of
deep learning, CNNs by comparison, have made significant
progress in object classification [25], detection [26], [27],
semantic segmentation [28] and instance segmentation [29],
including their application to Mars rover autonomy [30], [31].

For texture-less object detection, the taxonomy of approaches
can be broadly classified into three categories: feature-based,
view-based and shape-based. The feature-based approaches
[32], [33], [34] match 2D image features like edges or line
segments to the corresponding 3D model points. The view-
based approaches [35], [36], [37] compare a given image of
the object with its pre-computed 2D views. Lastly, shape-
based approaches [38], [39], [40], [41], [42] are based on
template matching of edge-segments. Furthermore, end-
to-end learning based methods [43], [44], [45] have also
been proposed that utilize deep learning for the task of 6D
pose estimation directly from RGB images as the only input
modality.

3. SAMPLE-TUBE LOCALIZATION
The operational context assumed is as follows. The Perse-
verance rover will place sample tubes on the ground at one
or multiple (presently-unknown) sites referred to as sample
depots. Within each sample depot, the sample-tubes will
be placed several meters apart in areas where sand is not
abundant and that have a relatively flat ground with slopes
less than 10◦. It is to be noted that Perseverance has little
control over precise tube placement: tubes will be released
from the rover’s underbelly, and may bounce and roll on the
ground before coming to a halt. Furthermore, it is anticipated
that SFR is capable of autonomously driving from tube to
tube – a capability addressed in a separate paper [46]. For the
context of this paper, this implies that SFR can drive itself to
a pose that places a tube within its field of view.

Based on these assumptions, our understanding of the Mar-
tian conditions (weather, geology, etc.) and through qualita-
tive observation of past lander and rover images, we can con-
servatively hypothesize the following constraints: (a) tubes
will not move, (b) sand or dust may, with low probability,
pile up next to tube or rocks, forming drifts, and (c) dust can
deposit everywhere, potentially creating a dust layer that will
not exceed 0.25mm in thickness. Rovers typically operate
between 10am and 4pm, yielding a large range of lighting
conditions, including shadows incurred by rocks or by the
rover itself.

Our goal is to then to study the robustness for image-based
detection and localization of sample-tubes under these con-
straints. More specifically, we quantify the performance of
two object localizers for sample-tube detection in a variety of
of conditions that include clear, non-occluded tubes, partial
occlusions by rocks or sand, or partial or complete shadows.
We focus on the detection and localization only from a
single images for two reasons: first, it allows the proposed
algorithms to be applicable to a diverse set of scenarios (e.g.
if we want to detect using either a mast-mounted stereo
camera or a wrist-mounted monocular camera), and second,
based on our preliminary analysis we expect depth data on the
sample-tubes to be noisy and thereby not very helpful for the
detection task. Extensive analysis on the usefulness of stereo
range data is beyond the scope of this paper.
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Figure 2. Sample set of templates T generated using
different viewpoints sampled around the sample-tube.

The two localizers considered in this paper are a template-
based object detector [38], and a region-proposal network
[29]. Template-based object detection has more industrial
maturity, and it shares building blocks with methods that ran
on spacecrafts [47], [48]. Template matching lends itself to
introspection and ad-hoc treatment of edge cases. By con-
trast, convolutional networks have almost no flight heritage,
and their design is harder to validate, but their performance is
often substantially better than template matching.

4. TEMPLATE-BASED OBJECT DETECTION
Our approach is based on Line2D [38], [39], an efficient
template-matching based method that exploits color images
to capture the appearance of the object in a set of templates
covering different views. Because the viewpoint of each
template is known, it also provides a coarse estimate of the
6D pose of the object when it is detected. In the remainder of
this section, we give an overview of the Line2D method and
how we use it to detect and localize sample-tubes.

