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Chapter 1

Executive Summary

1.1 Role Within the Description of Work

This Deliverable is part of Work Package 2.3 Affordances, Object-Action Complexes and Categories.
Quoting from the Description of Work Package 2.3:

Objectives: In Xperience the object affordances need to be rich enough to allow for
sophisticated action sequencing required for the structural bootstrapping in WP3 and WP4.
The central objective of this WP is to address the generation (by learning), understanding
and transfer (to planning) of object affordances. This leads over to the required learning of
higher level entities (action rules) and finally to the learning of objectaction categories.

Within this Work Package, this Deliverable reports in particular on the below tasks:

Task 2.3.1 Learning object affordances by means of semantic sensorimotor categories (OACs)

Task 2.3.3 Exploration based learning of object categories

Given the nature of this document we will report on the scientific progress within WP2.3 (in Section 2)
in Year 4but also on how these results will and/or could be transferred to the two integration scenarios
in the project (Section 3).

1.2 Links to Other Work Packages

WP 2.3 draws together work from WP 2.1 Sensorimotor Experience and WP 2.2 Motor Actions. More-
over, it constitutes a bridge to WP 3.1 Structural Bootstrapping on Sensorimotor Experience, as category
formation is an essential building block of structural bootstrapping.

1.3 Outline of Results

This report presents work in year four within the Xperience project on the acquisition and modelling
of categories. We limit this report to concise overviews (Chapter 2) referring to the actual content in
publications attached to the report.

Section 2.1 describes work on the analysis of action-grounded features, where action-grounded 3-D shape
features are compared to non-grounded 3-D shape features features in an object affordance categorisation
setting.

In Section 2.2 we investigate the learning of undirected graphical models and in particular its application
in finding early visual features. Several novel learning methods are introduced and studied, with both

3



Xperience 270273 PU

theoretic analysis and empirical comparisons to other existing methods. Because of the generality of the
study, it can be also applicable to other tasks, e.g. visual segmentation, multi-label prediction.

Section 2.3 gives an overview over work that allows to learn visual categories (geometry as well as
appearance based) in a unsupervised scheme. An hierarchical category learning approach is used. We
expect this work to be used as a basis for affordance transfer based on visual properties (see Section 3.2).

We have extended our previous work on grasping of unmodelled objects based on visual information
and previously acquired ECVxPMF statistics (vision, action cross space). This work is presented in
Section 2.4 and the transfer to the Xperience scenarios is discussed in Section 3.3.

Section 2.5 summarizes work for the decomposition of objects into functional parts as well as the part and
part-to-part description in order to automatically bootstrap one or multiple affordances for an unknown
object.
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Chapter 2

Description of Scientific Results

2.1 Action-Grounded 3-D Shape Feature Analysis

In our work for the previous year [1] on the subject of bootstrapping object categories via push affordances,
one of the enabling concepts that was developed was that of action-grounded features, that is, object
features that are defined dynamically with respect to manipulation actions. Rather than using pose-
invariant visual features, as is often the case with object recognition, such features are grounded with
respect to the manipulation of the object, for instance, by using shape features that describe the surface
of an object relative to the push contact point and direction, as was the case in our previous work [1].
An example of how such features might be extracted is shown in Figure 2.1.

(a) Object point
clouds before/after
interaction + hand
push trajectory

(b) Point clouds + tra-
jectory transformed to
push action coordinate
frame.

(c) Pre-push point
cloud action coordi-
nate frame grounding.

(d) Fitting planes to
pre-push object cloud
parts, grounded with
respect to action.

Figure 2.1: Action-grounded shape feature extraction pipeline.

Leading on from that work, in a paper submitted this past year [RUU15], we shifted the focus from the
bootstrapping aspect and decided to analyse the action-grounded features themselves. Thus, we provided
an experimental comparison between action-grounded features and non-grounded features in an object
affordance classification setting using an experimental platform that gathers 3-D data from the Kinect
RGB-D sensor, as well as push action trajectories from an electromagnetic tracking system. Experimental
results, some of which are shown in Table 2.1, were provided that demonstrate the effectiveness of this
action-grounded approach across a range of state-of-the-art classifiers.

Table 2.1: Mean 10-Fold Cross-Validation Results: Test Sets

Non-Grounded Action-Grounded
GRLVQ 87.3±10% 92.6±8%
SRNG 88.3±9% 93.0±7%
SVM 82.5±10% 86.2±9%
MLR 74.6±12% 78.1±13%
RF 86.0±10% 95.8±6%
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2.2 Novel Learning Methods for Early Visual Features

Good visual features can be of significance to visual understanding, in both 2D and 3D cases, by providing
more informative bases to higher-level processes, e.g. classification or clustering. In [XSRSP14], [XSP14a]
and [XSP14b], we developed some novel training methods of undirected graphical models (UGMs) for
extracting low-level visual features. More concretely, restricted Boltzmann machines (RBMs), which are
fundamental building blocks of deep learning, are used for modeling the statistics of images in certain
domain by finding latent bases. An RBM is a two-layer, bipartite neural network. It is a restricted
version of the Boltzmann machine with interconnections only between hidden layers and visible layers.
Input data are binary and Nv-dimensional. They are fed into Nv units in the visible layer v. The Nh

units in the hidden layer h are stochastic binary variables, i.e. v ∈ {0, 1}Nv , h ∈ {0, 1}Nh . The joint
probability of {v,h} is

p(v,h) =
1

Z
exp(−E(v,h)) E(v,h) = −v>Wh (2.1)

where W ∈ RNv×Nh is the matrix of symmetric weights, and Z =
∑

v,h exp(−E(v,h)) is the partition
function for normalization. Because of the restricted connections in RBMs, the hidden units hj are
independent of each other conditioned on the visible data v. Given training data D = {v(l)}Ll=1, an RBM
can be learned by maximizing the average log-likelihood of D:

W∗ = arg max
W
L(D) = arg max

W

1

L

L∑
l=1

(
log
∑
h

p(vl,h)

)
(2.2)

Based on (2.1), the gradient of L(D) is computed as

∇L(D) =
1

L

L∑
l=1

[
Ev(l)∈V,h∼p(h|v(l))(v

(l)h>)− Ev,h∼p(v,h)(vh>)
]
, (2.3)

where Ep(·) denotes the expected value with respect to p. Clearly, the sampling v,h ∼ p(v,h) makes
learning practically infeasible because it requires a large number of Markov chain Monte Carlo (MCMC)
iterations to reach equilibrium. Therefore, there are various approximation methods to estimate the
second term in (2.3), e.g. MCMC maximum likelihood (MCMCML), (persistent) contrastive divergence
(PCD), tempered transition and parallel tempering, just to name a few.

2.2.1 Persistent Sequential Monte Carlo: A Closer Approximation of Maxi-
mum Likelihood Learning

A new learning method, persistent sequential Monte Carlo (PSMC), for general undirected graphical
models (UGMs, thus also for RBMs) was proposed in [XSP14b]. Most existing learning methods for
UGMs can be considered as special cases of Robbins-Monro’s stochastic approximation procedure (SAP)
with different Metropolis transitions (e.g. PCD is a SAP with Gibbs transitions). By linking SAP
and sequential Monte Carlo (SMC), we cast PCD and other state-of-the-art learning algorithms into a
SMC-based interpretation framework. Moreover, within the SMC-based interpretation, two key factors
which affect the performance of learning algorithms are disclosed: learning rate and model complexity.
Based on this rationale, the strengths and limitations of different learning algorithms can be analyzed
and understood in a new light.

Inspired by the understanding of learning UGMs from a SMC perspective, and the successes of global
tempering used in parallel tempering and tempered transition, we put forward PSMC to approach the
maximum likelihood solution in learning UGMs. The basic idea is to construct a long, persistent distribu-
tion sequence by inserting many tempered intermediary distributions between two successively updated
distributions. According to our empirical results on learning several UGMs, the proposed PSMC out-
performs other learning algorithms in challenging circumstances, i.e. large learning rates or large-scale
models.

In particular, we tested PSMC on a hand-written digit image database MNIST1. Two RBM models (one
with 10 hidden nodes and the other with 500 hidden nodes) were constructed. Our empirical results
(Figure 2.2) show that PSMC outperforms other state-of-the-art learning methods by yielding higher
log-likelihoods.

1http://yann.lecun.com/exdb/mnist/index.html
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Figure 2.2: The performance comparison of PSMC and other algorithms on two RBMs. (a): with 10
hidden nodes; (b) with 500 hidden nodes. Check [XSP14b] for details about the comparison.

2.2.2 Training with binary Hamiltonian Monte Carlo

In [XSP14a], we conducted an empirical study of the Robbins-Monro’s stochastic approximation proce-
dure (SAP) with an alternative Metropolis transition: binary Hamiltonian Monte Carlo. Hamiltonian
Monte Carlo (HMC) is a Metropolis algorithm with a proposal distribution analogous to Hamiltonian dy-
namics. Compared to the random walk as used in the standard Metropolis algorithm, HMC can propose
a distant jump while still preserving a high acceptance rate. Suppose that we are interested in sampling
from p(x), where x ∈ RD. An auxiliary variable q ∈ RD with q ∼ N (q; 0,M) is introduced (usually
M = c · ID). A Hamiltonian function can be constructed as

H(x,q) = U(x) +K(q) (2.4)

where U(x) and K(q) are negative logarithms of p(x) and p(q). The changes of x and q over time ν are

ẋ(ν) =
∂H
∂q(ν)

= M−1q(ν), q̇(ν) = − ∂H
∂x(ν)

= −dU(x)

dx(ν)
. (2.5)

HMC can yield more effective sampling by making use of gradient information of the target distribution’s
density function. We can also see, from (2.5), that HMC can only be applied on continuous distributions
of which the partial derivatives of the log density function can be computed. Therefore, applying HMC
to samples from a RBM is not straightforward. We applied binary HMC (bHMC), a novel sampling
strategy for arbitrary binary distributions, for our purpose of learning. In [XSP14a], we found that
bHMC resembles Gibbs sampling but with a different acceptance criterion. To explore its practical
applicabilities, we compared it against Gibbs sampling in SAP on training a toy Boltzmann machine
(D = 10). Our empirical results suggest that, unfortunately, the SAP with bHMC is inferior to the one
with Gibbs, i.e. PCD.

2.2.3 Training with Inhibition

The maximum-likelihood training criterion sometimes is not enough if some prior knowledge on the model
is available. Usually, maximum a-posteriori (MAP) is applied to integrate the prior. For example, by
considering RBM as a neural network (hidden nodes being neurons), it may be desirable to increase its
biological plausibility by achieving some extra properties as well as maximize likelihood. In [XSRSP14], we
exploited how Bayesian learning of a restricted Boltzmann machine (RBM) can discover more biologically-
plausible early visual features. The study is mainly motivated by the sparsity and selectivity of visual
neurons’ activations in area V1. Most previous work in computational modeling emphasizes selectivity
and sparsity independently, which neglects the underlying connections between them. In [XSRSP14], a
prior on parameters is defined to simultaneously enhance these two properties, and a Bayesian learning
framework of RBM is introduced to infer the maximum posterior of the parameters. The proposed
prior acts as lateral inhibition between neurons. According to our empirical results, the visual features
learned from the proposed Bayesian framework yield better discriminative and generalization capability
than those learned with maximum likelihood or other state-of-the-art training strategies (see features in
Figure 2.3).
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(a) (b) (c) (d)

Figure 2.3: The receptive fields of neurons learned with (a) the contrastive divergence (CD) algorithm,
(b) sparse CD, (c) selective CD, and (d) our Bayesian strategy. See [XSRSP14] for more details.

2.3 Extracting visual categories by hierarchical clustering

In [MKK15] we introduce an object categorization system which uses hierarchical clustering to extract
categories. The system is able to assign multiple, nested categories for unseen objects. In our system
(Figure 2.4), objects are represented with global pair-wise relations computed from 3D features extracted
by three RGB-D sensors. Hierarchical clustering allows similar categories to be nested within larger
clusters forming a structure in which more generic categories are found on top of less generic ones (see
Figure 2.5).

Figure 2.4: Object categorization system.

Figure 2.5: Examples of hierarchical clustering.

We show that our system outperforms a state-of-the-art approach particularly when only a few training
samples are used. To evaluate the system, we hand-labeled our benchmark object set with a number of
visual categories. We use the labeled categories from the training subset to find the best matching ones
in the hierarchy. Then, we evaluate the performance of the system on the test subset.

8
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2.4 Identifying relevant feature-action associations for grasping
unmodelled objects

In [TKK15], we investigated the space of visual triggered action affordances in terms of a combined
feature-action space. We spatially combine visual features with actions, both from a simulated envi-
ronment in terms of simulated visual sensors and simulated grasps. We vary important dimensions in
the visual space such as the granularity (size) of the surface patches, the order (one or two combined
features) and the feature abstraction (a surface patch, a surface patch with a border label and a surface
patch with border label and direction to the border). In our search for promising regions (visual triggered
affordances) in the space, we perform a neighbourhood analysis and extract the success-probability and
the amount of support of the different feature-action particles and save the results in a database. This
database enables grasp predictions on previously unseen objects. Based on the method, we investigate

Figure 2.6: Visualisation of the grasp predictions for a pitcher object with feature relations of different
order and with different semantic. The colour depict the predicted likelihood for success. Green meaning
a success likelihood of 1.0 and red meaning a success likelihood of 0.0.

the visual action space as described above and show how the ability to make grasp predictions is strongly
depending on the visual descriptor used. In particular it is seen how the addition of a border label and
direction improve the performance significantly for specific object categories such as bowls and cups,
essentially extracting parts of the open structure properties that these objects poses. This property
is visualised in Figure 2.6, where the ability to predict grasps at the edge of an open structure, here a
pitcher, are clearly differentiated by the introduction of the border label with direction to the border (Fig-
ure 2.6c) showing significant better predictions as compared to the result without border and direction
(Figure 2.6a).

Note that [TKK15] is an extended version of [3] introduced in D2.1.2. Introduction and state of the art
have been extended extensively. Furthermore additional simulated experiments have been performed in
a scenario with gravity acting upon the objects to justify the use of a simplified simulation environment
for the main results.

2.5 Part-based affordance analysis

Due to the vast variety of objects, which show similar affordance (e.g. containing substances, cutting other
objects) we developed a framework, which introduces a part-based object representation, were each part
fulfills a specific and much more restricted function (e.g. the blade and the handle of a knife). Additionally,
this approach reduces variance among objects with the same affordance as functionality often depends
on the existence of certain parts and in addition their respective alignment to each other. The framework
consists of two building blocks: First the detection of parts in an object and second the description of
objects using found parts to allow the classification of new objects to learned functionalities. For detecting
parts we developed a purely data-driven Constrained-Planar-Cuts (CPC ) algorithm in [SPW15]. It uses
concavities in objects (similar to [2]) as evidence to propose a hierarchical object-decomposition using
planar cuts found by a novel weighted and directed RANSAC scheme. Being a bottom-up method allows
it to be applied to a huge variety of different objects without training and respective ground-truth as we

9
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show in the paper. Moreover we were able to show that the decomposition of the object mimics human
decomposition very well (see Figure 2.7). This contribution provides a substantial improvement of our
older method [2], which had also been based on concavities but without the cutting plane approach.

Figure 2.7: Unsupervised segmentations produced by the CPC algorithm using fixed parameters.

In the following, second step objects will be described by their part signatures (composition) as well as
part-to-part relation signatures. The latter will contain information of how and where parts are attached
to each other. Compared to full object signatures this representation is more fine-grained, which allows
machine learning techniques to generalize in a more powerful way (e.g. an object for containing substances
can have zero, one or multiple different handles attached and still will function as long as a container is
present).

Besides assigning a single functionality to multiple objects, the system is also able to assign multiple
functionalities or even makeshift solutions to one object when the part configuration allows it.

For example the left object in Figure 2.8 can be used for hitting with part A being the head and part B
being the handle or for drilling holes with B being the tip and A being the handle. Although the hollow
skull on the right side is different from any learned object the system can assign a makeshift functionality
of contain to it.

Figure 2.8: The system assigns two highly compatible functions to the hammer-like object on the left
and the makeshift function of contain to the hollow skull on the right. Black labels: Parts of the most
similar training objects. Red labels: Labels assigned by the system to the parts. Numbers in percent:
Similarity of the new object to the learned objects based on parts and part-to-part relations.
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Chapter 3

Transfer of Affordances and
Categories for final implementation

3.1 Learning Undirected Graphical Models

Undirected graphical models constitute a very general and powerful framework for probabilistic modeling
and inference, and our novel learning methods described in Section 2.2 (check attached articles [XSRSP14,
XSP14a, XSP14b] for details) are widely applicable. Within Xperience, they can potentially be used for
learning visual features. Moreover, in constructing ROAR (repository of objects with attributes and
roles) for structural bootstrapping, a conditional random field can be constructed to model the function
map from object attributes to roles, in which the conditional inter-role dependencies are modeled as a
Boltzmann machine (see D3.1.3 for more details).

However, there are currently no concrete plans to integrate these methods into Xperience demonstrators.

3.2 Visual categories by hierarchical clustering

Our work on the creation of visual categories [MKK15] is able to determine categories for objects that
we are able to perceive but do not actually know (e.g., an object not in our recognition database). As
such it allows us to deal with objects that are, on the symbolic level, unknown to us. We will integrate
this work with the repository of objects&attributes with roles (ROAR), see also D3.1.3.

