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Abstract— In an increasingly competitive manufacturing in-
dustry it is becoming ever more important to rapidly react
to changes in market demands. In order to satisfy these
requirements, it is crucial that automated manufacturing pro-
cesses are flexible and can be adapted to the new production
requirements quickly. In this paper we present a novel automat-
ically reconfigurable robot workcell that addresses the issues of
flexible manufacturing. The proposed workcell is reconfigurable
in terms of hardware and software. The hardware elements
of the workcell, both those selected off-the-shelf and those
developed specifically for the system, allow for fast cell setup
and reconfiguration, while the software aims to provide a modu-
lar, robot-independent, ROS-based programming environment.
While the proposed workcell is being developed in such a way
as to address the needs of production-oriented SMEs where
batch sizes are relatively small, it will also be of interest to
enterprises with larger production lines since it additionally
targets high performance in terms of speed, interoperability of
robotic elements, and ease of use.

Index Terms— Reconfigurable, Robotics, ROS

I. INTRODUCTION

In industry, particularly in the realm of small and medium-
sized enterprises (SMEs), rapid changes in market demands
lead to decreasing product lifetimes and also to more frequent
product launches. SMEs must react quickly, efficiently, and
in an economically viable way to such market changes.
Although robots have been highly successful in many indus-
trial production processes when applied to complex repetitive
tasks with long production runs and high unit volume, the fre-
quent shifts in the required product type or in the number of
required products, as dictated by the market forces to which
SMEs are exposed, often preclude them from exploiting any
potential benefits such robots might provide.

These so-called few-of-a-kind assembly production scenar-
ios [1] are typical of SMEs and given that SMEs are the
“backbone of the manufacturing industry”, e. g. in Europe
providing some ∼45% of the value added by manufacturing
[2], it would be highly beneficial if rapidly reconfigurable
robotic workcells could be developed specifically to ease the
burden of such use-cases.

The main hindrances to further uptake of SME robot pro-
duction are the complexities involved in setting up existing
solutions, since they usually require expert knowledge as

well as significant time for testing and fine-tuning. Since
SMEs usually do not have such expertise available, they avoid
introducing such solutions, even when they are economically
justifiable. Looking at such robotic systems in more detail,
we can recognize that these problems are due to the time
costs involved in re-configuring and re-programming the
robot workcell for new assembly tasks, which are often too
prohibitive to make the application of robots profitable.

A. A reconfigurable workcell for automated assembly

In this paper, we present the design of a new kind of
autonomous robot workcell that is attractive not only for large
production lines, but also for few-of-a-kind production [3].
We propose reducing set-up times by exploiting a number
of hardware and software technologies, some of which were
partially developed in prior work, and some of which are
novel contributions in this paper particular to the proposed
workcell design. The main novelty of the workcell lies in
the automatic reconfiguration of passive fixtures and other
passive elements in the cell, which can be performed by the
robots installed therein. This reconfiguration process allows
the robots to autonomously configure their workspace and
prepare the workcell for the execution of new assembly
tasks. This way set-up times and costs of preparing a new
production line can be greatly reduced.

We describe the application of various reconfigurable ele-
ments in the workcell, including the use of a reconfigurable
steel frame structure with modular beam connectors for both
high flexibility and stiffness, robot arms with quick pneumatic
tool changers, plug and produce (P&P) connectors for simpli-
fied coupling of system infrastructure, reconfigurable passive
fixtures, and a passive linear rail unit for rapid robot-driven
automatic relocation of the robots. The unique combination
of these technologies is, to the best of our knowledge, a novel
contribution to the field.

The rest of the paper is organized as follows.We firs
discuss related work and compare our design choices to
the state-of-the-art. Next, in Section II we describe the
reconfigurable hardware of the workcell and in Section III
the reconfigurable software system architecture. In Section
IV, we describe the application of these new reconfigurable
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technologies in a focused industrial use-case for automotive
light production, demonstrating how the system can be used
to reduce production costs by increasing both efficiency and
flexibility. Finally, in Section V we conclude and discuss our
plans for future work.

B. Related Work

A number of surveys have been released in recent years
documenting the development of reconfigurable robotic sys-
tems, both in research and in industry [4]–[7]. A prominent
example among research on modular reconfigurable robotic
systems is the work of Chen [8], [9], who put a specific
emphasis on finding optimal module assembly configurations
from a given set of module components for a specific task.
His subsequent work on the design of a reconfigurable
robotic workcell for rapid response manufacturing [10] is of
particular relevance with respect to the workcell proposed
in this paper. However, while that work involved the de-
velopment of a workcell containing hardware elements that
can be rapidly reconfigured manually, our proposed workcell
focuses on introducing hardware elements that can be rapidly
reconfigured automatically by the system itself with respect
to a family of parts within a given product line and its
respective assembly task.