Generating Templates using a 3D Model

Given a 3D CAD model of the sample-tube, a library of
2D templates are automatically generated that covers a full
view hemisphere by regularly sampling viewpoints of the
3D model, as illustrated in Figure 2. During the generation
of template library, it is important to balance the trade-off
between the coverage of the object for reliability and the
number of templates for efficiency. This is solved by re-
cursively dividing an icosahedron, the largest convex regular
polyhedron. The vertices of the resulting polyhedron give
us the two out-of-plane rotation angles for the samples pose
with respect to the coordinate center. In our experiments, two
adjacent vertices are set to be approximately 10 degrees apart.
In addition to the these two out of plane rotations, templates
for different in-plane rotations are also created. Furthermore,
templates at different scales are generated by using different
sized polyhedrons, using a step size of 10 cm.

Gradient Orientation Features

For each sampled pose generated by the method described
above, the sample-tube’s silhouette is first computed by pro-
jecting its 3D model under this pose. The silhouette contour
is then quickly obtained by subtracting the eroded silhouette
from its original version. Next, all the color gradients that
lie on the silhouette contour are computed. Image gradients
are chosen as features because they have been proved to be

more discriminant than other forms of representation [49].
Additionally, image gradients are often the only reliable im-
age cue when it comes to texture-less objects. Furthermore,
considering only the orientation of the gradients and not their
norms makes the measure robust to contrast changes, and
taking the absolute value of cosine between them allows it
to correctly handle object occluding boundaries: It will not
be affected if the object is over a dark background, or a bright
background.

Template Matching

Template matching is done by measuring the similarity be-
tween an input image I, and a reference image O of the
sample-tube centered on a location c in the image I by
comparing the gradient orientation features. A model or
template T is defined as a pair T = (O, P), where P specifies
a region in O. The template can then be compared with a
region at location c in a test image I based on a modified
version of the similarity measure proposed by Steger [50]:

ε =
∑

r∈P

(
max

t∈R(c+r)

∣∣ cos
(
ori(O, r)− ori(I, t)

)∣∣
)

(1)

where ori(O, r) is the gradient orientation at location r and
R(c + r) defines the neighbourhood of size T centered on
location c + r.

In order to avoid evaluating the max operator in Equation
1 every time a new template must be evaluated against an
image location, a binary representation of the feature space is
used [51]. First, the gradient orientation map is quantized by
dividing it into n0 equal spacing. To make the quantization
robust to noise, we assign to each location the gradient whose
quantized orientation occurs most often in a 3x3 neighbor-
hood. Next, the possible combination of orientation spreads
to a given location m is encoded using a binary string. These
strings are then used as indices to access lookup tables for fast
pre-computation of the similarity measure. Since the lookup
tables are computed offline and shared between the templates,
matching several templates against the input image can be
done very fast once the maps are computed.

5. DATA-DRIVEN SEGMENTATION
Region Proposal CNNs

Modern CNNs are powerful models that leverage large la-
beled datasets in order to automatically derive visual feature
hierarchies directly from the data such that a learning task,
e.g. object classification, can be solved. In this section we
describe our use of the popular CNN-based object instance
segmentation model known as Mask R-CNN [29] for tube
localization. The “R” in “R-CNN” stands for “region-based”
and refers to a class of CNN networks that typically extend
the classification capabilities of their forebears (e.g. [52],
[53], [54]) by adding a regression head to the architecture
such that they can predict continuous values for object region
proposal as well as object class labels. This can be used
to predict bounding box parameters of the objects under
consideration, for example, such that the objects may be
localized within images as opposed to solely having their
presence detected [55].

Instance Segmentation with Mask R-CNN

Mask R-CNN builds on its predecessors Fast R-CNN [26]
and Faster R-CNN [27], which were limited to bounding
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box prediction, by additionally allowing for segmentation
masks to be predicted. While related models like the Fully
Convolutional Network (FCN) [28] have dealt with semantic
segmentation, that is segmenting an image and associating the
segments to the object classes to which they belong, Mask
R-CNN tackles the more challenging problem of instance
segmentation whereby individual instances of objects from
those classes must be identified and segmented. For our
purposes in solving the task of sample tube localization,
all of these methods are viable candidates, but the instance
segmentation provided by Mask-RCNN enables candidate
tube instances to be directly identified and segmented without
needing to further process the bounding box or segmentation
results provided by the other methods.