The visual categorisation system described here will use a segmented point cloud (of an unknown object)
to create a set of visual categories. These categories will be used by the ROAR to find objects that are
visually similar to be able to suggest if the new, unknown object can be used to replace another object
in the scene for a specific task. This replacement functionality will be integrated into both scenarios.

3.3 Grasping of unmodelled objects

The work on learning visual triggered grasp affordances for unmodelled objects introduced in [TKK15]
will be transferred to parts of both scenarios.

In the “making a salad” scenario—in year four at the UGOE platform—the method is to be used for
grasping unknown knives with the purpose of cutting. This has previously been shown in the platform
at SDU but will now be shown integrated into the bigger scenario. By utilising a grasping and cut
simulator for learning the affordances in a simulated environment and applying the learned affordances in
a real scenario. Our system will be provided with a segmented point cloud of the knife (from the UGOE
system) as an input and will in return make a prediction of a grasping point. This grasp point is then to
be taken by the grasp execution component to actually execute the grasp. The grasp prediction module
will be transferred to the UGOE platform and integrated with the segmentation component and a grasp
execution component.
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In the “setting a table”/“rearrange the room and setup table” scenario, we are working on applying our
method for the subtask of moving chairs around. We want to learn from simulation what visual triggered
grasp affordances are suitable for pushing chairs. By utilising a chair pushing simulator made available
by JSI, we evaluate the effect of a grasp for pushing later to be used for grasping and pushing an unknown
chair in the real scenario. The method will again rely on a segmented point cloud of the chair as input
and will then suggest a grasping point for the robot to grasp the chair and execute a pushing behaviour

3.4 Part-based object analysis

Part-based object description turns out to be a very powerful way for bootstrapping object functionality
even if the objects are semantically unknown to the system. Within Xperience this could provide new
ways for object replacement and make-shift object use, given certain tasks to be executed. However,
integration into Xperience demonstrators is currently not planned.
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Abstract. We introduce an object categorization system which uses hi-
erarchical clustering to extract categories. The system is able to assign
multiple, nested categories for unseen objects. In our system, objects are
represented with global pair-wise relations computed from 3D features
extracted by three RGB-D sensors. We show that our system outper-
forms a state-of-the-art approach particularly when only a few number
of training samples is used.

1 Introduction

Object categorization is important for a variety of tasks especially when systems
are expected to deal with novel objects based on previously acquired knowledge.
Such knowledge is built from prior observations through identifying common
structures in the visual data. For instance in robotic applications, categories can
be linked to manipulation actions allowing for performing predefined actions
on novel objects (see e.g., [1]). Categorizing novel objects is also useful in other
applications such as driver assistance [2] and video surveillance [3]. In this paper,
we introduce an object categorization method based on unsupervised clustering
of 3D relational features. Clustering [4] is a powerful tool to automatically find
structures in the data that can be, in this context, translated into categories.

In our system, visual data are provided in terms of view-point invariant rep-
resentations of objects extracted from 3D sensors. These representations code
the properties of objects by computing global, pair-wise relations from 3D fea-
tures (i.e., 3D texlets [5]). This space of feature relations is then expressed in
histograms, providing unique and specific object descriptors. Moreover, such de-
scriptors provide a fixed-length feature space, which can be directly fed into
the clustering algorithm. These representations have been found to achieve high
performance on object instance recognition [6].

In this paper, we apply hierarchical agglomerative clustering [7]. In contrast
to flat clustering algorithms such as k-means, hierarchical clustering allows for
overlapping of categories (see Fig. 1a for an illustration). This means that very
similar categories are nested within larger clusters forming a structure in which
more generic categories are found on top of less generic ones. This provides
flexibility in selecting the level of abstraction.



(a) Illustrative hierarchical clustering

box like

container, has rim, has handle

cylinder like

bowl like, container, has rim

stirring tool

(b) Examples of labeled ob-
jects

Fig. 1. Examples of hierarchical clustering and object labeling. The thumbnails are
resized for better visualization and they don’t necessarily reflect their actual relative
sizes.

Existing object categorization methods assume that objects belong to mutually-
exclusive (single) categories [8]. In this paper, we consider scenarios where objects
can have multiple, nested categories (see Fig. 1b). Such scenarios are very com-
mon when dealing with everyday objects. One important aspect of this approach
is that it is inherently capable of providing multiple categories. In contrary, other
approaches will not only require learning multiple classifiers (see e.g., [8]) but
also—as we show in this paper—perform poorly on nested categories.

To evaluate the system, we hand-labeled our benchmark object set with a
number of visual categories. We use the labeled categories from the training
subset to find the best matching ones in the hierarchy. Then, we evaluate the
performance of the system on the test subset. Note that although the hierarchy is
built unsupervised, finding the corresponding categories is done in a supervised
way. This is, however, necessary for evaluation. This procedure is repeated using
different parameterizations of the visual representations in order to empirically
find the best set of parameters for each category.

We compare this approach to a supervised approach using Random Forests [9]
where both use our visual features. In addition, we make a comparison with a
state-of-the-art method (Hierarchical Matching Pursuit [8]) that works on RGB-
D data and extracts distinct visual features. The main achievements of this work
can be summarized as follows:

– We introduce a multi-category object categorization method that can predict
more than one category.

– We show that—using hierarchical clustering for finding categories—we per-
form better than classification with Random Forests. Our method also out-
performs a state-of-the-art method on our dataset.



– We demonstrate that the use of our visual features, compared to the features
used by a state-of-the-art method, allow the system to perform well with
already very few samples.

2 Related Work

Early research on object categorization focused on generic object representa-
tions that capture shape at high levels of abstraction (such as generalized cylin-
ders [10], superquadrics [11], or geons [12]). The difficulty involved in reconstruct-
ing such abstractions from real objects has led to the development of solutions
that could recognize only exemplar objects [13] (i.e., object recognition), which
require little or no abstraction. Over the years, the gap between the low-level and
the high-level abstractions has been narrowed by introducing representations
that are invariant to a number of geometrical properties such as view-point,
translation, rotation, and scaling. Such representations make use of typically
descriptors of local image patches such as SIFT [14] and HOG [15] features.

Belongie et al [16] proposed representing objects using ’shape contexts’, which
uses relative shape information within a local neighborhood. The shape contexts
were later extended to 3D in [17]. In this paper, we use shape relations of 3D
features presented in [6], which are similar to shape context but are defined in
a global context. Additionally, we go beyond the work in [6] by addressing the
scale-invariance to obtain a more abstract representation that is important for
object categorization.

Recently, hierarchical approaches for object representation have shown high
performance on large dataset. Notably, Bo et al [8] introduced a multi-layer
network that builds feature hierarchies layer by layer with an increasing receptive
field size to capture abstract representations. They shows that their method
achieves state-of-the-art performance in a large-scale RGB-D dataset of objects
[18]. It is worth noting that these results are based on very large training data
with significant computational cost.

Existing object categorization systems typically apply supervised learning
to recognize object classes that correspond to labeled categories and associate
only one category per object [1,8]. In our approach, categories are learned in an
unsupervised way. Using hierarchical agglomerative clustering introduced by [7]
allows for associating more than one category per object. To do this, we use
hierarchical agglomerative clustering introduced by [7]. Building such a hierarchy
can be seen as a way to obtain higher levels of abstraction (from the visual
features) where more generic categories are formed at the top of the hierarchy.

3 System Description

The components of the object categorization system introduced in this paper are
shown Fig. 2. The system operates in a setup in which three views are captured
by three Kinect sensors, which are mounted in a close to equilateral triangular
configuration. The process starts with scene preprocessing for table removal and



Fig. 2. System Overview: block diagram of the different components.

object segmentation in the 3D point cloud data. In following, we describe in
detail the other components.

3.1 Object Representation Using Histogram of Relational Features
For the approach we introduce in this paper, object shapes are described as
distributions of relations between pairs of 3D features. The relations we use are
intrinsically pose-invariant.

From RGB-D data (Kinect sensor), we extract our 3D features—3D texlets
[5]. The 3D texlet has both position and orientation, and provides absolute
informations (relative to an external reference frame) of objects in the 3D space.
In our system, we combine 3D texlets from three view resulting in a rather
complete object information (see Fig. 3a). To describe an object, we compute a
set of pair-wise relations from all pairs of texlets belonging to the object.

Shape relations are similar to the 3D shape context introduced as local de-
scriptors by [17], however, they are used here as global descriptors of objects.
Having combined multiple 3D views of objects allows such global descriptors to
become robust and rich representations for fast learning.

In [6], we defined in detail three shape relations used for object instance
recognition, namely, Angle Relation Ra(ΠT

i , Π
T
j ), Distance (Euclidean) Rela-

tion Rd(ΠT
i , Π

T
j ), and Normal Distance Relation Rnd(ΠT

i , Π
T
j )—they are also

depicted in Fig. 3b. Note that the relations transform an absolute pose-dependent
representation into a relative pose-independent one. For instance, the distance
relation Rd transforms texlets’ positions into inter-texlet distances.

The two distance relations are scale-variant, which is suitable for object in-
stance recognition where object size matters and shall be encoded. However, for
object categorization, because what defines a category is usually independent of
scale, scale-invariance is crucial. Therefore, we introduce a new scale-invariant
distance relation referred to as Scaled Distance Relation, Rsd(ΠT

i , Π
T
j ). The

scaled distance is computed by dividing the Distance Relation by the maximum
distance within an object. For robustness against outliers, the maximum distance
is calculated as the median value of the highest 10% distance relation values.
Fig. 3c shows an example of two objects with different sizes (belong to the same
category), comparing using distance and scaled distance when representing ob-
jects. One aspect we investigate in the experiment section is the performance of
the system on each category when combinations of different relations are used.

The final object representation is obtained by binning the selected relations
in multi-dimensional histograms, which model the distributions of the relations
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Fig. 3. Texlet’s shape relations. (a) extracted 3D texlets of an object. (b) definition of
three shape relations. (c) 2D histograms of two objects belonging to the same catego-
rize. In the right column the distance is scaled

in fixed-sized feature vectors fed to the learning algorithm. Examples of 2D
histograms are shown in Fig. 3c. Different values of binning size are also inves-
tigated in the experiments. Another process that is optionally performed on our
histograms is smoothing using ND Gaussian filters to reduce the noise.

3.2 Finding Categories Using Hierarchical Clustering

Hierarchical Clustering. The quality and the invariance properties of the ob-
ject representation presented in the previous section make it attractive for object
categorization. We propose using unsupervised category learning through clus-
tering using agglomerative hierarchical clustering [7] (R implementation [19]).
By doing so, we build a hierarchy of clusters from unlabeled data where each
cluster (branching point in the hierarchy) is considered as a potential category
that can be linked (by an autonomous process) to an actual category. Note that
we use the Euclidean distance as a dissimilarity measure (between all pairs of



data samples or object instances in our case) whereas as a linkage metric, we use
Ward’s criterion, which aims at minimizing the total within-cluster variance [7].

Finding Categories From Human-Labeled Categories. Particularly for
this paper, to validate our approach, we use human-defined labels from the train-
ing samples (Fig. 1b shows some examples) and then we find the corresponding
categories in the hierarchy. Those definitions of categories are rather subjective
and might not correspond to real ones. Therefore, we also compare our approach
with other approaches—one of which even extracts different features from the
raw RGB-D data.

To find a category in the hierarchy that correspond to a labeled one, we search
for the cluster that contains the most similar set of object instances to the set of
objects labeled as such. To compute the similarity, we use Jaccard’s index [20],
which measures the similarity between finite sample sets and is defined as the
size of the intersection divided by the size of the union. The Jaccard’s index
rewards the existence of the object in the prospective cluster and also punishes
for the absence thereof. This prohibits assigning categories to very specific (at
the bottom of the hierarchy) or very generic clusters (at the top of the hierarchy).

Note that, although building the structure is done in an unsupervised way,
finding the learned categories corresponding best to the labeled categories is
performed in a supervised fashion (based on labeled data).

Predicting Categories for Novel Objects. To allow the system to categorize
objects, the proposed method should provide a prediction mechanism. Tradition-
ally for supervised learning, the learned model is used to make predictions for
the novel object. Such a model usually forms a map of the feature space allowing
for making predictions based on the features of the novel object. In our method,
the principle concept we propose for prediction is to identify where the novel
object falls in the learned (previously-built) hierarchy. This requires involving
the training samples because the hierarchy is built directly from the training
data. This seems computationally inefficient especially for large set of training
samples. However, we show in this paper that our method requires few training
samples.

To implement this, in the prediction phase, we first add the novel object
to the objects previously used for training. Once the hierarchy is built again,
we identify the closest sibling of the novel object. The novel object will then
inherit all the branching points—including the ones associated with the labeled
categories—from the sibling object. Finally, the predicted categories for the novel
object will be all the inherited categories.

4 Dataset and Experiments

Dataset. To benchmark our approach, we use a dataset of 100 objects with 30
different samples (random poses) for each object1. The dataset was originally

1 http://caro.sdu.dk/index.php/sdu-dataset (we will make it accessible by the
final submission of this manuscript)



created to test the performance of the object instance recognition present in [6].
The selection of objects covers a wide range including industrial and household
objects, some of them taken from the KIT dataset [21].

To validate our approach, we hand-labeled the objects in the dataset with
purely visual as well action-related categories (see Fig. 1b). Note that a sin-
gle object can have multiple (nested) categories. This allows us to study the
performances of the different approaches on such cases.

Comparison Methods. The approach we introduce in this paper is compared
with two different methods that use classical supervised learning. We apply
those methods in N-classifier mode where N refers to the number of categories.
This allows the methods to provide multiple categories per object and hence
make them comparable with our approach. The first method we compare with
is a Random Forest classifier, which uses the same features as the introduced
approach (see Sect. 3).

The second method is called Hierarchical Matching Pursuit (HMP) [8], which
is a state-of-the-art method. HMP is a multi-layer sparse coding network that
builds feature hierarchies layer by layer with an increasing receptive field size to
capture abstract representations from raw RGB-D data. Note that HMP was not
designed to combine features from different views in the 3D space. Therefore, to
make it comparable to our multi-view system, we provide all the three views in
the training phase. Additionally, we compare all methods when only one view is
used.

The comparison also includes a ’dummy’ classifier that generates uniformly-
distributed random category predictions. Comparing the different methods with
this classifier may indicate whether a particular method has failed to achieve
reasonably good performance on the category in question.

Histogram Variations. In the experiments below, we vary the parametrization
of our object representation. The objective is to find out the set of parameters
that yields the best performance on each category. Note that those variations are
applied to the methods in which our object representation is used (namely, the
proposed approach and the Random Forest approach). The object representation
was discussed in detail in Sect. 3. The exact list of parameters we vary are the
following:

– Set of relations: We vary what relations to use for representing objects from
the ones defined in Sect. 3: Angle Relation, Distance Relation, Normal Dis-
tance Relation, and Scaled Distance Relation.

– Relational dimensionality: We vary how we combine relations in ND his-
tograms. The combinations we apply are: 1D histograms of the individual
relations and 2D histograms of Angle Relation with one of distance relations.

– Histogram binning: Here, we vary the ND histogram bin size among the
following values: 10, 20, 50 and 100. For simplicity, the bin size is fixed
across dimensions in the 2D case.

– Filtering: We analyze the impact of applying filtering with Gaussian kernel.

In addition to the above-mentioned parameters, we also experiment with the
impact of performing vector normalization on the final object representation.



Experimental Procedure. In the following experiments, we study the perfor-
mance of each method for categorizing novel objects. Therefore, in each experi-
ment, the object dataset is divided into training and test subsets where sampling
is performed in a way that prohibits the presence of samples from the same ob-
ject in both subsets. Allowing otherwise, results in performing recognition of
object instances rather than object categories in which in our tests we obtained
significantly higher performance. The size of the test subset is set to 100 sam-
ples per category whereas the size of the training subset is allowed to vary—all
samples are randomly chosen. Each experiment is executed 20 times from which
the average F1 score and the standard deviation are computed. Note that the
same training and test subsets are passed to each method.

In the result shown in figure 4b, the size of the training set varies among
certain values: 1, 3, 5, 10, 15, 20, 30, 50, 70 and 100 per category. By doing
this, we are able to study the performance of each method when only a small
number of training samples are available and how that changes when the number
increases.

Results. Fig. 4 shows the performance of object categorization on 7 categories.
Each sub-figure shows the average F1 score and the standard deviation for a
varying number of training samples. The average performance on all categories
is also shown in a separate sub-figure. The results show that the method intro-
duced in this paper generally achieves the highest performance in identifying the
categories particularly when a few training samples are used. This means that
our method is able to learn faster and also generalize better when the training
samples are limited.

Conclusion. Both the proposed method and the Random Forest approach use
the same extracted visual representations of objects. This indicates that finding
categories in clusters formed hierarchically in unsupervised way has a better
generalization than the supervised learning of categories. Additionally, because
both approaches outperform the HMP method, which extracts different visual
representations, the results suggest that our visual representation provides strong
features for describing object categories. This is particularly clear in the three-
view case where our representation allows for combing the three views in 3D
resulting in a rather complete object description.