In our system this is made possible due to the application
of reconfigurable fixtures known as hexapods (c.f . Section
II-C), the use of which in a robot-guided reconfigurable
assembly system was first proposed in the work of Gödl
et al. [11]. A similar reconfigurable fixture concept was
later described in the work of Jonnsson & Ossbahr [12] and
Salminen et al. [13] in the context of the production of bogies
in the railway industry. In this paper, we describe a refined
version of this concept, involving smaller units, to bear on
the particular use-case of the production of headlamps for
the automative light industry (c.f . Section IV), with a view
towards expanding their application to further industrial use-
cases in the area of automated robot assembly. We also
propose enhancements to the original concepts proposed in
[11] via a number of separate hardware augmentations within
the workcell as described in Section II.

In the work of Krüger et al. [1], [14], a set of meth-
ods was developed to facilitate the set-up of a complex
automated assembly processes, such as they arise in the
standard assembly benchmark, the Cranfield benchmark [15].
The proposed set of methods included pose estimation and
tracking of parts using a 3-D vision system, fast and ro-
bust robot trajectory adaptation using dynamic movement
primitives (DMP) [16], and ROS-based software control and
state machine programming [17]. In this work we build on
these approaches and supplement them with the ability to
automatically reconfigure the workcell, as well as with the
integration of CAD-based product design for assembly that
takes into account the requirements of robotic manipulation.

Moreover, the proposed system advances beyond synthetic
benchmarks such as Cranfield benchmark and demonstrate
the viability of the system on actual industrial use-cases.

II. RECONFIGURABLE HARDWARE

The proposed robotic workcell is in large part constructed
of modular hardware that allows for fast and easy recon-
figuration; from the structural frame to the fixtures, end-
effectors, tool exchange system, P&P connectors, and other
peripheral devices. With this approach we make it possible
to use the proposed workcell in a wide range of industrial
applications and environments. Furthermore, we also make it
relatively easy to change its shape and purpose within those
environments. In the following subsections we will give an
overview of the technologies and solutions that were used to
achieve said hardware reconfigurability.

A. Reconfigurable frame

The frame structure of the workcell is made of rectangular
steel beams that are connected via the BoxJoint patented
modular frame coupling technology [18]. The advantage
of this technology is that a workcell frame can be easily
configured into a large variety of shapes. Typically in industry
purposely made frames are either welded into the desired
shape or an aluminum modular system is used to construct
the desired frame. The issue with specially designed welded
frames is that they are not reconfigurable, while the issue with
aluminum frames is the fact that aluminum is less thermally
stable. By using steel beams as the core element of the
modular frame for the cell, we make the cell more stiff,
robust, and less susceptible to deformations due to changes
in temperature. The latter feature also makes the cell a viable
solution for robot welding tasks.

B. Tool Exchange System

Different workpieces demand access to a variety of differ-
ent robot tools depending on the tasks that are required to
be performed on them. In order to ensure that such tasks can
be efficiently and precisely executed in the workcell given
the limited number of robots therein, we developed a stand
where different end-effector tools can be placed. The robots
can then pick the appropriate tool for the different stages
of the task. So if the task to be performed is the assembly
of different pieces, the robots can equip different grippers
for each piece that needs to be assembled into the given
workpiece. If reconfiguration of the cell is needed to assemble
a different workpiece, new end-effectors can be placed on
the already prepared robot tool stands. The stands that hold
the end-effectors were custom designed and developed and
are mounted directly on the steel beam frame with the same
BoxJoint technology that was used to assemble the frame.
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C. Reconfigurable Fixtures

In small production lines where shifts in demand occur
frequently, it is difficult to maintain a robotic workcell due
to the time it takes to re-adjust all of the fixtures within it.
In order to help mitigate against this specific problem, we
added passive reconfigurable flexible fixtures (Fig. 1b) to the
workcell. The fixtures are made in a Stewart-platform like
shape with 6 legs, hence the name “hexapod”. These fixtures
can be dynamically reconfigured by the robot arm on demand.
By designing the fixtures to be passive and sensor-less it is
possible to manufacture them for relatively low cost. With
this technology, not only can the workspace be easily adapted
to cope with the change in the workpiece, but the workspace
can be adapted by the robotic workcell itself.