Mask-RCNN uses the architecture of Faster R-CNN to both
predict the class label and to regress the bounding box
parameters, but it augments this with an FCN-based mask
prediction branch in order to additionally predict the regional
segmentation masks in parallel. There is some generality
to the architecture in that a number of possible CNN back-
bones can be used for the convolutional feature detection
component of the Faster R-CNN branch, e.g. ResNet [52],
ResNeXt [53] or Feature Pyramid Networks (FPN) [54]. In
our experiments for this work we used ResNet-50 exclusively
[52]. For training, Mask R-CNN makes use of a multi-
task loss L = Lcls + Lbox + Lmask that is comprised of the
classification loss Lcls and the bounding-box loss Lbox from
[26], as well as a segmentation mask loss Lmask. Lmask is
defined by taking the average binary cross-entropy loss over
the per-pixel sigmoid-activated output of the mask prediction
branch which is made up of K m×m resolution output masks
for each predicted region of interest, where K is the number
of ground-truth classes.

Using Mask R-CNN for Tube Localization

As is typical, the Mask R-CNN model we employ uses model
weights pre-trained on the ImageNet dataset [25], [56] and
transfer learning is used to fine-tune the weights for our
particular task. The tube localization problem presented here
is relatively simple in terms of the classification component
since we need only detect the presence or absence of tubes in
the scene, so we make use of only a single “tube” class label
alongside the background class. With regard to localizing the
tube, given the fetch rover grasping requirements, as well as
for a direct comparison with the template matching method
described in the previous section, we are less interested in the
bounding box output than we are in obtaining the segmen-
tation masks. Thus, although we annotate the training data
with each of the class, bounding box and segmentation mask
ground truth labels and train our Mask R-CNN model with
all three of them, for the purposes of this paper, at inference
time we discard the bounding box output and we restrict our
subsequent experimental analyses to the segmentation masks.

6. BENCHMARKING DATASET
Camera Acquisition Setup

We constructed a camera acquisition setup made up of four
FLIR BlackFly S cameras (5472 × 3648, color, 77◦ field of
view) that form two stereo pairs with baselines of 20cm and
40cm. The cameras, optics and the overall acquisition setup
(baselines and heights) are representative of the Perseverance
rover’s onboard cameras - EECAMs [57]. During image
acquisition, we set the camera tripod at two different heights

(a) Camera setup at the
Mars Yard at JPL.

(b) Camera positioning around tubes.

(c) Sample images on flagstone (left) and CFA 6 rocks (right).

(d) Sample images on ditch (left) and riverbed (right).

(e) Sample images with tag-mounted tube: flagstone (left) and CFA 2 (right).

Figure 3. Outdoor dataset: (a) testbed, (b) capture grid,
(c-d) sample images.

of 1m and 2m to simulate images acquired by HazCams and
NavCams, respectively. Also, the cameras were covered by
an aluminum plate serving as heat shield for extended use
under sunlight (as shown in Fig 3a).

Data Collection

To evaluate the performance and robustness of our methods,
we captured a dataset of outdoor images in JPL’s Mars
Yard. The curated set of images represents both nominal
and adverse environmental conditions we expect SFR to face
on Mars. An outdoor dataset provides us images of realistic
scenes that contain: 1) diverse and varying terrain, informed
by discussions with Mars geologists who plan where sample
tubes could be dropped; 2) natural shadows and lighting that
create appearance variation for the tube we are detecting. Ad-
ditionally, we further vary the tube appearance by considering
another adverse condition, object occlusion. Specifically, we
achieve this by positioning tubes next to rocks or terrain fea-
tures to induce varying levels of occlusion, and also covering
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tubes with dust. We vary the amount of dust coverage in a
few ways: 1) sprinkling a light layer of dust; 2) building up
a “dune” on the side of a tube; 3) totally covering a partial
section of the tube with a mound of sand.