For some categories (namely, ’container’ and ’has rim’), our method achieves
relatively good performance in identifying the categories whereas the other meth-
ods fail (perform comparatively the same as the dummy classifier). Those cat-
egories are nested categories (i.e., in this case, any container also has a rim).
This indicates that our approach is able to identify the relation between the two
categories. The supervised approaches, on the other hand, try to learn discrim-
inatively the two categories, which for most samples have very similar represen-
tations. This may explain their failure in identifying the nested categories.
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Fig. 4. The performance of object categorization on 7 categories. In (a) three camera
views are used whereas in (b) one camera view is used. Using a 2D histogram of angle
and scaled distance (with 10 bins at each dimension) yields the best performance in all
categories except for ’bowl like’ (in this case, combining two 1D histograms of angle
and scaled distance with 12 bins). Also, applying filtering and vector normalization
helps achieving the best performance in all cases.
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Analysis of Action-Grounded 3-D Features for Object Affordance
Classification∗

Barry Ridge†, Emre Ugur‡, and Aleš Ude†

Abstract— Recent work in robotics, particularly in the do-
mains of object manipulation and affordance learning, has
seen the development of action-grounded features, that is, object
features that are defined dynamically with respect to manipu-
lation actions. Rather than using pose-invariant visual features,
as is often the case with object recognition, such features are
grounded with respect to the manipulation of the object, for
instance, by using shape features that describe the surface of an
object relative to the push contact point and direction. In this
paper we provide an experimental comparison between action-
grounded features and non-grounded features in an object af-
fordance classification setting. Using an experimental platform
that gathers 3-D data from the Kinect RGB-D sensor, as well
as push action trajectories from an electromagnetic tracking
system, we provide experimental results that demonstrate the
effectiveness of this action-grounded approach across a range
of state-of-the-art classifiers.

I. INTRODUCTION
In the field of autonomous robotics, vision and control

are often treated as distinct domains in which useful data
and action commands are derived, processed, or manipulated
separately to achieve a broader goal. In the context of robotic
affordance learning [1], [2], this has traditionally been the
standard approach, and simplifying assumptions are often
made in order to make targeted problems more soluble. For
example, in the case of object push affordance learning [3]–
[7], if the desired result is to learn how the positions and
orientations of objects change when pushed, the learning
task can be simplified by selecting prior object models,
using standard computer vision techniques to localise the
object models within a scene, and inferring data such as
end effector contact points on the objects using the models.
However, when fewer assumptions are made about the shapes
of objects, the types of push actions that might be performed,
and the resulting affordances, such techniques may not be
as feasible. On the other hand, the formation of dynamic
object models, through interactive experience, that are se-
mantically associated with actions at a more intrinsic level,
is a promising research area in that it offers the potential
to enhance developmental robotic learning and, ultimately,
robotic autonomy.

In this paper, we explore the use of action-grounded 3-D
object shape features in an object push affordance classifi-
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cation setting. Using an RGB-D sensor to gather 3-D point
cloud data of objects, and using an electromagnetic tracking
system to gather push trajectory data, objects on a table
surface were pushed by a human experimenter (cf. Fig. 2)
whose hand motion trajectories were tracked while 3-D point
clouds of the objects were recorded. The objects were pushed
from various different positions on their surfaces and from
various different directions, exhibiting a number of different
affordances such as forward translations, forward topples, left
rotations and right rotations, depending broadly on the shapes
of the objects, their orientations, and how they were pushed.
Our chief point of investigation was to determine whether
the proposed action-grounded 3-D shape feature approach to
dynamic object affordance modeling in this setting offers any
improvement over more standard methods.

A. Related Work

E. Gibson discusses that learning affordances refers to
“narrowing down from a vast manifold of (perceptual) in-
formation to the minimal, optimal information that specifies
the affordance of an event, object, or layout”[?]. Selection
and use of the action-relevant features have already been
studied and shown to be effective in learning and represent-
ing affordances. For example Montesano et al. [4] learned
affordances only using the object properties that are found to
be relevant to the corresponding actions, for more effective
predictions and planning. Hart and Grupen also discussed
the necessity of selecting the relevant features in order to
capture the salient information while learning affordances
[8]. Lately, it was also shown that use of relevant features in
affordance learning can lead to the discovery of hierarchical
structures in predicting interdependent affordances of differ-
ent complexities[9]. While all these studies discuss how to
select the relevant features from a general purpose feature
set, we aim to find a transformed feature set based on the
actions in consideration.

Implicit encoding of object manipulation information in
object shape feature descriptors has been applied in the
grasping field, often via the use of haptic or tactile sensors.
Recently, Björkman et al. [10] employed tactile measure-
ments from the haptic finger sensors on a robotic hand
to enhance prior visual object models via implicit object
surface modeling. Meier et al. developed a probabilistic
spatial approach for building compact 3-D representations
of unknown objects probed by tactile sensors using Kalman
filters to build a probabilistic model of the contact point
cloud.

Object shape features from 3-D vision have been used in



prior work on push affordance learning [6], [7], [11], [12],
but grounding such features relative to pushing actions has
not been studied as extensively. Recent work by Hermans et
al. [13], [14] used shape features encoded in a coordinate
frame defined by object centres and push locations based
on 2-D projections of object point clouds. Krainin et al.
developed an approach to building 3-D models of unknown
objects for grasping based on a depth camera observing a
robotic hand while moving an object and modeling the object
surface dynamically using sets of small surface patches.

In our previous work [15], we developed a similar idea,
employing full 3-D shape features grounded with respect
3-D action trajectories to perform bootstrap discovery and
prediction of object affordance classes using a multi-view
self-supervised learning algorithm. In this work, by contrast,
we focus on examining action-grounded 3-D visual features
in more detail and investigating whether or not they provide
an improvement over features that are not implicitly defined
with respect to the manipulation.

The remainder of the paper is structured as follows. In the
following section, we give a brief overview of our experimen-
tal platform including the object point cloud segmentation
process. In Section III we describe how the action-grounded
features and non-grounded features are derived, including
the object segmentation process, the transformation of both
objects and action trajectories to the action coordinate frame,
and the description of the features themselves. In Section
IV we describe our experiments with various state-of-the-art
classifiers and results. Finally, in Section V, we conclude and
discuss potential future work.

II. EXPERIMENTAL SETUP

Fig. 2. Our setup for human object push affordance data gathering.

In our experimental setup for human object push data
gathering, shown in Figure 2, we employed a Microsoft
Kinect

TM
RGB-D sensor for gathering 3-D point cloud data

of scenes and objects, and a Polhemus Patriot
TM

electromag-
netic tracking system for gathering trajectory data of human
hand motions. A wooden table with a wooden frame was
used as the work surface in order to avoid electromagnetic
interference from metallic objects in the environment. A
tracking sensor was placed at the end of the index finger of a
human experimenter, while the tracking source was located
at a corner of the table with the Kinect facing the table
at a 45◦ angle as shown in Figure 2. Objects were placed

at arbitrary locations on the table surface where they were
pushed from various directions and at various contact points
by the experimenter. 3-D point clouds of the scene were
recorded both before and after each push interaction while
hand trajectories were tracked during the interaction. Both
the point clouds and the trajectories were processed offline
where the objects were segmented from the table surface,
object point clouds and push trajectories were transformed
into the push action coordinate frame, and action-grounded
shape features were extracted.

A. Object segmentation

We used tools from the Point Cloud Library (PCL)1 to
perform dominant plane segmentation on scene point clouds
in order to acquire segmented point clouds of the objects
lying on the table surface. This involved using a pass-through
filter to subtract points in the scene cloud outside certain
range limits, using RANSAC [16] to fit a plane model to the
scene cloud, subtracting those scene points that were plane
inliers, and clustering the remaining points to find the objects
using Euclidean clustering [17].

III. ACTION-GROUNDED VS. NON-GROUNDED
3-D SHAPE FEATURES

We define the action frame to be the coordinate system
with its origin at the contact point on the object, its positive
y-axis pointing in the direction of the pushing motion parallel
to the table surface, its positive z-axis pointing upward from
the table surface, and its positive x-axis pointing to the right
of the object. In order to transform both the object point
cloud and the push trajectory into the action frame, we per-
form the following procedure. Firstly, we transform the push
trajectory from the Patriot tracker coordinate system to the
Kinect coordinate system by using least-squares adjustment
on a series of control points and calculating a rigid body
transformation of the form x′ = c + Rx, where x′ is the
transformed vector, x is the initial vector, c is the translation
vector, and R is a rotation matrix. The control points are
gathered prior to performing pushing experiments by placing
the tracking sensor at various positions in the workspace,
recording the sensor position, recording the Kinect point
cloud of the scene, then locating the sensor in the point cloud.
Since the pushing motions performed in our experiments
always follow an approximately linear trajectory, we proceed
by using orthogonal distance regression via singular value
decomposition to fit a 3-D line to the push trajectory. Finally,
we find the point of intersection between this fitted line and
the pre-push object point cloud, infer this to be the contact
point, and finally transform the pre-push object point cloud as
well as the push trajectory to the action frame as defined by
the contact point and the fitted line. This process is visualized
in Figure 1.

A. Action-grounded 3-D shape features

With the pre-push object point cloud now grounded in
the action coordinate frame, we turn to generating a feature

1http://pointclouds.org



(a) Object point clouds be-
fore/after interaction + hand
push trajectory

(b) Point clouds + trajectory
transformed to push action
coordinate frame.

(c) Pre-push point cloud
action coordinate frame
grounding.

(d) Fitting planes to pre-push
object cloud parts, grounded
with respect to action.

Fig. 1. Action-grounded shape feature extraction pipeline.

Fig. 3. Partitioning a sample object point cloud into sub-parts. Top row:
original pre-push object point cloud. Middle row: partitioning planes divide
the point cloud evenly in each dimension to create sub-parts. Bottom row:
planes are fitted to each sub-part for feature extraction.

descriptor that describes the shapes of the object point clouds
with respect to the pushing action and that is rich enough
to capture the resulting affordance effects. The main idea
behind our approach is to divide the object point clouds
into cells of sub-parts and use the properties of the sub-
parts of the point clouds as a basis for the feature descriptor.
More concretely, we divide each object point cloud evenly
with respect to its minimum and maximum points along each
coordinate axis such that there are seven cells that overlap
for redundancy: one for the overall point cloud, two for the
x-axis, two for the y-axis, and two for the z-axis. We then
use two types of feature descriptors in each cell. To gauge
the position of the sub-part in each cell relative to the action
frame, we find the centroid of the points in the cell, which
gives us three features. To gauge the shape of the sub-part
in each cell relative to the action frame, we fit a planar
surface to the points within the cell and use the two largest
coordinates of the plane normal as features. Examples of
these features being extracted from different point clouds
are shown in Figure 7.

Using these five types of features, three for relative part
position and two for planar surface fit orientation, we extract
the five features for each part. This results in the following
list of 35 features that are extracted:

Oa
1...5: Global point cloud centroid/plane features.

Oa
6...10: x-split, left side centroid/plane features.

Oa
11...15: x-split, right side centroid/plane features.

Oa
16...20: y-split, front side centroid/plane features.

Oa
21...25: y-split, back side centroid/plane features.

Oa
26...30: z-split, top side centroid/plane features.

Oa
31...35: z-split, bottom side centroid/plane features.

B. Non-grounded 3-D shape features

−0.15
−0.1

−0.05
0

0.05
0.1

0.15

−0.1
−0.05

0
0.05

0.1

−0.05

0

0.05

Fig. 4. Sample object point cloud with bounding box and centroid for
definition of non-action-grounded coordinate frame.

For the non-grounded feature set, we used the same
methodolgy in terms of the object parts division as described
in the previous sub-section, and we extracted the same
features as before, but crucially, the coordinate frame was
not defined with respect to the push trajectory. Instead, we fit
a bounding box to the object point cloud, found the centroid
of the bounding box, and used that as the origin for our non-
grounded coordinate system. This is illustrated for a sample
object point cloud in Figure 4. This seemed like the most
reasonable methodology for performing a direct comparison
between the action-grounded features and similar non-action-
grounded features. Thus, we have:
Ob

1...35: non-grounded analogues of features Oa
1...35.

C. Action features from push trajectories

In order to make it feasible for the classifiers to be
able to predict the affordances of the objects using non-
action-grounded visual features, it is necessary to include
information about the action in the feature descriptor in some
form. We approached this by augmenting the non-grounded
3-D features with features derived from the object contact
point and the push action trajectory. These were as follows:
Ob

36...38: x, y, z-coordinates of object contact point.
Ob

39,40: x, y-parameters of push trajectory line fit.



The z-parameter of the line that was fit to the push
trajectory was deemed redundant since all pushes took place
in the same plane, i.e. along the table surface. Combining
these 5 features with the 35 features of the previous sub-
section yielded a 40-dimensional feature vector for the non-
grounded feature set.

Fig. 5. Test objects used in our experiments.

IV. EXPERIMENTS

Fig. 6. The 5 different push types (left) and 4 affordance classes (right).

The experimental environment was set up as shown in
Figure 2. We selected 5 household objects (cf. Fig. 5) for the
experiments: 4 flat-surfaced objects; a book, a marshmallow
box, a cookie packet, and a biscuit box, and 1 curved-
surfaced object; a yoghurt bottle. A dataset was collected
as follows, where object push tests were performed on
each of the 5 objects and the resulting data was processed,
leaving 120 data samples. Objects were placed at random
start locations and in various poses within the workspace
and within view of the Kinect sensor, and the human exper-
imenter would perform straight-line pushes on the objects,
attempting to keep the pushes within reasonable limits of 5
different push categories: pushing through the top, bottom,
left, right and centre of the objects respectively, from the
direction of the field of view of the Kinect. Table I contains
a matrix detailing the numbers of samples collected for each
of the objects in each different possible pose. Certain objects
prohibited certain poses, e.g. neither the cookie pack nor the
book could be placed in sideways or upright poses.

The data collection process resulted, by inspection, in
4 different affordance categories being produced, and the
samples were hand-labelled with four ground truth labels to

TABLE I
OBJECT/POSE MATRIX

Flat Sideways Upright Total
Cookie Pack 18 0 0 18
Marshmallow Box 9 15 9 33
Biscuit Box 9 15 9 33
Book 18 0 0 18
Yoghurt Bottle 9 0 9 18
Total 63 30 27 120

reflect this: left rotation, right rotation, forward translation
and forward topple. These various push types and resulting
affordances categories illustrated conceptually in Figure 6
are sample object interactions are shown in Fig. 7.

A. Evaluation Procedure

In order to compare the action-grounded and non-action-
grounded feature sets we used 10-fold cross-validation with
multiple different state-of-the-art classifiers. Two learning
vector quantization-based algorithms [18], generalized rel-
evance learning vector quantization (GRLVQ) [19] and
supervised relevance neural gas (SRNG) [20] were used,
alongside multinomial logistic regression (MLR), support
vector machines (SVM) and random forests (RF) [21]. The
cross-validation was performed in 10 separate trials and
the results were averaged in order to account for random
prototype initialization and other variations between runs in
the various algorithms.

In the cases of both GRLVQ and SRNG, following the
notation used in [20], the main learning rate parameter ε+

was set to 0.2, while ε− was set to 0.04, and ε for the
λ feature relevance update was set to 0.02.2 A set of 60
prototype vectors were used in each case, divided into 15
prototypes per class. Training ran for 5000 epochs over the
training data in each case to ensure convergence. The logistic
regression model used a multinomial logit link function and
a confidence interval of 95%. In the case of the SVM,
parameters were optimized using cross validation over the
training data prior to training.3 The random forests model
used 500 trees.4

B. Results

The discussion of the results is divided into two sub-
sections. In the first of these, we analyse the performance of
each of the classifiers on both the non-grounded and action-
grounded datasets in an effort to evaluate whether action-
grounding can result in classification performance gains. In
the second, we look at how action-grounding affects the
relevances of individual features by exploiting the feature
relevance determination mechanism provided by the SRNG
algorithm.

2http://www.mathworks.com/matlabcentral/fileexchange/17415-neural-
network-classifiers

3SVM implementation: http://www.csie.ntu.edu.tw/ cjlin/libsvm/
4RF implementation: https://code.google.com/p/randomforest-matlab/



Fig. 7. Action-grounded shape feature extraction. Top row: pre-push and post-push 3-D point clouds and action trajectories for the five test objects being
pushed in various different ways. Bottom row: action-grounded shape feature extraction (cf. Section III-A) for the pre-push point clouds. Plane fits are
shown in red for the x-axis divisions of the point clouds, in green for the y-axis divisions, and in blue for the z-axis divisions. Four different affordances
are visible in the columns from left to right: forward translation, forward topple, right rotation, and left rotation.

TABLE II
MEAN 10-FOLD CROSS-VALIDATION RESULTS: TRAINING SETS

Non-Grounded Action-Grounded
GRLVQ 94.9± 3% 97.3± 2%
SRNG 95.5± 3% 98.0± 1%
SVM 97.3± 2% 98.6± 1%
MLR 100.0± 0% 100.0± 0%
RF 100.0± 0% 100.0± 0%

TABLE III
MEAN 10-FOLD CROSS-VALIDATION RESULTS: TEST SETS

Non-Grounded Action-Grounded
GRLVQ 87.3±10% 92.6±8%
SRNG 88.3±9% 93.0±7%
SVM 82.5±10% 86.2±9%
MLR 74.6±12% 78.1±13%
RF 86.0±10% 95.8±6%

1) Classifier Performance: The main classifier perfor-
mance results are shown in Tables II and III, where aver-
age cross-validation classification matching accuracies are
shown for the 9-fold training sets and single-fold test sets
respectively. GRLVQ and SRNG, the two learning vector
quantization methods, perform robustly in all cases and
benefit from action-grounding in both training and test cases.
Interestingly, while the SVM also benefits from action-
grounding, it does not perform quite as well as the LVQ-
based methods, which are likely deriving a comparative
benefit from their in-built feature relevance determination
mechanisms which the SVM, in the implementation used
here, does not share.