D. Passive Linear Unit

To make it possible to enlarge the work area of the cell
the robot was mounted on a custom passive linear rail unit.
This way the robot base can be moved up and down along
the linear axis. The purpose of the passive linear unit is to
expand the work area of the robot within the work cell with
minimum additional cost. Conventional actuated solutions
are extremely expensive and thus inappropriate for SMEs.
A way to reduce the cost without significantly reducing the
functionality is to omit the actuation and position sensing
from the linear unit. The robot itself is used to propel itself
along the linear rail. This is achieved by connecting the tip of
the robot to the frame with the use of the previously discussed
tool exchange system and then by using the robot actuators
and position control to move the base of the robot. This
approach is appropriate for applications where the need to
move the robot is not too frequent.

III. RECONFIGURABLE SOFTWARE SYSTEM

The introduction of a robotic system into a production
line represents a big investment and change for small or
medium sized companies. The high costs usually come from
price of the necessary hardware and the time spent for the
integration of the robotic system into the production line.
One of the time consuming aspects of the integration involves
the programming of tasks sequences for the robot that make
up the production process. The programming process is
usually done either via on-line programming using a robot
teach pendant directly connected to the robot controller, or
via off-line programming in a simulation environment, both
of which require knowledge of the specific robot system.
With this in mind, we developed a software system that
would facilitate the programming of robot tasks regardless
of the robot system. The software system is designed to be
distributed, modular and offers seamless adaptation of the
robot cell. The package also provides the necessary tools to
enable simple, intuitive programming of robot tasks.

(a) The BoxJoint coupling
system holding holding to-
gether steel beams.

(b) The passive reconfig-
urable fixture being recon-
figured by a UR10 robot.

(c) Tool exchange
stands holding various
end-effectors for the robot.

(d) Passive linear axis rail
with the robot mounted on
it.

Fig. 1: Reconfigurable hardware in the ReconCell robot cell.

Our system was build within Robot Operation System
(ROS) framework [17], where the Matlab Simulink Real-
Time (SLRT) platform [19] was used to develop the hard
real-time components of the cell. We chose ROS because
it provides a reliable open source framework, the capacity
for cross-platform and multi-language flexibility, and a vast
number of useful libraries and tools. However, ROS in its
current form does not provide any form of hard real-time
implementation, which is a crucial requirement for reliable
and accurate robot control. The second iteration of ROS
called ROS 2 is planning to patch this culprit [20], but it
is currently still in the alpha stage under heavy development.
That is why we used SLRT to build a robot control server
(SLRT server), which is responsible for high frequency real-
time trajectory generation and force control.

A. System Architecture Overview

The SLRT server connects directly to the robot controller
via Ethernet and is responsible for communicating to the
robot. It works as a proxy offering advanced trajectory
generation methods and feedback control strategies. Robot
controllers usually offer only basic control methods, on the
other hand our approach gives the system great flexibility,
since we can easily and quickly implement any control
method. It also makes our system independent of the robot.
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For a new robot to be integrated in the cell, its controller must
offer the ability to receive joint configurations over Ethernet
and then only the kinematic model must be adapted on the
SLRT server.

The SLRT server also connects to some other measurement
units (e.g. force/torque sensors) that can be used for closed
loop control policies (e.g. force control). A ROS package has
been developed that acts as a driver for the SLRT server and
provides tools and functionalities for running, reconfiguring
and calibrating the robot cell. The ROS architecture provides
the versatility needed for connecting different modules to the
workcell and our tools facilitate programming of the desired
workcell task using data from the connected modules. The
nodes from our package run on the ROS Master Computer,
where ROS core is running as well. Modules can also have
their own individual nodes running on their respective com-
puters. In the following subsections we will briefly explain
the main functionalities of our package.

Figure 2 shows elements of the software architecture of
a typical workcell design. In the schematics there are two
“Robot Modules” representing a robot with its robot control
server, one additional measurement unit and all its tools and
gripers. The “ROS Master Computer” refers to the computer
in the system that runs the ROS core and our ROS package. In
order to provide connections to different a ”Digital Interface
Unit”, a ”Vision Module” and other. Depending on the needs
the workcell design can be adapted by adding or removing
various modules.