Ground Truth Annotations—Finally, we enable quantitative
evaluation of detection results against the dataset by provid-
ing ground truth segmentation masks with associated bound-
ing boxes for 2D object detection benchmarking and 6DOF
poses for a subset of the data, for pose estimation evaluation.
The segmentation masks are manually annotated using the
coco-annotator tool [58]. Ground truth 6D poses are obtained
by rigidly mounting a pair of AprilTags [59] to one of the
tubes. Two tags (see Fig-3e) were chosen for robustness
since the occurrence of shadows sometimes hindered the tag
detection algorithm. The tags are also mounted a sufficient
distance away from the tube to not interfere with detection.
During construction of the scene, care was also taken to cover
the mount with sand so the tube appears as an isolated object.

The dataset comprises the following:

• One subset of images that does not contain the ground-
truth tube with the mounted AprilTags (no-tags dataset). This
set of images contains four terrain types: two terrain types
constructed with consultation from the Mars geologists, and
two extra ones we created based on other interesting features
we saw in the Mars Yard to add more scene diversity (see
Figs. 3c and 3d):

– “Flagstone”: broken stone slabs covered with a thin layer
of dust emulating fractured bedrock on Mars.

– “CFA6”: a rock distribution of cumulative fractional area
(CFA – a measure of rock density) equal to 6%. These are
the smallest rocks that are still visible from orbit to guide
the choice of depot location. Rocks encountered in practice
would only be this big or smaller.

– “Ditch”, and “Riverbed”: These 2 terrain types were
simply named for the varying levels of surface depression we
observed in the terrain.
• Another of subset of images that contains the tube mounted
with AprilTags (with-tags dataset). This set of images con-
tains the three terrain types we expect to experience on Mars:

– “Flagstone” and “CFA6”: same as in the other set.
– “CFA2”: small pebbles that are only visible from rover

surface imagery and not orbit.
• Capture conditions common to both sets of images:
– images taken in one of two different capture times: “am”

(10am to 12pm), or “pm” (3pm to 5pm)
– 5 or 6 sample tubes with variable visibility: unoccluded,

or partially occluded by rocks and/or sand and dust.
– images taken in one of 8 camera tripod positions on a

circle around the scene, see Fig. 3b)
– 2 camera heights at each stop (1m and 2m)
– 4 cameras: 2 stereo pairs of baseline 20 and 40 cm

The dataset in total contains 824 images (256 with the tag-
mounted tube and 568 without), and 4852 annotated instances
of tubes, out of which 256 of those have an associated 6D
pose. These images were collected over 2 separate days.

7. EXPERIMENTS AND RESULTS
In this section, we present experiments for both quantita-
tive and qualitative performance analysis of the two object
localizers for sample-tube localization on a Mars-like en-

Figure 4. Precision Recall curves for the (a) no-tags and (b)
with-tags datasets using the Line2D object detector.

[5pt]

Dataset Method AP [.5] AR [.5:.05:.95]
no-tags Line2D 0.345 0.184

with-tags Line2D 0.255 0.153

Table 1. Quantitative results using the Line2D object
detector. AP and AR IoU thresholds are shown in square

brackets.

vironment. All the experiments were conducted using the
benchmark dataset described in Section 6.

Evaluation Metrics

In order to evaluate and compare the template matching
and data-driven segmentation methods presented here, we
make use of some of the de facto standard statistical metrics
popularized in the literature and in computer vision contests,
namely average precision (AP) and average recall (AR) val-
ues and precision-recall (PR) curves.

Average Precision—Various interpretations of the AP met-
ric have been proposed over the years, particularly in the
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Figure 5. Example true positive results for sample-tube detection using the Line2D detector.

Figure 6. Examples of failure cases for sample-tube detection using the the Line2D detector.

PASCAL VOC [60] and MS COCO [61] challenges. In all
cases, given an intersection-over-union (IoU) threshold for
determining whether a prediction should be scored as a true
positive (TP) or a false positive (FP) based on the amount
of overlap between the predicted mask and the ground truth
mask, cumulative precision and recall values are collated in
a confidence-score-ranked PR table. These values may then
either be used to produce PR curves or to calculate the AP.
The variation between the PASCAL VOC and MS COCO
metrics lies in how the AP is calculated using these values.