The MLR model, given its high performance on training
data and relatively poor performance on test data in both
the non-grounded and action-grounded cases clearly suffers
here from overfitting. It could be the case that the high-
dimensionality of the datasets causes it difficulty and that it

would benefit from dimensionality reduction or regulariza-
tion, though neither have yet been tested.

The random forests model, on the other hand, performs
much more stably between training and testing sets and
appears to benefit even more considerably than the other
classifiers from the action-grounding of features, offering a
∼ 10% performance increase in said case.

The action-grounded feature set, therefore, appears to
induce superior performance over the non-grounded feature
set in all classifier comparisons across both training and test
sets in this experiment, which is encouraging, though as is
discussed later in Section V, more extensive testing would
be necessary before more general conclusions can be drawn.
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Fig. 8. SRNG feature relevance results for the non-grounded features
dataset. Results are shown with a log scale.

2) Feature Relevance: Figures 8 and 9 show average
feature relevance bar charts as derived from the SRNG
classifier over the 10 10-fold cross-validation trials for the
non-grounded and action-grounded feature sets respectively.
Perhaps the most prominent result here is the more dis-
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Fig. 9. SRNG feature relevance results for the action-grounded features
dataset. Results are shown with a log scale.

tributed spread of different features that show significance
in the case of the action-grounded dataset. Of the non-
grounded features shown in Fig. 8, only two of the push
action features, those being the y-coordinate of the object
contact point and the x-parameter of the push line fit, as
well as the z-coordinate of the z-axis bottom side part from
the 3-D features, show significant relelvance. This matches
with intuition as to what might make good predictors given
the affordance classes involved in this experiment, since
these features, crucially, encode both push height and planar
direction, necessary for distinguishing topples vs. translations
and left vs. right rotations respectively.

It is crucial to note here that SRNG outperforms all the
other classifiers in test cases (cf. Table III) because it is
able to single out these important features owing to its in-
built feature relevance determination mechanism. Action-
grounding spreads this information out via intrinsic encoding
across the feature set, thus allowing the other classifiers
lacking such a feature relevance determining component to
also benefit from it.

V. CONCLUSIONS AND FUTURE WORK

To conclude, in this paper, we have presented an ex-
perimental comparison between action-grounded and non-
action-grounded features derived from 3-D point clouds of
objects. The experimental results demonstrated that action-
grounded features can be effective for scenarios like object
affordance learning by showing increased performance over
similar non-grounded features across a range of state-of-the-
art classifiers.

With regard to future work, we would like to explore the
possibilities of using different point cloud divisions, parts-
based structures and potentially part-hierarchies, beyond
what has been presented here with bipartite axis splits. It
would also be interesting to investigate the use of different
shape features within the parts and sub-parts. From the
affordance learning perspective, we also aim to implement

regression capabilities that would allow for continuous pre-
diction of object and object part positions.

Although the results presented here are encouraging, it
is also difficult to draw broader conclusions about the
generalisation capabilities of action-grounded features from
this one study alone. Therefore, we hope to expand on this
study in a longer-form journal publication with more objects,
affordances, and action types, as well as implementation on
a humanoid robot platform.
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Abstract

While humans can easily separate unknown objects
into meaningful parts, recent segmentation methods can
only achieve similar partitionings by training on human-
annotated ground-truth data. Here we introduce a bottom-
up method for segmenting 3D point clouds into functional
parts which does not require supervision and achieves
equally good results. Our method uses local concavities
as an indicator for inter-part boundaries. We show that this
criterion is efficient to compute and generalizes well across
different object classes. The algorithm employs a novel lo-
cally constrained geometrical boundary model which pro-
poses greedy cuts through a local concavity graph. Only
planar cuts are considered and evaluated using a cost func-
tion, which rewards cuts orthogonal to concave edges. Ad-
ditionally, a local clustering constraint is applied to en-
sure the partitioning only affects relevant locally concave
regions. We evaluate our algorithm on recordings from
an RGB-D camera as well as the Princeton Segmentation
Benchmark, using a fixed set of parameters across all ob-
ject classes. This stands in stark contrast to most reported
results which require either knowing the number of parts
or annotated ground-truth for learning. Our approach out-
performs all existing bottom-up methods (reducing the gap
to human performance by up to 50 %) and achieves scores
similar to top-down data-driven approaches.

1. Introduction and State-of-the-Art
Segmentation of 3D objects into functional parts - form-

ing a visual hierarchy - is a fundamental task in computer vi-
sion. Visual hierarchies are essential for many higher level
tasks such as activity recognition [6, 12], semantic segmen-
tation [1, 17], object detection [7], and human pose recog-
nition [3, 16]. Nevertheless, part segmentation, particularly
of 3D point clouds, remains an open area of research - as
demonstrated by the inability of state-of-the-art methods to
match human performance on existing benchmarks without
excessive fitting to particular ground-truth training exam-
ples [5, 9, 15, 18].

In this work, we aim to partition objects from the bottom-
up using a purely geometric approach that generalizes to
most object types. This is in stark contrast to recent
learning-based methods, which achieve good performance
by training separate classifiers for each object class [9, 15].
While such methods do perform well on benchmarks, they
are severely restricted in that one must know the object class
a-priori, and they do not generalize to new objects at all.
With unsupervised methods, such as the one presented in
this work, there is no need to create new training data and
annotated ground truth, allowing them to be employed as an
off-the-shelf first step in object partitioning.

While many bottom-up approaches [8, 10, 13] have been
tested on the Princeton Segmentation Benchmark [5], none
of them are able to achieve results comparable to human
segmentations. The recent learning-free approach of Zheng
et al. [18] manages results closer to the human baseline,
but only by making strong assumptions about the underly-
ing skeleton of objects. This means that the method does
not work for objects where skeletonization is uninforma-
tive, and thus does not generalize well to all object classes
in the benchmark.

Psycho-physical studies [2, 4] suggest that the decompo-
sition of objects into parts is closely intertwined with local
3D concave/convex relationships. It is readily observable
that objects and object-parts tend to be isolated by concave
boundaries. Stein et al. [14] used this idea in a bottom-
up segmentation algorithm LCCP, which showed state-of-
the-art performance in several popular object segmentation
benchmarks. In that work, they make a strong assumption
about local concavities, namely, that they completely iso-
late objects. While effective for object segmentation, this is
problematic for more subtle part-segmentation where inter-
part connections may not be strongly (and/or completely)
concave. For instance, in Fig.1, the shoulder only has con-
cave connections on the underside, so a strict partitioning
criterion which only cuts concave edges will not separate
the arm from the torso.

While it is clear that a strict partitioning will often fail
to separate parts, concave connections are nevertheless in-
dicative of inter-part boundaries. In this work we use a re-

1
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Figure 1. In complex objects parts are often only partially sepa-
rated by concavities. A) Input object together with extracted Su-
pervoxels. B) Supervoxel adjacency graph with convex/concave
edge classification. C) Magnification of the shoulder showing
how parts are not always strictly isolated by concave edges. While
the underside of the shoulder is highly concave (suggesting a part
boundary), the top of the shoulder is convex, so the arm cannot be
separated from the torso by only cutting concave edges.

laxed cutting criterion which permits cuts of convex edges
when nearby concave edges indicate a part boundary. To do
this, we use local concavity information to find euclidean
planar cuts which match a semi-global hierarchical con-
cave boundary model. To find cuts which fit this model
we propose a directionally weighted, locally constrained
sample consensus scheme which, while being robust to
noise, uses weights and penalties in a local model evalua-
tion phase, leading to remarkably accurate partitioning of
objects. We will show the first reported quantitative part-
segmentation results on point-cloud data, results which out-
perform current state-of-the-art mesh-segmentation meth-
ods on the Princeton Object Segmentation benchmark and
approach human ground truth segmentations.

This paper is organized as follow: First, in Section 2 we
propose a constrained planar cutting criterion, and describe
our algorithm for finding optimal cuts. In Section 3 we
evaluate our method, benchmark it against other approaches
and discuss the results. Finally, Section 4 will summarize
our findings. The method’s source code will be freely dis-
tributed as part of the Point Cloud Library (PCL)1.

2. Methods
Our goal is to partition point clouds into their constituent

objects and object parts without the need for top-down
semantic knowledge (e.g. training or classification). As
discussed earlier, local concavity is a powerful, arguably

1http://www.pointclouds.org

the most powerful, local feature indicative of part bound-
aries. In this Section we present our segmentation algo-
rithm, which identifies regions of local concavity for a semi-
global partitioning.

2.1. Local concavity evidence extraction

As a first step, we must find evidence of local concavities
which hint at the existence of parts. We begin by creating
a surface patch adjacency graph using Voxel Cloud Con-
nectivity Segmentation (VCCS) [11], which over-segments
a 3D point cloud into an adjacency graph of supervoxels
(a 3D analog of superpixels). VCCS uses a local region
growing variant of k-means clustering to generate individ-
ual supervoxels ~pi = (~xi, ~ni, Ni), with centroid ~xi, nor-
mal vector ~ni, and edges to adjacent supervoxels e ∈ Ni.
Seed points for the clustering are initialized using a regular
grid which samples the occupied space uniformly using an
adjacency-octree structure. Clusters are expanded from the
seed points, governed by a similarity measure calculated in
a feature space consisting of spatial extent, color, and nor-
mal difference. In this work we ignore color, using only
spatial distance (ws = 1) and normal difference (wn = 4)
for clustering.

Once we have the supervoxel adjacency graph, we use
the classification proposed for the LCCP-algorithm [14] to
label edges in the graph as either convex or concave. Con-
sidering two adjacent supervoxels with centroids at ~x1, ~x2
and normals ~n1, ~n2 we treat their connection as convex if

~n1 · d̂− ~n2 · d̂ ≥ 0, (1)

with
d̂ =

~x1 − ~x2
|| ~x1 − ~x2||2

. (2)

Likewise, a connection is concave if

~n1 · d̂− ~n2 · d̂ < 0. (3)

We use a concavity tolerance angle βthresh = 10°, to ignore
weak concavities and those coming from noise in the point-
clouds.

2.2. Semi-global partitioning

To make use of the concavity information we will
now introduce a recursive algorithm for partitioning parts
which can cut convex edges as well. Beginning with the
concave/convex-labeled supervoxel adjacency graph, we
search for euclidean splits which maximize a scoring func-
tion. In this work we use a planar model, but other bound-
ary models, such as constrained paraboloids are possible as
well. In each level we do one cut per segment from the for-
mer level (see Fig. 2). All segments are cut independently,
that is, other segments are ignored. Cuts do not necessarily
bi-section segments (as most graph cut methods), but as we

2
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Figure 2. Recursive cutting of an object. Top: In each level we
independently cut all segments from the former level. Red lines:
Cuts performed in the level. Bottom: By changing the minumum
cut score Smin we can select the desired level of granularity.

Figure 3. A chair from the Princeton Benchmark. A: Adjacency
graph. B: Euclidean edge cloud extracted from the adjacency
graph together with color-coded point weights ωi. C: The first eu-
clidean planar cut splits off all 4 legs, with concavities from each
leg refining the cut’s model.

cut in euclidean space, can split into multiple new segments
with a single cut. This also allows us to use evidence from
multiple scattered local concavities from different parts to
induce and refine a globally optimal combined cut as shown
in Fig. 3 C.

2.2.1 Euclidean edge cloud

An object shall be cut at edges connecting supervoxels.
Consequently, we start by converting the adjacency graph
into a Euclidean Edge Cloud (EEC) (see Fig. 3 B), where
each point represents an edge in the adjacency graph. The
point-coordinate is set to the average of the supervoxels it
connects (~x1, ~x2). Additionally, the points maintain the di-
rection of the edge, that is, the vector connecting the super-

voxels,
~d =

(~x2 − ~x1)
||~x2 − ~x1||2

(4)

together with the angle α between the normals of both su-
pervoxels (~n1, ~n2):

|α| = cos−1(~n2 · ~n1). (5)

We will use α < 0 to describe convex edges and α > 0 to
denote concavities using Eqs. 1 and 3. The EEC has the
advantage of efficiently storing the edge information and
bridging the gap between the abstract adjacency graph rep-
resentation and the euclidean boundary model.

2.2.2 Geometrically constrained partitioning

Next, we use the EEC to search for possible cuts using a
geometrically-constrained partitioning model. To find the
planes for cutting we introduce a locally constrained, direc-
tionally weighted sample consensus algorithm and apply it
on the edge cloud as follows.

While canonical RANSAC treats points equally, here we
extend it with Weighted RANSAC, allowing each point to
have a weight. Points with high positive weights encour-
age RANSAC to include them in the model, whereas points
with low or negative weights will penalize a model contain-
ing them. All points are used for model scoring, while only
points with weights ωi > 0 are used for model estimation.
We normalize the score by the number of inliers in the sup-
port region, leading to a scale-invariant scoring. With Pm

being the set of points which lie within the support region
(i.e. within a distance below a predefined threshold τ of the
modelm ) and |x| denoting the cardinality of set x, the score
can thus be calculated using the equation:

Sm =
1

|Pm|
∑
i∈Pm

ωi. (6)

Using high weights for concave points and low or neg-
ative weights for convex points consequently leads to the
models including as many concave and as few convex points
as possible. In this work we use a heaviside step functionH
to tranform angles into weights:

ω(α) = H(α− βthresh) (7)

Please note that this will assign all convex edges a weight
of zero. Still, this penalizes them in the model due to the
normalization Pm of Eq. 6. The score for a cutting plane
will therefore range between 0 (only convex points) and 1
(only concave points) in the support region.

Simply weighting the points by their concavity is not
sufficient; weighted RANSAC will favor the split along as
many concave boundaries as possible. Figure 4 A shows

3
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a minimalistic object with two principal concavities, which
the algorithm will connect into a single cutting plane, lead-
ing to an incorrect segmentation (Fig. 4 B). To deal with
such cases, we introduce Directional Weighted RANSAC as
follows. Let ~sm denote the vector perpendicular to the sur-
face of model m and ~di the ith edge direction calculated
from Eq. 4. To favor cutting edges with a plane that is
orthogonal to the edge, we add a term to the scoring of con-
cavities:

Sm =
1

|Pm|
∑
i∈Pm

ωiti (8)

ti =

{
|~di · ~sm| i is concave

1 i is convex.
(9)

The notation · refers to the dot-product and |x| to cardinality
or absolute value. The idea behind Eq. 9 is that convexities
should always penalize regardless of orientation, whereas
concavities hint at a direction for the cutting. The effect on
the partitioning is shown in Fig. 4 C. Due to perpendicular
vectors |~s1·~d1| and |~s1·~d2| the directional concavity weights
for the cut in B are almost decreased to zero.

2.2.3 Locally constrained cutting

The last step of the algorithm introduces locally constrained
cutting. While our algorithm can use concavities separat-
ing several parts as shown in Fig. 3 C, this sometimes
leads to cases where regions with strong concavities induce
a global cut which will split off a convex part of the object
(an example is shown in Fig. 5 B). To prevent this kind of
over-segmentation we constrain our cuts to regions around
local concavities as follows. Given the set of edge-points
Pm located within the support region of a model, we start
with a euclidean clustering of all edge-points using a cluster
threshold equal to the seed-size of the supervoxels. Using
Pn
m ⊂ Pm to denote the set of points in the nth cluster, we

modify Eq. 8 to operate on the local clusters instead of Pm:

Snm =
1

|Pn
m|

∑
i∈Pn

m

ωiti. (10)

As this operation is too expensive to be employed at each
model evaluation step of the RANSAC algorithm, we only
apply it to the highest scoring model. Only edges with a
cluster-score Snm ≥ Smin will be cut.

This whole cutting procedure is repeated recursively on
the newly generated segments and terminates if no cuts can
be found which exceed the minimum score Smin or if the
segment consists of less than Nmin supervoxels.

3. Evaluation
In this section we will describe the experimental evalua-

tion and analysis of our proposed method.

3.1. Data sets

We evaluate our algorithm quantitatively on the Prince-
ton Object Segmentation Benchmark [5], and qualitatively
on the benchmark as well as on Kinect for Windows V2
recordings. The benchmark consists of 380 objects in 19
categories together with multiple face-based ground-truth
segmentations (i.e. each face in the object has a ground-
truth label). In order to use a mesh annotated ground-truth
to benchmark, we first create point clouds using an equi-
density random point sampling on the faces of each object,
and then calculate normals using the first three vertices of
each face. To evaluate our segmentations, we determine the
dominant (i.e. mode) segment label in the point ensemble
for each face and map that label back to the face of the
polygonal model.

3.2. Quantitative results

We compare to the mesh-segmentation results reported
in [5, 9, 18] using the standard four measures: Cut Dis-
crepancy, Hamming Distance, Rand Index and Consistency
Error.

Cut Discrepancy, being a boundary-based method, sums
the distance from points along the cuts in the computed seg-
mentation to the closest cuts in the ground truth segmenta-
tion, and vice-versa.

Hamming Distance (H) measures the overall region-
based difference between two segmentations A and B by
finding the best corresponding segment in A for each seg-
ment in B and summing up the differences. Depending on
if B or A is the ground-truth segmentation this yields the
missing rate Hm or false alarm rate Hf , respectively. H is
defined as the average of the two rates.