B. Simulink Real-Time Server

A core part of the robot module is the previously men-
tioned SLRT server, which has been developed to ensure
that the robot can be reliably controlled with the maximum
frequency of the provided robot controller (125 Hz in case of
UR-10 robots). The SLRT server sends the robot controller
the desired joint configuration. The inner loop of the SLRT
server can run on a higher frequency than the robot controller,
if we have a measurement unit connected to it with a higher
frequency readout. In our case, where a 1000Hz force/torque
sensor has been connected to the SLRT for force control,
the SLRT server runs at 1000 Hz as well. In case of a UR-
10 robot, the SLRT server can process 8 samples per robot
controller loop for a better estimation of the force/torque
derivative. This provides a better filtered force/torque sig-
nal for high quality force control, improving the stability,
accuracy and speed of robot trajectories in contact with the
environment.

As mentioned before, a real-time robot control server was
developed as a proxy between the ROS system and the
robot controller. The main motivation behind this approach
is that trajectory generation and control is handled by a hard
real-time system that is robot independent. This way, the
trajectory generation and control algorithms can be developed

independently of the used robot. Various trajectory generation
algorithms were implemented up to this point to cover the
most common robot motion needs in the context of automated
assembly. These are:

• trapezoidal speed profile in joint space,
• minimum jerk for position and minimum jerk SLERP

for orientation trajectories in Cartesian space.
• admittance force control [21],
• joint space dynamic movement primitives for free-form

movements [22],
• Cartesian space dynamic movement primitives free-form

movements in Cartesian space [16].

C. ROS Software Package

To allow the robot workcell to be accessed, controlled and
calibrated within the ROS environment, various ROS nodes
were developed to offer an interface to the before discussed
SLRT server and other modules in the workcell. In this
section we will focus on the core software capabilities of
the robot workcell that come standard in every “ReconCell”.

1) SLRT State Publisher: the purpose of this ROS node is
to read the data stream from the SLRT server and publish it
within the ROS network via ROS topics using conventional
ROS messages. The published data covers all the relevant in-
formation about the robot, such as joint positions, velocities,
payload, tool information, forces from the force/torque sensor
and several control flags for different control strategies. One
of the vital packages in ROS is tf2, which is used for keeping
track of multiple coordinate frames in the system. We use the
ROS robot state publisher package, which latches onto the
joint position topic and, using the robot kinematic description
from the URDF file, tracks coordinate frames in all joints of
the robot system.

2) Action Servers: are nodes built with the ROS actionlib
stack that handle communication to the SLRT server and are
used to trigger robot motion and monitor the progress of the
trajectory. The actionlib provides a reliable client - server
interface where the lower level communication and logic is
handled by the action server node, whilst the client simply
triggers the motion by sending a goal request. After the action
server node detects the robot motion is finished it sends a
result message to the client. The unique advantage of using
the actionlib stack instead of ROS services to trigger robot
motion is that it offers a preemption requests and feedback
messages during execution. This means a client can preempt
motion that is already being executed and also gets various
information back from the action server during.

Each trajectory generation algorithm that is implemented
on the SLRT server is offered as a separate action server with
its own goal, feedback and result messages. The low level
logic of all the action servers assures that only one motion
can be executed at a time.
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Fig. 2: Schematics of the workcell software and hardware architecture.

3) ROS Services: provide an interface for handling short
duration tasks such as changing the state off a digital output.
Our ROS package includes services that

• change the robot mode from position control to gravity
compensation mode,

• trigger direct joint control on the SLRT server,
• set digital outputs on the robot controller.

As with Action servers, ROS services are very practical for
programming the top level robot task program.

4) Database: A robot workcell needs to keep track of its
state at all times, be it during operation or downtime. Some
sort of persistent storage is required, however none of the
basic ROS functionalities, such as the ROS parameter server,
offer that. We decided to follow a common approach with
wide support in the community and implemented a Mon-
goDB database. There are different ROS packages offering
simple interfaces in C++ and Python for all clients in the
ROS network to read from and write to the database using
ROS type messages.

The information stored in the database consists of poses of
different elements in the workcell, saved robot configurations
in Cartesian or joint space, calibration parameters and other
parameters. We have developed a node that reads transforms
from the database and publishes them on tf2. These trans-
forms can then be used for robot assembly tasks.

5) Robot capture: is a versatile tool for storing various
robot related configurations to the database. It is commonly
used in conjunction with the kinesthetic guiding of the robot,
where the programmer of the robot workcell can freely
move the robot in its workspace and then save the points
of interest. The tool offers saving the robot tool center
point in Cartesian space, the robot joint state (position and
velocity) and also a robot to robot calibration mode. The first

functionality is commonly used for calibrating the workcell
state (reconfigurable fixture positions, tool pick up slots) and
for saving pick and place poses of the robot assembly task.
The saved joint configurations are generally used for path
planning and the robot to robot calibration is used to define
the relative transformation from one robot base to another,
when more robot modules are present in the workcell.