The PASCAL VOC 2008 AP metric divided the recall di-
mension into 11 points, interpolated the precision values and
averaged them, whereas PASCAL VOC 2010-2012 estimated
the area under the curve. The MS COCO metric by com-
parison, which we use for our evaluations here, takes a 101-
point AP interpolation while also evaluating the AP across
multiple IoU threshold values and/or averaging over a range
of thresholds. Unless otherwise stated, in the analyses below,
we use the MS COCO AP at IoU = 0.5 with all area sizes
and maximum 100 detections, and we use the MS COCO
AR averaged over a range of 10 IoU thresholds between 0.5
and 0.95 with a step size of 0.05 with the same area and
max detection criteria. With regard to the mission goals,
since we plan to use a 6D pose estimator to refine the tube
localization post-detection, we can afford to use a looser AP
overlap criterion so long as precision is maximized: we would
rather avoid falsely labeling tubes on the first pass than highly
accurately segmenting those tubes that we do correctly detect.

Precision-Recall Curves—In the figures presented below, PR
curves are shown where the interpolated precision values are
used for the 101 recall points used by the MS COCO AP
metric. Plots are shown for PR curves for a range of 10 IoU
thresholds between 0.5 and 0.95 with a step size of 0.05.

Performance Analysis of Template Matching

The Line2D detector was trained using 7000 templates
generated from the 3D model of the sample-tube. The
test data consisted of images from the benchmark dataset,
down-scaled to half-resolution and randomly cropped to
1024x1024. The reasons to generate cropped images were
two-fold. First, to match the input dimensions of the learning-
based localizer for a fair comparison. Second, larger image
size also increases the computational complexity of the al-
gorithm. Table 1 shows the quantitative performance of the
template matching based object localizer on the benchmark
dataset using the AP and AR metrics. Furthermore, we also
plot the PR curve in Figure 4 to demonstrate the inherent
tradeoff between the precision and recall of our detector
as a function of different threshold values. The overall
quantitative performance of the template-based matching is
encouraging, especially given the challenging and adversarial
scenarios presented in our dataset. The low AP and AR values
can be explained by the large number of false positives and
false negatives, typical of most model-based algorithms.

Next, we qualitatively analyze the the performance of the
detector as a function of different terrain types and environ-
mental conditions. Some example results from successful
detections using the Line2D detector are presented in Figure
5. It can be observed that the template matching algorithm
is able to robustly detect sample-tubes in a wide variety of
terrain (flat ground vs. cracks of bedrock) and illumina-
tion conditions (well-lit vs partial-shadow vs completely in
shadow). The shape-based similarity measure also allows
the template matching to be robust to partial occlusions (see
examples where tubes are places next to a rock).

Finally we also look at some of the systematic failure cases
where the template matching based detector’s performance
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Figure 7. Precision-recall curves for the (a) no-tags and (b)
with-tags datasets using the Mask R-CNN object detector.

Train Test AP [.5] AR [.5:.05:.95]
with-tags no-tags 0.911 0.555

no-tags with-tags 0.918 0.575

Table 2. Quantitative results using the Mask R-CNN object
detector. AP and AR IoU thresholds are shown in square

brackets.

degrades. The most notable failure mode that degrades
the performance of template matching was observed in the
presence of other entities in the scene that have similar
contour features compared to the sample-tubes. Two specific
examples of this that can be observed in Figure 6, where
object shadows and bedrocks - both have long edges with
similar feature response to that of the long edges of the
sample-tube. Another failure mode is related to occlusions.
Template matching based algorithms perform poorly in the
presence of significant occlusions - either from dust coverage
or object occlusions.