Rand Index measures the likelihood that a pair of faces
have either the same label in two segmentations or differ-
ent labels in both segmentations. To be consistent with the
other dissimilarity-based metrics and other reported results
we will use 1− Rand Index.

The fourth metric, Consistency Error, tries to account for
different hierarchical granularities in the segmentation both
globally (Global Consistency Error GCE) as well as locally
(LCE). For further information on these metrics we refer the
reader to [5].

Unlike most methods benchmarked on the Princeton
Dataset our method does not need the number of expected
segments as an input, allowing us to run the complete
benchmark with a fixed set of parameters: Smin = 0.16,
Nmin = 500 (see Fig. 6). For the supervoxels we use
a seed resolution of Rseed = 0.03 and a voxel resolu-
tion Rvoxel = 0.0075. We denoted the degree of supervi-
sion required for the algorithms using color codes (green:
unsupervised orange: weakly supervised and red: super-
vised/learning). Unsupervised methods (such as ours) do
not take model specific parameters into account and use
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Figure 4. The highest scoring splits for undirectional and directional weights. A) Input object and adjacency graph. B) Using undirectional
weights the best cut matches all concavities. However, this cut gets a lower score with directional weights due to the factors |~s1 · ~d1| and
|~s1 · ~d2|. C) The partition when using directional weights.
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Figure 5. Comparison between locally constrained and global cuts. A) Input object and adjacency graph. B) Due to the strong local
concavities on the right the algorithm will cut trough a perfectly convex part of the object (left). C) Using locally constrained cuts will find
two clusters (along the dashed and solid red lines). Evaluating both clusters separately will only cut the right side. All cuts used directional
weights.

fixed parameters for the full benchmark. Weakly supervised
methods need to know the number of segments. Supervised
algorithms need objects from the ground-truth of each cate-
gory for training, using a different classifier for every class.
Despite the fact that we need to convert the mesh informa-
tion to point clouds and vice-versa, our method achieves
better than state-of-the-art results on all measures. For Con-
sistency Error and Rand Index we are able to reduce the gap
for unsupervised and weakly-supervised methods to human
performance by 50 %. Comparing the speed of our method
to other methods, Table 1 shows that our method is com-
petitive in terms of complexity, too. Please note that we
measured time on a single 3.2 GHz core whereas the other
methods have been benchmarked by [5] on a 2 GHz CPU.

Still, this allows us to estimate that our method is faster than
Randomized Cuts and Normalized Cuts and about as com-
plex as Core Extraction and Shape Diameters, while being
superior in performance to all.

3.3. Qualitative results

Example segmentations from the Princeton benchmark
are depicted in Fig. 7. Additionally, we show Kinect for
Windows V2 recordings from http://www.kscan3d.
com in Fig. 8. We should emphasize that our algorithm
does not require full scans of objects, that is, it can be ap-
plied to single views as shown in Fig. 8 E.
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Figure 6. Comparison of proposed CPC algorithm to results published on the Princeton benchmark. Green algorithms are unsupervised,
orange algorithms are weakly-supervised and red denotes supervised (i.e. training). For SB3 [9] results on some error measures had not
been published. As Zheng et al. [18] (PairHarm) did not report results on the full benchmark, we show results on their subset to the right
of the dashed line. All objects have been segmented with local constrains and directional weights using fixed parameters.

Method Avg. Comp. Time Rand Index
Human - 0.103
CPC 13.9 0.128
Randomized Cuts 83.8 0.152
Normalized Cuts 49.4 0.172
Shape Diameter 8.9 0.175
Core Extraction 19.5 0.210
Fitting Primitives 4.6 0.210
Random Walks 1.4 0.214
K-Means 2.5 0.251

Table 1. Comparison of averaged computational time per object
for the different learning-free algorithms.

4. Conclusion

In this work we introduced and evaluated a novel model-
and learning-free bottom-up part segmentation algorithm
operating on 3D point clouds. Compared to most existing

cutting methods it uses geometrically induced cuts rather
than graph cuts, which allows us to generalize from local
concavities to geometrical part-to-part boundaries. For this
we introduced a novel RANSAC algorithm named Locally
Constrained Directionally Weighted RANSAC and applied it
on the edge cloud extracted from the Supervoxel Adjacency
Graph. We were able to achieve better than state-of-the-
art results compared to all published results from unsuper-
vised or weakly-supervised methods and even compete with
some data-driven supervised methods. For Consistency Er-
ror and Rand Index we are able to reduce the gap to hu-
man performance by 50 %. We also introduced a protocol
to adapt Mesh-segmentation benchmarks to point clouds us-
ing an equi-density randomized point sampling, and a back-
propagation of found labels to the mesh. This allowed us to
report the first quantitative results on part-segmentation for
point clouds.

Finally, we should emphasize that our method is
learning-free, which has many advantages. Most impor-
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Figure 7. Qualitative results on the Princeton benchmark. All objects have been segmented with proposed algorithm using a single set of
parameters (Smin = 0.16, Nmin = 500).

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#1976

CVPR
#1976

CVPR 2015 Submission #1976. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 8. Qualitative results for the Kinect for Windows V2 gallery recordings from http://www.kscan3d.com using proposed
algorithm. A-D: Full recordings. E: Single view recording.

tantly, there is no need to create new training data and anno-
tated ground truth for new objects. Additionally, learning-
based methods need to know the class of an object before
they can be used for segmentation, since they must select
which partitioning model to use. Our method, on the other
hand, can be used directly on new data without any such
limitations. This means that the method is directly applica-
ble as the first step in an automated bootstrapping process
and can segment arbitrary unknown objects.
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Identifying relevant feature-action associations
for grasping unmodelled objects
Abstract: Action affordance learning based on visual
sensory information is a crucial problem within the de-
velopment of cognitive agents. In this paper, we present
a method for learning action affordances based on basic
visual features, which can vary in their granularity, or-
der of combination and semantic content. The method
is provided with a large and structured set of visual fea-
tures, motivated by the visual hierarchy in primates and
finds relevant feature action associations automatically.
We apply our method in a simulated environment on
three different object sets for the case of grasp affor-
dance learning. For box objects, we achieve a 0.90 suc-
cess probability, 0.80 for round objects and up to 0.75 for
open objects, when presented with novel objects. In this
work, we in particular demonstrate the effect of choosing
appropriate feature representations. We demonstrate a
significant performance improvement by increasing the
complexity of the perceptual representation. By that,
we present important insights in how the design of the
feature space influences the actual learning problem.
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1 Introduction
Identifying sensory features indicating action affor-
dances is a crucial problem to be solved by cognitive
agents since it allows for the identification of “action op-
portunities”. A fundamental problem is the design of the
perceptual feature space in which affordances emerge.
This space can make the problem rather trivial (e.g., in
case features that have a strong link to specific affor-
dances are already provided). It can be also very dif-
ficult, when the link between affordances and actions
can only be established by a high order combination of
simple features (e.g., on the pixel level as in [1]).

In this paper, we investigate grasp affordances
which are triggered by visual features of different or-
der (see Fig. 1a), different granularity (see Fig. 1b) and
semantic abstraction (see Fig. 1c). We are aware that
the feature space we span is still of much lower com-
plexity than what the human visual system provides in
the occipital cortex. However, we investigate variation
along three important dimensions of this feature space
as further discussed in section 2.1.

In this paper, we introduce a method for finding
feature-action associations in a complex visual feature
space. The method for affordance learning described in
the paper is not specific for a certain type of affordances,
it can be in principal applied to any parameterizable ac-
tion affordance. In this paper we however choose grasp-
ing as an example problem because of three reasons:
First, due to the general importance of grasping. Sec-
ond, we can simplify the learning problem by neglecting
certain feature dimensions provided by the human vi-
sual system. For example colour can be ignored as a
relevant dimension for grasping. In this paper, we also
neglect 2D shape information, which however might al-
ready be a more questionable design decision. A third
reason for addressing grasping is that there exists al-
ready relevant related prior work: In [2] (see Fig. 5),
grasp affordances have been manually designed as first
and second order relations of visual entities (local sur-
faces and 3D edges/contours). By that, we could already
reach grasp performance of around 30% success. In [2],
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Fig. 1. Overview of different aspects of the perceptual space that
are investigated throughout this paper. In (a), it is shown how
we can increase complexity to the perceptual representation by
means of combining multiple features into more elaborated struc-
tures. In (b), it is shown how we can increase/decrease the com-
plexity of the perception side by changing the size of the features.
In (c) it is shown how the level of abstraction of the feature rep-
resentation can be raised by means of semantic (here adding a
boundary label and a boundary direction to a surface patch).

the grasp affordances however were defined “by hand”
but in this paper, we aim at — besides improving per-
formance — replacing such a manual design step by
learning.

For this we want to explore the cross space of surface
features and their combination, as shown in Figs. 1a–1c,
and grasping actions. Fig. 2 shows how the variation of
complexity of the input feature relates to the learning
task. In Fig. 2a, left, we see a surface patch being re-
lated to a grasp. Learning grasp affordances with high
success from this kind of weak feature is impossible: To
exemplify this, we can imagine that the feature-grasp as-
sociation would predict successes for all surface patches
occurring in the scene. However in the three examples
given, actual successes would only occur for the grasp
at the right but not for the other two grasps shown in
Fig. 2a. When we extend the feature space to second
order combinations of surface patches (see Fig. 2b), the
grasp on the left could be recognized as a non-successful

(a)

(b)

(c)

Fig. 2. Illustration of how different perceptual spaces can be used
to limit the amount of grasp options. (a) shows a single feature
grasp association which would not be able to distinguish between
the three grasping situations on the left from which only the
very left one leads to a success. (b) shows a second order-feature
grasp association being rich enough to distinguish the left grasp
situation as non successful. (c) shows a two-feature grasp associ-
ation for which also the boundary direction (red line) is taken into
account. This enriched features allows for distinguishing that only
the very right situation leads to a success.

one from the fact that no surface patch at the inside of
the object is observable. However, it is impossible to
recognize that the middle grasp cannot be successful.
However, when we also add the concept of a boundary
and its direction to the surface patch (see Fig. 2c), the
system could be able to distinguish that only the right
grasp can be successful in the given context. Similarly
in this paper, we investigate the consequences for learn-
ing, when we vary dimensions of the feature space such
as the order of features or their semantic content.

The algorithm we apply for that is a rather sim-
ple clustering method combined with a voting approach
and part of the investigations is to explore the poten-
tial but also the limitations of such an approach. The
complexities associated to our approach primarily stem
from two sources:
Appropriate action bias: Non-successful actions are
of limited usefulness for action affordance computation
— although these can be used for sorting out non-
interesting areas — and hence the system needs to be
able to initially perform actions with a certain percent-
age of success likelihood. This can be achieved by intro-
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Fig. 3. An illustration of how different kinds of bias for grasping
actions for a two or three finger hand can be defined. The space
is defined by two measures of complexity. The first is the feature
bias for the simple grasp reflex (based on either a single feature
(1),(2),(3) and (4) or by multiple features (5) and (6)) and the
second is the complexity of the manipulator here exemplified by a
two and three fingered manipulator.

ducing action bias (see Fig. 3), e.g., by designing simple
feature based heuristics that trigger actions with suffi-
cient success likelihood (as in, e.g., [2]). In our case, we
define rather weak biases that already lead to reason-
able success likelihoods between 10–50% depending on
the object class.
Feature space design: A further problem is to pro-
vide a feature space which covers features that are suf-
ficiently correlated to successful actions. The feature
space applied in this work does not provide feature coef-
ficients that are independent. On the contrary, the fea-
ture space is highly structured: It provides geometric re-
lations between surface patches which require appropri-
ate parametrisations, careful choices of metrics as well
as proper association of semantics.

Which features actually are relevant might depend
significantly on the actual task and as we show most
features are highly uncorrelated to action successes and
therefore insignificant. The richer the visual space we
provide, the more complex the learning problem will be,
since then feature actions need to be found in a larger
space. This holds in particular when feature relations of
high order are computed since this will very quickly lead
to a dimensionality which cannot be explored exhaus-
tively anymore (dimensionality explosion). As a way to
reduce the learning problem, the semantic content of
features can be increased (as indicated in Fig. 1c). This
however usually requires the introduction of additional
heuristics and by that would jeopardize the genericness
of the approach. In our work, we also need to deal with
this trade-off. In particular we will show how the dif-
ferent design choices change the statistical distributions
of particles in the feature space and by that also the
structure and complexity of the learning problem. In

this paper, we will describe how we approach the above
mentioned complexities. We demonstrate how the af-
fordance learning problem constitutes itself when im-
portant parameters such as the order of features, their
granularity and their semantic complexity are varied.

In particular we show:
– That grasp affordance predictions comparable to

the heuristically defined grasp affordances in [2] can
be learned as second order combination of surface
features. In that way, heuristics depending on the
insight of the designer could be replaced by learn-
ing from experience.

– That the complexity of the feature space we span
is of significant importance for the ability to learn
affordances with a high rate of success. In particu-
lar we show that we can improve the quality of af-
fordance prediction by combining multiple features
and adding semantic information. By that we are
able to identify grasp affordances for a set of differ-
ent object types with a high likelihood of success.

– That suboptimal choices of feature representations
lead to insufficient information to be considered as
a good basis for grasp affordance learning.

This paper is structured as follows: We relate our work
to the state of the art in grasp affordance learning and
other relevant work in section 2. The problem formula-
tion our approach is based on is outlined and formalised
in section 3. The approach to address the problem do-
main is presented in section 4. In section 5, the experi-
mental settings are explained, whereas the experimental
results are presented in section 6. Finally the paper is
concluded in section 7.

2 State of the art
In the following we will relate our work to state of the
art, first in terms of the analogies to the primate’s vi-
sual processing and second to the work within grasp
affordance learning.

2.1 Analogies to the primate’s visual
processing

It is in general acknowledged that for humans, vision
is a strong cue for affordance generation [3]. More than
half of the primate’s cortex is connected to visual tasks.
As already pointed out in [4], the primate visual space
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is fundamentally of higher complexity compared to the
action space. This in the first place concerns the dimen-
sionality of visual information compared to a still rather
low dimensionality of action parametrisation connected
to the limited number of joints to be actuated.

The human visual system constitutes a deep hier-
archy, covering a large number of complementary fea-
ture descriptors at different levels of granularity, dif-
ferent order and semantic abstraction (see Fig. 4 and
[6] for a review of today’s knowledge about the hu-
man visual system). More than 2/3 of the visual cortex
(the so called “occipital cortex”) is associated to task-
independent feature processing displayed as yellow areas
in Fig. 4. In these areas, a rich set of visual feature de-
scriptors covering different aspects of visual information
such as colour, 2D and 3D shape as well as motion are
extracted. At least at early stages of processing, this is
done in largely separated processing streams [6].

As shown in Fig. 4 and described in its caption, the
level of abstraction of feature representation as well as
the receptive field size increases (and by that the granu-
larity of the features decreases) in this hierarchical pro-
cess. As a consequence and as modelled than in our
approach, the human visual system can search for affor-
dances in rather different feature spaces ranging from,
e.g., low-level 2D contrast information in retinal gan-
glion cells to 3D edge information with semantic associ-
ation (such as border ownership [5]) in area V2. More-
over, it is not only the features themselves but their
combination — as we will also investigated in our work
— that provide relevant affordance cues (see Fig. 5b).
From search tasks it is for example known, that fea-
ture combinations up to third order are computed in
parallel in the human visual system, which results in so
called “pop-out effects” in visual search tasks [7]. Hence,
finding structures relevant for affordance programming
in this high dimensional space at appropriate levels of
granularity, order and semantic abstraction poses one of
the major problems for affordance learning.

2.2 Related work on computing grasp
affordances

Visual triggered action affordance learning is important
for the development of cognitive agents. Within the
grasping community typically an object is grasped to
be further manipulated. However, affordance work like
[8–10] take a more generic approach towards affordance
learning, with the aim of finding what visual features
afford actions.

In [10], visual triggered affordance learning was in-
vestigated, with the purpose of finding what visual 2D
feature cues of an object afford graspability. A super-
vised learning approach was employed, where a robot
interacts with an object to discover graspability and
link it to extracted feature cues. A different approach is
adopted in [9], were affordance cue’s are extracted from
inspection of human interaction. By identifying which
areas of an object are occluded by the human during a
grasp/action, it is learned what local areas of an object
afford grasping, e.g., a handle.

In our work, we take a similar generic approach
towards affordance learning, but while the authors of
[9] learn object properties, e.g., graspability, we learn
the coupling of visual features and actions, that en-
able a specific action. In that sense our work is more
in line with the work in [8], where grasping points are
learned from local visual descriptors, resulting in par-
ticular grasping points with associated probabilities.

Given the grasping application in our work, also ap-
proaches towards learning of grasping unknown objects
are of interest. This topic has been extensively investi-
gated due to its importance for robotic applications. For
the problem of grasping unknown objects, two different
strategies have generally been adopted, either feature
based methods or shape based method. Examples of
feature based approached are [2, 11–14], where a hand
designed grasp hypothesis is proposed given a certain
situation. These works stretch from grasp hypotheses
based on a single or a combination of two simple fea-
tures in [2] to grasp hypotheses based on a circle-fitting
approach for cylindrical objects [14].