D. Additional Functionalities

1) Programming by Demonstration: Robot programming
by kinesthetic guiding received a notably increase in demand
in recent years. More and more robot manufacturers are
starting to implement this functionality on their robots. It
provides an intuitive method to teach the robot either points
in Cartesian or joint space or whole trajectories. The robot
used for our work allows kinesthetic guidance via the so
called Gravity compensation mode. In this mode, the robot
controller estimates the input torques to the robot motors
to compensate the effect of the gravity on the robot links.
The gravity compensation mode should also always take
into consideration the payload on the robot’s end-effector,
otherwise the calculated torques would not be correct which
means the robot would not be still but drifting.

2) Adaptation of Learned Trajectories: When program-
ming a robot task via kinesthetic guidance in physical con-
tact with the workpiece, it is very often the case that the
learned trajectory is not ideal or optimal. By learning the
executed forces on the end-effector of the robot and by using
admittance control, we can then use the displacement due to
the force error as a correcting offset to our DMP encoded
trajectory. By adapting the trajectory to follow a desired force
profile we can achieve better and faster executions of our first
demonstrated trajectory [21].
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IV. USE CASE EVALUATION

As noted above, manufacturing industry aims towards
lower production costs and high efficiency assembly lines
with high repetition, flexibility, and easy to use interface.

Manual work and quality is highly dependent on workers’
qualifications, skills and their knowledge of the assembly
process. Costumers expect that the supplier company is very
flexible in coping with the changes in demand. This is
why SMEs crave to time every task carefully and look for
optimizations.

The number of parts produced in a single company can
vary per project in a year. In the industry of automotive
lights, it is typically between 100,000 -??- 300,000 per
item. However, these lights are not assembled in one batch.
With new orders it is often necessary to switch from one
automotive light type to another. For the assembly of each
light type it is necessary to reconfigure the workcell. This
is where the technologioes described in this paper become
useful.

A. Description of the challenge

In automotive light industry, each light requires its own
unique assembly device, which is typically very large and
cumbersome. When the subcontractor company stops produc-
ing the parts to match the regular demand, assembly devices
must not be discarded because they are required so that the
subcontractor company is able to produce spare parts for at
least the next five years. This means that the assembly devices
are stored in a company for the next five years after the
production has stopped. This means that companies needs a
lot of storage space just to store these assembly devices. Since
subcontractor companies do not produce only one specific
part, this means the assembly devices are accumulating.
Production of spare parts is a low quantity piece production
and is made only few times per year. It is therefore very
useful to have one robot cell which is able to assemble many
different types of lights.

Automotive lights (headlamps) are made up of typical
structural elements such as housing, actuators, bulb holders,
adjustable screws, heat shields, wires, etc. In our experiments
we demonstrated that the developed reconfigurable robot
workcell provides the much needed flexibility and fast set-
up characteristics for automated assembly processes in the
context of automotive lights. By working together with the
Elvez company, we were able to show that the proposed
workcell can be automatically reconfigured for the succesful
assembly of different car headlamps, two of them shown in
Fig. 3.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new reconfigurable robot
workcell that aims to help manufacturing industry with
small production batches where change in demand happens

(a) Light housing model
X07.

(b) Light housing model
X82.

Fig. 3: Two different automotive headlamp housings that
Elvez produces.

relatively often. The developed workcell is built of both,
reconfigurable hardware elements and modular software com-
ponents. In respect to the hardware reconfigurability, we
presented a unique combination of various technologies that
allow for fast setup and reconfiguration. Affordable passive
flexible fixtures are automatically reconfigured via robot
manipulation. The software system architecture was built
to be robot-independent. We developed a real-time robot
control server that is responsible of the low level real-time
trajectory generation. On top of the real-time server, we
developed ROS drivers to provide an interface of the cell
within ROS. To show the benefit of using such a workcell, a
case study was developed in collaboration with a partner from
the automotive industry. By applying the developed workcell
to a real industry use case, we demonstrated the applicability
of the developed technologies.

AIn the future we will focus on the ease of program-
ming tasks so that it will become possible for non-experts
to program the workcell by themselves. A special visual
programming interface is being developed that will remove
the need of a robotic expert for assembly task programming.
This will facilitate the companies to use their existing experts
for production to program assembly tasks. In this way the
universality of the developed workcell will be shown.
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