Performance Analysis of Data-driven Segmentation

Two Mask R-CNN models were trained. One was trained
on the with-tags dataset and evaluated on the no-tags dataset,

while the other was trained on the no-tags dataset and eval-
uated on the with-tags dataset. In each case the training
data consists of 1200 × 1200 images that are converted to
grayscale, box-filtered and randomly cropped to 1024×1024
to match the input size expected by the network and to allow
for data augmentation. Our decision to use grayscale images
reflects the intuition that color is less important for this task
than edge and texture features and that the network might
struggle to learn color invariance. In addition, the likelihood
that the tubes would be coated with a thin layer of dust on
Mars would mean that the tubes may acquire a more yellow
hue than their original grey coloring that the network would
be trained on. As for the box filtering, given the limited
quantity of training data available, it may be helpful to prime
the input to de-emphasize intensity over edge features. The
test data consisted of 1024 × 1024 images, also converted
to grayscale and box filtred, in which a whole single tube is
present within the image boundaries. When the no-tags data
was used for training, the with-tags data was used for testing,
and vice versa.

Quantitative AP and AR results are presented in Table 2,
PR curves are presented in Figure 7, and qualitative results
samples are presented in Figures 8 and 9. As was ex-
pected, the data-driven learning approach of Mask R-CNN
provides a substantial average increase in performance over
the template-matching method both in terms of precision and
recall. The PR curves also demonstrate that if we can tolerate
detection overlap with ground-truth in the 0.5 − 0.6 IoU
threshold range, we can expect reasonably optimal precision-
recall. The results samples in Figures 8 and 9 show that Mask
R-CNN can cope well even in difficult situations where object
shadows overlap the tubes. Conversely, it can also produce
false positives in cases where there is not enough overlap
between the detection and the ground-truth or sometimes fail
completely in cases where features from non-tube objects
seem tube-like.

Performance Analysis of 6D Pose Estimation

Using the with-tags dataset with ground-truth 6D pose infor-
mation, we can evaluate the pose estimation accuracy of the
Line2D detector. Figure 10 shows histograms of the orienta-
tion and translation error magnitudes. Since the detector does
not know which is the tag-mounted tube, we only consider
detections with IOU > 0.5 for evaluation of the 6D pose
accuracy. If there is indeed a detection in the neighborhood,
there should only be one since additional ones will have been
removed by non-max suppression. Moreover, we consider
the orientation error in a couple of ways. First, we focus
on in-plane rotation and report error along the main axis of
the tube since this is the most relevant for the downstream
task of tube pickup. Also, from the histograms, we see that
there are a few outliers with large orientation errors. These
are likely detections where the matched template is “flipped”
180◦ due to the most prominent object features being the two
parallel edges that define the body of the tube. Ignoring these
instances allows us to observe the nominal orientation errors.
Furthermore, in practice an orientation flip should not affect
ability for tube pickup.

8. CONCLUSION AND FUTURE WORK
Autonomous localization and retrieval of sample-tubes for
the Mars Sample Return mission is a challenging task, but
one that is necessarily to accommodate the mission time-
line for the Sample Fetch Rover. In this work, we stud-
ied two machine-vision based approaches to autonomously
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Figure 8. Example true positive results for sample-tube detection using the Mask R-CNN detector. The top row shows results
from the no-tags test set; the bottom row shows results from the with-tags test set.

Figure 9. Example false positive cases for the Mask R-CNN detector. The first three images are from the no-tags test set; the
last two images are from the with-tags test set.

Figure 10. 6D pose estimation results using Line2D

detect and localize sample-tubes. Our top-level goal was
to understand the trade-off between the different classes of
algorithms: model-based and data-driven. Towards this end,
we also collected a large benchmark dataset of sample-tube
images, in a representative outdoor environment and anno-
tated it with ground truth segmentation masks and locations
for performance analysis. In summary, both methods have
complimentary advantages. While, learning-based methods
are considerably superior in terms of performance, they are
fundamentally black-box from a design perspective. This
presents a major challenge for Verification and Validation
(V&V) and difficulty in flight infusion. On the other hand,
classical methods such as Template matching do not match

the performance of their learning based counterparts, but are
easier to design, implement and V&V. In future work, we
plan to validate the performance of autonomous tube-pickup
through end-to-end demonstration on an analog Fetch rover.
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