In contrast to feature based approaches, shape
driven approaches like [1, 15–17], where the agent has
a shape model in its database with associated grasps.
The shape is matched to the new scene and in case a
good match to a shape primitive is found, the grasps
associated to this shape are performed. In [17], a set of
prototypical object instances are captured with associ-
ated grasps from human demonstration and afterwards
used for matching in novel situations. Other approaches
like [16] and [15] approximates the object in terms of a
oriented bounding box [16] or multiple bounding boxes
[15] and then suggest grasp hypotheses based on the
configuration of the bounding box. In a similar sense
[18] decomposes an object into super quadratics to get
an approximated object on which grasping can be per-
formed. Another example of a model based approach
is [19], where object shape, based on height maps ex-
tracted from 3D data and human demonstrated grasps,
are learned and matched against new scene context.
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Fig. 4. The primate’s visual cortex: The figure shows the deep hierarchical organization of the human visual system with the brain ar-
eas of the occipital cortex, the ventral and the dorsal pathway at the top right. For selected visual areas, the receptive field size of neu-
rons as well as some of the features that are assumed to be processed in the specific areas are shown for the retina, area V1, V2, V4
and TE in the boxes a-e. The receptive field sizes are represented as they occur in the upper left quarter of the visual field in the right
part of the boxes a-d. For area TE (box d), which has neurons with large receptive fields, the receptive fields are indicated in the whole
visual field. Note that usually the receptive filed sizes are bigger for neurons representing the periphery of the visual field (which is very
clearly visible in area V1 and V2). It is evident that the receptive field sizes also increase with the level of the hierarchy. Note for exam-
ple the smaller receptive fields of V1 neurons compared to V2 neurons. Also the abstraction of features assumed to be processed at the
specific levels (as indicated in the left part of the boxes a-e) increases. For example in rods and cones in the retina (box a) information
similar to RGB pixel information in a camera while in area V1 edge information and a more advanced colour representation is applied.
In V2 than even more abstract concepts such as border ownership [5] are computed. This figure uses material from [6] which we also
refer to for further details.

Another branch within grasp affordance learning is
the utilisation of a closed loop structure, by adding
tactile feedback. By introducing tactile feedback from
the finger contact–points, the stability of the grasp can
be assessed before execution or replanning, hereby en-
abling a better chance of grasping successfully. In [20]
it is shown how a grasp is planned based on an initial
grasping pose acquired from rather simple vision and
then evaluated by the tactile feedback before eventually
a grasp or replanning is taking place. In another work
based on haptics [21] it is shown how tactile feedback
before grasp execution in combination with a predictor
based on visual information can complement each other
for grasp prediction. In [22] tactile feedback is utilised to
refine knowledge of an unknown object, hereby enabling

for planning a suitable grasp based on the acquired ge-
ometry. For a broader overview of the grasping domain
see [23], where data driven grasp synthesis of known,
familiar and unknown objects are surveyed extensively,
including some of the work mentioned here.

Our work is a feature based approach, as we in-
troduce simple feature constellation with associated ac-
tions, to be used for action prediction. The work can be
seen as an extension to the work performed in [2], but
with the advantage that we learn feature to action con-
stellation by exploring different visual representations.
In a recent work [24], it was in a similar way shown, how
deep learning techniques were used to learn a feature
representation suitable for learning grasp affordances,
as compared to a previous work with a hand designed
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Fig. 5. Simple manually defined grasps: (A) Grasp affordances
defined with respect to a single 3D surface feature (hence defined
in respect to a first order feature relation), (B) Grasp affordances
defined with respect to two 3D contours (hence defined in respect
to second order feature relation). Source [2].

feature representation [25]. In contrast to [24], in our
work we provide some kind of hierarchy to the learning
algorithm which can then pick out promising candidates
from this hierarchy. However, as discussed in the next
paragraph, our approach can be seen as a step toward
the learning of a deep hierarchy.

The focus on the underlying visual representation
also links to work in non action domains, namely the
work by the group of Ales Leonardis on learning hier-
archical representations [26]. In this work, visual hier-
archies are built up layer by layer. Each higher level
entity is a combination of usually three elements of a
lower level, where such combinations represents a cer-
tain spatial arrangement of simpler features. The se-
lection of such combinations is done unsupervised for
lower levels of the hierarchy based on, e.g., the criterion
of frequency of occurrence and in an supervised fashion
at higher levels. Our work can be understood as a step
towards such hierarchy building, since relevant particles
derived in this paper (see equation 4) are also spatial
constellations of simpler entities which could be used
as input to a higher level of a deep hierarchical struc-
ture. Different from Leonardis’ work, we however apply
3D entities instead of 2D entities and we also have task
specific evaluation criteria already on rather early levels
of processing.

3 Problem description and
formalisation

The main topic we investigate throughout this paper is
the cross-space between perceptual features and actions.
We explore how different aspects of the visual represen-
tation can provide relevant information for predicting
action affordances in a reliable way.

3.1 Formalisation

To be able to perform these investigations, we ini-
tially formalise the building blocks, that we will utilise
throughout the paper. The general space we are working
in is a cross-space of perception and (grasping) action.
We represent the perception side using 3D surfling fea-
tures. 3D surfling features describe small surface patches
in terms of a pose. In addition, we introduce a granular-
ity measure that depicts the size of the features. Based
on the previous description, we formalise 3D surfling
features as Πσ = {SE(3)} (see Fig. 6a). σ depicts the
granularity level for the feature. The granularity is mea-
sured in the number of sub-features that a 3D surfling
feature relies on and hence is a measure of the surface
area it covers. SE(3) depicts the 6D pose of the feature
described in the Special Euclidean Group, SE(3), hence
the name.

With the description of the basis 3D surfling feature
on the perception side, we introduce the concept of fea-
ture relations. Feature relations are essentially a com-
bination of multiple features (3D surflings) described
through their spatial and/or perceptual relationship,
that allows for a set of higher level features.

One motivation for introducing the concept of fea-
ture relations is to compensate for the ambiguity in the
3D surfling feature pose, because the pose is derived
from a principal component analysis of the underlying
sub features (see Figs. 6a and 6b). The result is an un-
ambiguous surface normal, but the other components
in the orientation are ill defined. Hence we need other
means to define a stable orientation of a 3D surfling
feature.

By introducing feature relations, we add informa-
tion through the spatial relationships between features,
which theoretically will compensate for the uncertain-
ties in the original pose. Moreover, we gain local struc-
ture information when we combine multiple features and
hence achieve a more expressive visual representation.
By means of feature relations, we create a representa-
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Fig. 6. Visualisation of the two basic building block. (a) a 3D
surfling, Πσ , where a principal component analysis is performed
on the sub-features (black) to decide the orientation. (b) a
boundary corrected 3D surfling, Πσ,β , where the orientation
is decided by the direction of a boundary. In (c), we see both
boundary 3D surflings, blue with a red arrow, and standard 3D
surflings.

tion where we can derive robust structures for predict-
ing action affordances despite the simplicity of the basic
building blocks. A complementary approach to tackle
the issue of pose ambiguity in the basic building block
is to introduce a more elaborated or expressive feature
by additional levels of semantic. A boundary feature
is introduced, where the pose is decided by the direc-
tion towards a given boundary. The boundary surfling
is described by Πσ,β = {SE(3)}, where β denotes it is
a boundary surfling and by definition, the first axis of
the pose-frame is directed towards the boundary, see
Figs. 6b and 6c.

Based on these basic 3D surfling features, we intro-
duce a notation used for feature relations in equation 1,

Υσ
N = f(Πσ

0 ,Πσ
1 , ...,Πσ

N−1) (1)

where N denotes the number of combined features, also
referred to as the order of the relation, and σ denotes
the granularity of the features it relies on. The function
f transfers a combination of features into a parametri-
sation depending on the order and abstraction. To ex-
emplify the transfer, we will describe a feature relation
of second order based on generic 3D surflings (an il-
lustration of such feature relations is shown in Fig. 7)
which is parametrised as described in equation 2. The
angles α1 to α3 and distance d1 are defined as depicted
in Fig. 7, whereas the feature relation coordinate system
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Fig. 7. Example of a feature relations of order two. It should
be noted how the angles α2 and α3 describe the normal of the
second feature Πσ2 in terms of the coordinate system of the first
feature, Πσ1 .

is described in world coordinates.

Υσ
2 = f(Πσ

0 ,Πσ
1} = {SE(3)PW , α1, α2, α3, d1} (2)

3.2 Action representation

Until now, we have not covered the action side of the
perception × action space that we want to investigate.
For this, we introduce grasping actions as an example.
We define a minimalistic grasping action as follows:

ActionGrasp = {SE(3)AW ,E} (3)

which essentially describes a target action pose in world
coordinates (SE(3)AW ) and an evaluation of the grasp
outcome (E). The evaluation can theoretically take any
value, but for the grasping case in this paper, we utilise
a binary description. Other parameters such as preshape
joint angles of the gripper could also be added to get a
more elaborated action description.

3.3 Linking perception and action

In the final step, we link the perception part with the ac-
tion part. Instances of the combined representation will
be referred to as particles and denoted ρ as depicted in
equation 4 and described in a condensed form using ρ’s
with superscript A (for action) and P (for perception)
respectively.

ρi = {ρPi × ρAi } (4)

A linked particle based on the previous examples of per-
ception, equation 2, and action, equation 3, is presented
in equations 5 to 6, where SE(3)AP is a condensation of
the poses from the different domains into a single pose,
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where the action is described in terms of the coordinate
system of the perception side. In Fig. 8, an illustration of
a particle is shown for two different levels of perception.

ρ = {SE(3)PW , α1, α2, α3, d1, SE(3)AW ,E} (5)

ρ = {SE(3)AP , α1, α2, α3, d1,E} (6)
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Fig. 8. Illustration of the linkage between action and perception
for the first order case (left) and the second order case (right),
essentially being a linkage (the dotted line) between the frame of
the perception descriptor and the frame of the action.

4 Learning algorithm
In this section, the algorithm for learning and apply-
ing the visually predicted action affordances will be ex-
plained. An overview of the process is shown in Fig. 9.
The figure covers the steps from the Object/Action en-
vironment through a data-creation process, a learning
process of which the results are stored in an Action Per-
ception database, and finally a prediction step where the
knowledge is used to predict actions to be performed in
the Object/Action environment. In the following subsec-
tions, the different components shown in the overview
diagram will be covered. First we describe the data cre-
ation process, (section 4.1), next the learning phase will
be explained (section 4.2) and finally the utilisation of
the learned knowledge for predicting actions will be de-
scribed in (section 4.3).

4.1 Data creation

The data creation process is relying on the formalism
defined in section 3.1, where the two domains, action
and perception, are combined. From the Object/Action

  Action Perception
DB

Data Creation Learning

Prediction

Object/Action
Environment

Fig. 9. Overview diagram of the data creation, learning, stor-
ing and prediction of action affordances. The data creation and
learning process is addressed in Figs. 10 and 11, whereas the data
creation and prediction process is covered in sections 4.3.1 and
4.3.2.

environment, we acquire evaluated action information
as well as visual information in terms of extracted 3D
surfling features, for training set objects. From features,
we compute feature relations and then link the two do-
mains together such that the action is defined with re-
spect to the feature combination (see equation 6).

The procedure for doing the linking process is ex-
plained in algorithm 1. Note, that for every particle,
ρ, a random action and feature relation is chosen and
combined into a particle. The random selection is in-
troduced due to the intractability of exhaustively com-
bining feature relations and actions. In the combination
step, additional constraints such as, e.g., locality (the
action target pose should be close to the feature rela-
tion pose) could be added. A fundamental part of the

Alg. 1: Combining feature relations with actions.
Input: FeatureRelations ρP, Actions ρA

Output: Particles, ρ
1 N ; // Number of particles we use
2 i = 0;
3 while i < N do
4 ρAj = random ρA;
5 ρPk = random ρP;
6 ρi = {ρPk × ρAj };
7 ρ.push_back(ρi);
8 i++;

data creation process is the input actions. Such actions
could be provided from various sources, e.g., real world
experiments, simulation, hand labelled data or through
human demonstration. The desirable properties of the
input actions are that they provide a reasonable cover-
age and success rate for a given situation. In this work,
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we approach the data creation with a simulated envi-
ronment that allows for a more explorative approach as
compared to real world experiments. We utilise visu-
ally extracted surfling features as a bias for proposing
a input action set. In Fig. 3, a number of examples are
shown of how features can act as a bias for proposing
candidate actions for the grasping case. That said, the
action candidate creation is likely to be very dependent
on the type of action. The input actions are then evalu-
ated in simulation. Hereby we retain some control over
the amount of input actions while we also can guide the
rate of success.

4.2 Neighbourhood analysis

In this section, the foundation for learning will be de-
scribed in terms of the different components. First the
learning approach is presented, next a two-stage exten-
sion is introduced and finally an optimisation of the
learning outcome is considered.

4.2.1 Algorithm outline

The overall outline of the learning process is depicted in
Fig. 10. This illustration encapsulates the steps from the
feature extraction, action creation to the establishment
of an action perception database, in terms of particles
ρ.

The core of the learning process is a neighbourhood
analysis, which is illustrated in Fig. 11. The first step is
to find the set of supporting particles in the neighbour-
hood, which is formally described by, Ak, in equation
7. Based on the set of particles, the two measures prob-
ability and support are computed. The support, sk, is
given as the size of the set inside the neighbourhood
(equation 8) and the probability, Pk, is defined as the
average success probability within the neighbourhood
(equation 9).

As we will show in the result section, both variables
are essential for the efficient prediction of affordances.

Ak = {ρi∣Dist(ρi, ρk) < t} (7)
sk = ∣Ak∣ (8)

Pk =
1
∣Ak∣

∑
ρi∈Ak

Ei (9)

Given these two measures, we have a description of
the action perception space in terms of success-outcome
likelihood and the support for this likelihood. The latter
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Create Canidate Actions
Create Feature Relations

Evaluate Candidate Actions

Link Action and Perception

Instance Neighbourhood Analysis

Global Neighbourhood Analysis

ρ
P
k

ρi = {ρPk × ρ
A
j }

ρ
A
j

ρ
E
i

ρ
E
i

Object Intance #1

Object Intance #2

Object Intance #N

ActionPerceptionDB

Fig. 10. Overview of the learning process, note the two-stage
neighbourhood analysis, initially on instance level and finally on
the combined set. On the instance level, the diagram explains
how the visual features are first extracted, then utilised as a bias
for the candidate grasp creation and finally evaluated. Secondly,
the features are used to compute feature relations. Given the
computed feature relations, ρP , and evaluated grasps, ρA, these
two are linked to form particles ρ. Then the instance level neigh-
bourhood analysis is performed, before the global neighbourhood
analysis is used to merge the acquired knowledge from the in-
stances. Finally the result are stored in the ActionPerceptionDB.

Neighbourhood 
boundary

Fig. 11. 2D illustration of the neighbourhood analysis around a
particle, highlighted in green.

can also be seen as the particle density in the neighbour-
hood. From a formal point of view, we go from particles
in the form of equation 5 to evaluated particles of the
form expressed in equation 10.

ρEi = {ρPi × ρAi , Pi, si} (10)

The elementwise Dist function in equation 7, is
used to decide whether the particle, ρk, is in the neigh-
bourhood of ρi. For the distance computation, we split
SE(3)AP , from equation 6, into a rotational part de-
scribed by a quaternion q and a positional part (x, y, z)
described by three components:

SE(3)AP = {x, y, z,q} (11)
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The distance is computed in the individual dimensions
of the parametrisation, with the exception of the ori-
entation part of the SE(3)AP pose, which is computed
as the shortest angular distance between the orienta-
tion of ρk and ρi. Using a quaternion representation,
the computation can be done with the formula in equa-
tion 12, where ⟨q1,q2⟩ depicts the inner product of the
two quaternions q1 and q2. This approach ensures a
well defined neighbourhood for the rotational part of
the pose, as compared to a distance measure performed
on the full quaternion parametrisation, which resembles
the angular distance in a sub-optimal way. For the other
parameters in the space this is not a problem. Hence for
these a direct subtraction is used.

dist(q1,q2) = 2 arccos(⟨q1,q2⟩) (12)

In equation 13, the distance computation is expressed
between two particles of the type described in equation
6.

Dist(ρi, ρk) = {xi − xk, yi − yk, zi − zk, dist(qi,qk),
α1,i − α1,k, α2,i − α2,k, α3,i − α3,k, d1,i − d2,k}

(13)

It should be noted that the comparison operator (<) in
equation 7 is an element wise comparison of the distance
vector (see equation 13) and the threshold vector (t).
For it to be true, all the elementwise comparisons should
be true.

The basic process for performing a neighbourhood
analysis is captured by algorithm 2.

Alg. 2: Neighbourhood analysis.
Input: Particles ρ
Output: ActionPerceptionDB, ρDB

1 t =Compute threshold;
2 for ρk in ρ do
3 Ak = {ρi∣Dist(ρk, ρi) < t}, ρi ∈ ρ;
4 Pk = 1

∣Ak∣ ∑Ak
Ei;

5 sk = ∣Ak∣;
6 ρEk = {ρk, Pk, sk};
7 ρDB.push_back(ρEk );

The decisive parameter when doing a neighbour-
hood analysis is the choice of “neighbourhood” or vicin-
ity, expressed as the threshold vector t in equation 7.
We propose two options for setting the threshold, t, a
manual choice and an automatic choice. Using a manual
approach to set the parameters involves setting a fixed

threshold of each individual dimension based on com-
mon sense and then enable a scaling of the fixed param-
eter vector t by a scalar multiplier, Mm (see equation
14).

tmanual,M =Mmtmanual (14)

The automatic setting is based on a rule of thumb
from Kernel Density Estimation. Scott [27] proposed
such a rule (see equation 15). The estimated thresh-
old or bandwidth, tscott is depending on the number
of instances in the data, n, the dimensionality of the
space, d, and the estimated standard deviation of the
data-points within the dataset, σ̂. It should be noted
that the dimension of the vector t and σ̂ depend on the
parametrisation used for the particles ρ.

tscott = n
−1

d+4 σ̂ (15)

We can then use Scott’s rule as a guideline for the
ratio between the distances in the different dimensions.
To adjust the neighbourhood-distance, we introduce an
additional scaling parameter, Ms, similar to the multi-
plier mentioned for the manual defined threshold.

tscott,M =Mstscott (16)

In the Appendix, a comparison of an automatic-
versus a manually set threshold is carried out. Here it
it becomes apparent, that there might be a gain in pre-
diction performance by choosing an appropriate manual
threshold. Although there is a little gain, it is unlikely
that the effort is worth it, especially when considering
even more advanced visual representations of higher di-
mension.

4.2.2 Two-stage neighbourhood analysis

As displayed in the overview diagram (see Fig. 10),
the neighbourhood analysis is performed in a two-stage
process. This is motivated by the urge to decrease the
computation time. The cost for performing the neigh-
bourhood analysis is related to the number of particles
(see equation 4), n, due to reliance on the KD-tree data
structure. The computation cost for performing a search
query in a KD-tree is O(logn), where n is the number
of nodes in the tree, and when we take into account
that we need to perform a search for every n particles
to find the neighbours, the computational cost adds up
to O(n ⋅ logn). We can reduce the computational com-
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plexity by decreasing the amount of particles on which
we are performing the neighbourhood analysis.

In an initial stage, we perform a neighbourhood
analysis on the particles from the individual objects in
the full dataset. This partitioning provides us with a
set of significantly smaller neighbourhood problems, in-
stead of a single large problem. Having a set of smaller
problems, that are independent, we also facilitate a par-
allelisation of the first stage. By filtering the output
particles of the first-stage before performing the sec-
ond neighbourhood analysis on the combined problem,
we can drastically improve the computational time. One
way of filtering away “un-promising” particles, is to set
up a criteria for the minimum support that a particle
should have for it to be taken into account. Such a fil-
ter could be expressed in absolute, average or median
values of the support in the dataset. There are however
some pitfalls when using support as a filtering param-
eter, namely the risk for filtering away the diversity in
the particles. This aspect of the learning is addressed in
the results (section 6.4), where different levels of sup-
port filtering has been applied to verify the effect on
the prediction outcome. In practice, an introduction of
support filtering in the neighbourhood analysis includes
a small extension that removes particles below a certain
support threshold for the final dataset.

4.3 Prediction

In order to apply the learned data in novel situations,
two different methods have been applied. One method
where we look for similarities on the perception side and
use these as direct cues for proposing actions denoted as
“direct action proposition” and secondly a method, de-
noted as “voting scheme”, where we suggest a candidate
list of actions from the ActionPerceptionDB to vote for
the actions. The two approaches will be explained in the
following subsections.

4.3.1 Direct action propositions

The direct action proposition approach is based on
the assumptions, that our learned high probability and
high support action perception particles are descriptive
enough for predicting actions. Initially we extract fea-
ture relations, the ρP part of the particles, from the
novel object and search for similar ρP parts in the Ac-
tionPerceptionDB. If we find a similar perception part
with a high probability for success and high level of sup-

port, we take its action part, ρA, and attach to our ρP

part, resulting in a proposed action.
Given the simplicity of the direct action proposition

approach, it has some limitations. The main problem is,
that the approach relies heavily on a discriminative per-
ceptual representation in order to make reliable predic-
tions. The potential problem arises when we use a too
simple perceptual representation, namely that a partic-
ular simple relation can predict very different actions de-
pending on the object it was learned from. This problem
should eventually disappear if we utilise a more descrip-
tive perception representation. Therefore we introduce
a second approach, the voting scheme. For comparison,
experiments have been carried out with the direct action
proposition method (see Appendix A), where the pre-
diction performance and limitation in the method are
presented.

4.3.2 Voting scheme

The principle behind the voting scheme is that we want
to utilise our learned ActionPerceptionDB as a means
to vote for a set of candidate actions. Hereby we utilise
multiple perception descriptors to predict the action
outcome of a single candidate action, and by that im-
prove the robustness of the prediction. The voting pro-
cedure has been formalised in algorithm 3. The process
is very similar to the actual learning phase, however
where we in the learning phase “forget” the origin ac-
tions when we combine them with the perception part,
ρP , we remember them in the voting scheme. This al-
lows for a final step in which we can project a predic-
tion probability back to the origin candidate action, and
thereby give a prediction based on multiple perception
action particles. In Fig. 12, an example is presented,
where we utilise multiple feature relations (Figs. 12d to
12g), to vote for a single candidate action (Fig. 12h).

5 Setting
In this section, the settings for the experimental work
will be explained. It involves the object data set (sec-
tion 5.1), the simulation environment (section 5.2), the
feature extraction (section 5.3), the visual biased action
sampling (section 5.4) and details regarding action and
perception parametrisation (section 5.5).
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Alg. 3: Voting scheme.
Input: ActionPerceptionDB ρDB, Features
Output: Candidate Actions with prediction

ρA
C,E

1 ρA
C = Create Candidate action through visual

bias;
2 ρP

C = Compute feature relations;
3 ρC= Combine feature relations with candidate
actions as in ALG. 1;

4 for ρC,k in ρC do
5 Ak = {ρC,i∣Dist(ρC,i, ρk) < t}, ρC,i ∈ ρDB;
6 Pk = 1

∣Ak∣ ∑Ak
Ei;

7 sk = ∣Ak∣;
8 ρEC,k = {ρC,k, Pk, sk} = {ρPC,k, ρAC,k, Pk, sk};
9 // Backproject probabilities to origin actions

10 for ρAC,l in ρA
C do

11 Bo = {ρA,EC,i ∣ρ
A,E
C,i == ρAC,l}, ρAC,i ∈ ρA

C;
12 Pavg = 1

∣Bo∣ ∑Bo
Pi;

13 ρAC,l = {ρAC,l, Pavg};
14 ρA

C,E.push_back(ρAC,l)

(a) (b) (c) (d) P=0.25

(e) P=0.95 (f) P=0.50 (g) P=0.75 (h) P=0.61

Fig. 12. A 2D idealised example illustration of the basic principle
of the voting scheme given a candidate grasp. (a) An idealised
cross-section of a 2D container, (b) a two-finger gripper, (c) a
feature representation with a candidate grasp. Figures (d), (e),
(f) and (g) show feature relations that are used to vote for the
candidate action. Probabilities are shown below which would be
the probabilities found in the database. Given the example proba-
bilities, the combined probability for the candidate grasp is shown
in (h).

5.1 Object set

In Fig. 13 an overview of the different objects used in the
experiments is given. The objects are split into three dif-
ferent categories, namely box-like objects, curved/cylin-
drical objects and open/container objects. The objects

Fig. 13. Visualisation of the three different categories of objects.
(Top), box objects, (middle), round objects and (bottom) open
objects.

in the set are partly taken from the KIT object database
[28] and partly from the online database archive3D [29].
The KIT objects are digitalised real objects which po-
tentially simplifies the transfer from a simulated envi-
ronment to the real world. Furthermore they add real-
ism to the feature extraction as the objects are textured
based on the real objects. However due to the lack of
open/container objects in the KIT set, we needed to
extend the object set with objects from other sources,
which are not digitalised real objects.
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Fig. 14. Visualisation from RobWork showing a grasping action
with the Schunk SDH-2 hand.

5.2 Simulation environment

The experiments in this paper are all performed in a
simulated environment utilising the robotic library Rob-
Work [30]. RobWork is used to create a realistic en-
vironment, that facilitates simulated sensors (such as
RGB-D sensors and Stereo cameras) as well as sim-
ulation of dynamics. The dynamics simulation is car-
ried out using the associated simulation environment,
RobWorkSim [31]. Fig. 14 shows a view of a dynamic
grasp simulation, with the Schunk SDH-2 hand and a
pitcher. The grasping simulations are performed in a
free-floating world where gravity is not taken into ac-
count since it facilitates grasping from every direction. It
should be mentioned that although gravity is not taken
into account other forces acting between the gripper and
the object are simulated. The masses of the objects used
in the simulations variy between 0.2 kg and 0.6 kg, es-
timated based on their size. The friction coefficient be-
tween the gripper fingers and the objects are set to 0.2µ
corresponding to the friction between rubber and plas-
tic.

In Appendix A.3, a set of additional experiments
— performed in a table scenario — are presented where
gravity is taken into account. These results show a high
degree of similarity to the results achieved in the free-
floating scenario. Due to this similarity and since the
focus of this work is on exploring the perceptual repre-
sentations, we use the free-floating scenario in our ex-
periments.

5.3 Feature extraction

An essential part of the setting is the feature extraction
from the simulated environment. In Fig. 15, our setup
of RGB-D sensors is displayed. Having a setup of three
sensors surrounding the object and an additional sen-
sor from below gives an approximated full view of the
objects in the centre.

Although the simulated recording situation is not
very common, there exist some robot set-ups with multi-
ple cameras providing a rather complete scene represen-
tation (see, e.g., [32]). Our recording situation is some-
how in-between dealing with full and perfect CAD mod-
els and the common recording context with one camera.
Since humans have mechanisms to extract rather com-
plete 3D representation in an observation context by
either merging different views or by matching a com-
plete representation existing in memory to a given scene
context, one can assume that affordance reasoning in
humans can make use of information beyond what is
directly visible from one viewing direction. For exam-
ple, the detection of complex features such as ’wall fea-
tures’ as second order relations of basic surface features
is only possible when the inside and outside of an object
is taken into account.

We are aware that this is a compromise between dif-
ferent possible options for a set-up. It allows for affor-
dance reasoning on complete representations in which
however still controlled amounts of sensory noise are
present by the simulated RGB-D sensor as well as by
the fact that the scene is observed by only a small set
of viewing angles.

Based on the simulated setup in RobWork, we are
able to extract the 3D surfling features at different gran-
ularities and with added semantic. An example of the
feature extraction of surflings at four different granular-
ity levels is visualised in Fig. 16. Furthermore the ex-
tracted features are shown both with and without the
added semantic for boundary features. The boundary
features are shown with an additional vector depicting
the direction of the boundary.

5.4 Action sampling

The action sampling biased through the visually ex-
tracted features is a prerequisite for learning the grasp
affordances in an automatic way since it ensures a rea-
sonable chance of success as well as a limit to the amount
of considered actions, see Fig. 3 for an overview of po-
tential biases. We propose two template grasp types for
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Fig. 15. Visualisation of the four simulated RGB-D sensor views,
illustrated with the four coloured frames, and the object of inter-
est in the centre. The frames depict the position and the camera-
view (along the negative z-axis, coloured blue). The views from
the four cameras are shown in the small images.

the sampling. The two types are visualised in Fig. 17,
one is denoted the SidePinchGrasp and the other is de-
noted TopGrasp. The SidePinchGrasp has a rather nar-
row opening between the two fingers such that it can
grasp within a container and the TopGrasp has wide
open fingers to make an encompassing grasp of larger
objects. We create a set of candidate grasps by means
of extracted 3D surfling features with a small feature
size such that we can achieve a reasonable coverage of
the objects. Based on the features, we propose a set of
template grasps by rotating them in 32 steps around
the feature normal. From this sampling we achieve an
average success-rate between 10% and 50% depending
on the object set (see the random chance as dashed hor-
izontal lines in the results plots Figs. 21, 22 and 23).

5.5 Parametrisation of feature relations

Throughout the experiments, we will rely on a lim-
ited set of different feature relation types, namely of
first and second order relation with different levels of
boundary semantics. In equations 17 to 22 the differ-
ent parametrisations are presented. The reason for lim-
iting ourselves to first and second order combinations
is partly due to the exponential combination explosion
that our approach exhibit due to its simplicity. When
utilising higher order combinations, three or more, the
amount of possible combinations of visual feature and
actions during the learning phase become intractable to

(a) σ = 3 (b) σ = 3

(c) σ = 5 (d) σ = 5

(e) σ = 15 (f) σ = 15

(g) σ = 30 (h) σ = 30

Fig. 16. Visualisation of extracted features at four different gran-
ularities with (right column) and without (left column) boundary
semantic.

Fig. 17. Visualisation the two different basic grasp types, Side-
PinchGrasp (left) and TopGrasp (right)

cover exhaustively. This relates directly to the parame-
ter spaces, that also increases and if we are not able to
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direct or limit the space, by for instance heuristics like
the boundary feature, the sparsity becomes a problem.

Υσ
1 = f(Πσ) = {SE(3)} (17)

Υσ,β̂
1 = f(Πσ,β̂

1 ) = {SE(3)} (18)

Υσ,β
1 = f(Πσ,β

1 ) = {SE(3)} (19)
Υσ

2 = f(Πσ
1 ,Πσ

2 ) = {SE(3), α1, α2, α3, d1} (20)

Υσ,β̂
2 = f(Πσ,β̂

1 ,Πσ
2 ) = {SE(3), α1, α2, α3, d1} (21)

Υσ,β
2 = f(Πσ,β

1 ,Πσ
2 ) = {SE(3), α1, α2, α3, α4, d1} (22)

In Fig. 18 visualisations are shown of the different
types of feature relations used in the experiments. Note
that only four different feature relations are visualised.
The reason is that the parameters for equations 17 and
18 are similar with the only difference being that we
know the feature in equation 18 is a boundary feature.
The same holds for the two cases in equation 20 and 21.
The parametrisation covers three first order cases: one
plain feature (Υσ

1 ), one where we know the feature is
a boundary feature (Υσ,β̂

1 ) and one were we utilise the
boundary semantic with direction (Υσ,β

1 ). As for first
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Fig. 18. Visualisation of the utilised feature relations and the
associated parameters.

order, we introduce a parametrisation for three second
order cases: One without semantic (Υσ

2 ), one with the
knowledge of a boundary but not the direction (Υσ,β̂

2 )
and finally one with boundary semantic and direction
(Υσ,β

2 ).

6 Results
The result section is divided into four subsections. In
section 6.1, we will present the outcome of the learning
phase in terms of associated support and probability of
the evaluated particles. In section 6.2, we will present
the core results comparing the prediction performance
when features at different granularities, different levels
of abstraction and different semantics are input to the
voting scheme. Subsequently (section 6.3), a qualitative
analysis is presented of the results. Finally (section 6.4),
we will present results regarding the impact of support
filtering. In the experimental work, the different object
sets have been split into two classes such that the learn-
ing from the first class and is applied on the second and
vice versa. In the Appendix, a number of additional re-
sults are presented primarily focussing on methodology
aspects such as automatic vs. manual threshold, the di-
rect prediction method and table vs. free-floating simu-
lations.

6.1 Learning outcome

In order to examine the learning outcome before it is
used for prediction, we visualise the frequency of occur-
rence of the evaluated particles (see equation 6) in terms
of support and probability. Fig. 19 shows the distribu-
tions in 2D histogram for the different parametrisations
described in equations 17 to 22, where the colour de-
picts the frequency. The colouring is based on the log10

transform of the actual frequency in the area to allow
for a visible distinction. A histogram corresponding to
Fig. 19a but without performing a log10 transformation
of the frequency is shown in Fig. 20 as a comparison. In
this plot, we only see that the majority of the particles
have low support and probability.

When assessing the 2D histograms in Fig. 19, we can
acquire indications about the predictive power of the
different visual representations. We see a shift towards
the higher probability areas when the order is raised or
semantic is added to the feature relation, e.g., compare
Fig. 19a towards Fig. 19f. This change is reflected in the
later presented prediction results (see Fig. 23).

6.2 Core experiments

The outcome of the voting method (section 4.3.2) is a
set of candidate actions with associated predicted prob-
ability. To discretise these outcomes, which allows for
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Fig. 19. Visualisation of the particle distribution for the open object set in terms of their support and probability for the learned Ac-
tionPerceptionDB’s. Note that the areas with high support and high probability in the action perception space increases when a more
elaborated perceptual representation is used, e.g., compare (a) and (f). This change indicates that the latter representation has more
prediction potential. The number of particles in the databases ranges from ∼ 250,000 to ∼ 400,000.
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Fig. 20. Visualisation of the particle distribution in terms of sup-
port and probability for a learned ActionPerceptionDB, where the
particle frequency is shown without any modifications.

a comparison to the binary grasp outcome from simu-
lation and hence to quantify the performance, we in-
troduce a probability selection threshold. We vary the
actual value of the threshold between the extremes. This
results in the plots in Figs. 21–23.

In order to assess the prediction results, we present
two different average measures of the prediction success
over the object set. In addition we present a measure of
the percentage of grasped objects from the set
– Avg-1 - An average computed over all the objects

in the set, independent of whether feature combi-
nations leading to any grasp prediction were found
for a certain object. If no predictions was found the

object contribute to the average with a success rate
of zero. This average type is plotted with a full line.

– Avg-2 - An average computed over the average suc-
cess prediction for only the set of the object in-
stances, where a prediction was found. This average
type is plotted with a dashed line.

– random - The average chance on the object set
for randomly getting a successful outcome given the
candidate actions. This measure is plotted with a
dashed black line.

– Coverage - A measure of the percentage of objects
from the object set that have been grasped for a
given selection threshold. This measure is shown
with a dashed-dotted line.

When assessing the result plots, there are multiple as-
pects that one need to consider when we want to iden-
tify a good result. One aspect is the difference between
random chance and the top point of the predictions, an-
other is how well a change in the moving threshold to a
higher value is reflected as a higher rate of success pre-
diction. The result plots show in general a drop in the
success-predictions after a top-point. The reason is that
the amount of predicted grasps after the top-point drops
drastically, because no or very few grasps are found with
a prediction rate higher than the selection threshold at
the top-point, enabling outliers to have a strong impact.
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Finally one should note the ability to predict grasps
for the full object set, which is covered by the percentage
of objects that have been grasped by a certain selection
threshold.
Box objects: The results for the box object set are pre-
sented in Fig. 21. The plots show results where the two
dimensions “order” (denoted N, equation 1) and “fea-
ture granularity” (denoted σ equation 1), were varied.

From the results we derive: (1) When the order is
increased from N=1 to N=2, we see a clear improvement
of the prediction rates, by comparing the top-points of
the six lines in the plot. This is explained by the added
knowledge introduced by a more complex visual feature,
and (2), when the feature size is changed, small changes
in the performance are observed. For the first order case,
we see the best performance with a medium sized fea-
ture whereas there is no or little difference when we
compare the second order cases at different granulari-
ties. Variations based on the used feature granularity is
related to the ability of a given feature size to represent
the object with adequate accuracy. (3) The object set
seem well covered as there are predictions for all objects
until a selection threshold of 0.90, where a drop is seen
for N=1, at granularity 15.
Round objects: The experimental results acquired for
the round object set are shown in Fig. 22. As above,
the plots show results where the two dimensions “or-
der” and “feature granularity” where varied. We see:
(1) When the order is increased from N=1 to N=2, a
clear improvement is seen in the prediction rates specif-
ically when observing the top-points of the plots. This
is explained by the information gain from a second vi-
sual feature, and (2), when feature size is varied, we see
small changes in the performance for the first order case,
whereas we see a clear distinction in performance when
we use the largest feature size for the second order case
(brown line in Fig. 22). The last result is in line with
the expected result, namely that a large surfling patch
is a bad reflection of a round object and hence should
be less descriptive as compared to a feature of smaller
size. (3) The object coverage is in general good, as pre-
dictions are found for all the objects until a selection
threshold of 0.8, where a drop is seen.
Open objects: The experimental results for the open
object set are displayed slightly differently compared to
the round and box object sets, since we observed that
for open objects the semantic information in terms of
boundary information is crucial. The introduction of
boundary features allows for all the parametrisations
described in section 5.5. The results are presented in
Fig. 23 for three different granularities, respectively 5,
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Fig. 21. Box objects prediction results. See equations 17 and 20
for the utilised parametrisation and see text for further details.

15 and 30. In each of the figures, results for the order
and level of abstraction through semantic are shown. We
see, that the higher order we use and the more seman-
tic we add, the prediction results improve. An improve-
ment is observed when we go to second order relations
as compared to first order (see orange line (N=2) com-
pared to the red line (N=1) in Fig. 23), however we
do not see any significant improvement in the predic-
tion power when we add the semantic of a boundary
without direction (comparing red and blue lines, and
comparing orange and yellow lines), although we have a
better object set coverage as the full line is resulting in
a higher success probability. A significant improvement
of success prediction rating is however achieved for sec-
ond order relations with boundary and direction (brown
line). We see however a small drop when we reach the
higher end of the selection filter. This can be explained
with the fact that the voting method act as a smoothing
operator hence high prediction areas will be in general
occurring rarely. When we compare the results acquired
for the different granularities, we see a similar outcome
as in Figs. 21 and 22. The results for the percentage
of grasped objects show some interesting patterns. In
general the parametrisations with N=2, show a rather
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Fig. 22. Round objects prediction results. See equations 17 and
20 for the used parametrisation, and see text for further details.

good coverage with a percentage between 0.6 and 1.0.
In particular the most elaborated representation (brown
line) shows close to full coverage. The parametrisations
with N=1 show in general less coverage as the general-
isation is worse. For the parametrisation of N=1 with
boundary and direction it is seen that even a the low-
est selection threshold, only around half the objects are
covered which tells that although we have a good pre-
diction (dotted green line) the generalisation over the
object is not convincing.

6.3 Qualitative analysis of the power of
semantic information

In order to illustrate the performance gain we get when
we introduce the boundary semantic, we present a visu-
alisation of the ActionPerceptionDB for the three first
order cases. The visualisations are shown in Fig. 24. In
the centre, a surfling feature is placed and the coloured
area around the feature represents how the actions are
distributed with respect to the pose of the feature. The
colour coding of the actions depicts the likelihood of
success for that particular particle.

For Υ5
1 we see a uniform distribution of success

probability, whereas for Υ5,β̂
1 we see two rather uni-

formly coloured areas. Noticeable is an inner part with
a higher success likelihood as compared to the outer
part. This is explained with the added knowledge of the
boundary, specifically by the fact that, at the boundary,
a successful action will be closer to the feature, hence
the inner circle captures both the successful boundary
grasp as well as unsuccessful, whereas the outer part
mostly capture the non-boundary action.

When assessing Υ5,β
1 , it becomes obvious what we

gain by introducing the direction towards the bound-
ary. The visualisation shows a high likelihood of success
along the direction of the boundary and the further the
grasp are located orientational wise from the boundary
direction a lower success likelihood is observed.

To visualise how the power of semantic constitute
itself when applied for predicting actions, a visualisation
of the distribution of predicted grasps for an object is
shown in Fig. 25. The figure shows the prediction result
for a pitcher, where the order and level of semantic are
varied. One can easily notice how the introduction of
boundary and direction information for both first and
second order cases allow for high success areas at the
boundary of the pitcher.

6.4 Support filtering

In order to investigate the impact of the support filter, a
series of experiments based on the open object set have
been performed, in which the amount of particles used
from the first stage of the neighbourhood analysis is var-
ied. We filter by choosing the zeroth to the tenth decile
of the particles based on their support, e.g., split the first
decile lowest supported particles from the highest sup-
ported particles and then utilise the highest supported
part. Hereby we cover the extreme situations, from using
every particle to using very few. The acquired results are
presented in Fig. 26. Note the support level is described
as a measure between zero and 1.0.

From the results, three main points are derived:
(1) When assessing the results for Avg-1 for the

four cases, Υ1, Υβ̂
1 , Υ2 and Υβ̂

2 , the observed pattern
shows, that a lower support filter results in higher suc-
cess rate, although only at lower selection threshold.
When comparing the results of Avg-1 with Avg-2 for
the same four cases, it is noticed that a larger support
level result in a higher success rate for the instances
that are found. This is in particular seen for Υ1 and Υ2,
as the selection threshold increases towards 1.0. This re-
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Fig. 23. Prediction result for open objects of granularity 5, 15 and 30. See equations 17–22 for the used parametrisation, and see text
for further details.

Fig. 24. The three visualisations show how the learned particles
are distributed, when the feature part of the particles is posi-
tioned in the centre. The three cases are Υ5

1 (left), Υ5,β̂
1 (mid-

dle) and Υ5,β
1 (right). Red colour depict a success likelihood of

0.0 and green a success likelihood of 1.0.

sult indicates, that with a higher support level very good
prediction for a subset of the objects can be derived.

(2) When assessing the Υβ
1 results the pattern is

significantly different. For Avg-1 the prediction results
show similar performance independent of the applied
support level, with the only exception being the highest
support level, where the performance is degrading at
a low selection threshold. The results for Avg-2 show
that if a prediction is found, then a higher success rate
is achieved when a high support level is used.

(3) When assessing the results for Υβ
2 the recog-

nised pattern for both the averages, Avg-1 and Avg-
2, show similar performance with a small advantage at

the higher support levels. Especially at the two highest
support levels, an improved performance is noticed. The
reason for the improvement is related to the predictive
power of the representation: If we are able to find parti-
cles of high support and high success probability, then
when filtering for a high support level, we would keep
these “good” particles.

To summarise the outcome of the support filter ex-
periment, it can be observed that for the less elaborated
feature representations, good predictions can be found
for individual instances of objects at a high support
level, whereas generalisation is in general not observed
when utilising a lot of instances (a low support level).
For the more elaborated visual representations, it be-
comes evident, that we are able to achieve an improved
performance and still retain the generalisation when us-
ing a higher support level. This result indicates, that
there indeed exists particular feature relations, which
are predictive for grasping in the provided visual repre-
sentation.
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(a) Υ5
1 (b) Υ5,β̂

1
(c) Υ5,β

1

(d) Υ5
2 (e) Υ5,β̂

2
(f) Υ5,β

2

Fig. 25. Visualisation of the grasp predictions for a pitcher object with feature relations of different order and with different semantic.
The colour depict the predicted likelihood for success. Green meaning a success likelihood of 1.0 and red meaning a success likelihood
of 0.0.

7 Summary and conclusion
In this paper, we have introduced a method for finding
combinations of visual features that are predictive for
actions. The method has been exemplified for the prob-
lem of learning grasping actions. We have performed an
analysis of the cross space of perceptual features and
grasping actions with special focus on how an enrich-
ment of the perception side leads to improvements of
the derived prediction.

Through the performed investigations, we have been
able to learn actions with a high likelihood of success for
three different object classes, namely box like, round and
open objects. For the box and round object set we were
able to reach a grasp prediction success of up to 0.90
and 0.80 respectively, when utilising a second order fea-
ture constellation as a perceptual descriptor. This high
success rate should be seen in the context that grasping
of those objects is a rather simple task. For the more
difficult open object set, we investigated in addition to
granularity and order of feature combination also the
impact of additional semantic information attached to
the features through boundary information. From these

results, we were able to achieve a success-rate of up to
0.75, when second order features with added semantic
where utilised on the perception side.

By that we have replaced manual design of affor-
dances as done in [2] by learning. We could confirm that
relatively high success rates for action feature associa-
tions built by means of rather basic features is possible.
Moreover and most importantly, we have shown how the
structure of the feature space influences the results of
the algorithm. For that we investigated three important
dimensions of a feature space motivated by the visual
hierarchy of the human visual system: granularity, order
of features and semantic abstraction. Since our approach
is not restricted to grasping, in future work we plan to
apply our algorithm to other action affordances.

A Learning methodology
experiments

In the following subsections, two aspects of the learn-
ing approach will be investigated and one aspect of the
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Fig. 26. Prediction results for the open object set, with a feature size of 5 and different support filters, see equations 17–22 for the
used parametrisations, and see text for further details.

simulation scenario: (1) The prediction results when the
direct action proposition approach (see section 4.3.1) is
applied, (2) the difference between an automatically-
and a manually set threshold (see section 4.2.1) and (3)
a comparison between a free-floating environment and
a table environment with gravity acting for grasp sim-
ulation (see section 5.2).

A.1 Direct action proposition approach

As a comparison to the voting scheme (see section 4.3.2),
a number of experiments were performed using the di-
rect action proposition method (see section 4.3.1). The
experimental results are presented in table 1. Com-
pared to the results presented when utilising the vot-
ing method (see section 6.1), these results are evaluated
with a single measure depicting the success prediction.
In the experiments, the order and granularity were var-
ied for the box- and round object classes, whereas the

level of semantic in addition were varied for the open
object class. For the box- and round objects, two things
can be observed: (1) A larger feature size improves the
success rate for the first order cases, whereas it degrades
for the second order cases, and (2) the success rate is
in general higher for the second order cases. The im-
provement due to a larger feature is explained by the
increased object knowledge. This information gain how-
ever seems to be counteracted by the addition of an-
other feature, resulting in a degradation of prediction
performance for the larger feature. For the open ob-
jects, three things can be observed. (1) The performance
when utilising the representations without any seman-
tic is very low, however an improvement is noticed when
going from the first order cases to second order cases.
(2) For the first order cases, a larger feature results in
a better prediction rate. This is not the case for the
second order cases, where the highest prediction rate is
achieved at a feature size of 15. (3) The highest over-
all prediction rate is achieved at a representation based
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FeatureSize ObjectSet Order + Abstraction
σ N=1 N=1, β̂ N=1, β N=2 N=2, β̂ N=2, β

5

Box objects 0.51 - - 0.65 - -
Round objects 0.57 - - 0.66 - -
Open objects 0.05 0.10 0.44 0.12 0.14 0.45

15

Box objects 0.54 - - 0.61 - -
Round objects 0.62 - - 0.63 - -
Open objects 0.06 0.08 0.52 0.12 0.18 0.49

30

Box objects 0.54 - - 0.60 - -
Round objects 0.67 - - 0.56 - -
Open objects 0.08 0.08 0.53 0.11 0.13 0.45

Table 1. Prediction results when utilising the direct action proposition method. The used parametrizations are found in equations 17–
22, and see text for further details.

on Υ30
1 . This essentially tells us, that the information

gain from a larger feature is superior to adding another
feature when used in connection with the direct action
proposition method.

Finally, when comparing the results with the voting
method, the direct action approach show lower perfor-
mance, which is explained by the direct attachment of
an action to a perceptual representation. This compares
to the multiple particles, that are used to vote for a sin-
gle action in the voting method.

A.2 Automatic vs. manual threshold

In this experiment we show the impact of an auto-
matically chosen threshold as compared to a manually
chosen threshold (see equations 14, 15 and 16 in sec-
tion 4.2.1). In Fig. 27, the outcome of the experiments
are shown for the three different object classes. We fo-
cus on the results with highest abstraction and order,
meaning Υβ

2 for the open objects and Υ2 for the box and
round objects. For the open objects, we see an improved
performance when the manual threshold is used. Both
the top point of the curve and the consistency between
the selection threshold and the prediction rate on the
high end of the selection threshold show superior per-
formance compared to an automatic thresholding. For
the box- and round objects, the automatic threshold re-
sults show slightly better performance as the top point
has a higher success rate, although the curve drops ear-
lier than the manually selected threshold.

From these results, it can be derived, that an auto-
matically chosen threshold shows a tendency to smooth
the data more. Hence, the correspondence between the
selection threshold and the actually success outcome is

suboptimal close to the selection threshold of 1.0. How-
ever, although the manual chosen threshold shows bet-
ter consistency between the selection threshold and the
actual prediction, it comes with the cost of a lower top
point and the need to manually define the threshold for
the individual dimensions of the parametrisation.

A.3 Table vs. Free-floating scenario

In this experiment a comparison between a dynamic
grasp simulation performed in free-floating and in a
gravitation field is performed. By means of this com-
parison, we justify the usage of the “simpler” free-
floating environment for the experiments performed in
this work. To make this comparison, an experiment is
performed on one set of objects, the open object set (see
Fig. 13) and based on the results, we discuss why we be-
lieve the simpler scenario is preferable in this context.
Initially the two different scenarios are explained.

The free-floating scenario, as explained in sec-
tion 5.2, is a simulation performed with the object float-
ing in space, enabling grasping from every direction
without any gravity working in the simulation. How-
ever, the dynamic forces between the manipulator and
object are still simulated. In contrast, the scenario with
gravity, denoted the “table scenario”, is limited by the
fact that the object has to stand on a table perpendicu-
lar to the direction of gravity, hereby enabling grasping
with gravity. In the free-floating environment there is no
limitation on the ability to execute the grasps, however
when presented with a table scenario a lot of potential
grasps will initially be in collision with table and there-
fore do not make sense to execute. In the next section
the setting for the experiments will be presented, then
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Fig. 27. Automatic vs. manual set threshold for the three different object set, see equations 17–22 for the used parametrisations, and
see text for further details.

the results are presented and then finally the results will
be summarised and interpreted.

A.3.1 Setting

The general setting for the experiments of the free-
floating scenario is as explained in section 5. The setting
for the table scenario is slightly different. All the open
objects are placed on a table in a stable position with
the opening away from the table. The gravity is set to
−9.82m

s2 along the normal of the table.
Given that the open objects primarily are graspable

by the rim, this object setting allows for the objects still
to be grasped. Secondly this could be seen as the “nat-
ural” pose of the objects. However when we then do a
filtering based on gripper collision with the table, we re-
move a lot potential grasps from the equation, and due
to the pose of the object this means that the probability
to pick a successful grasps by chance is increased signif-
icantly. This can be seen when comparing the random
line (see dotted black line) in the two result plots of
Figs. 29 and 30. In Fig. 28 the distribution of grasps is
visualised for the pitcher object with and without the
filtering. As the intuition suggest, all the grasps at the
bottom of the objects are filtered away as they collide
with the table. Although not obvious from the visuali-
sation, approximately half the grasps are filtered away
for this object.

A.3.2 Results

In order to justify the use of the free-floating environ-
ment, we present results obtained in both environments,
free-floating and table, and discuss the differences. Ini-
tially, we assess the results in Fig. 28. Qualitatively

Fig. 28. Visualisation of the consequences of filtering due to col-
lision in a table scenario. The pitcher object is used as example.
The left column shows a visualisation of the grasp distribution
(shown with small stick figures, the pink and red ones are failed
grasps and the green ones are successful grasps) for the free-
floating scenario and the right columns shows a visualisation of
the grasp distribution after filtering for the table scenario. The
top row shows the full grasping set and the bottom row shows a
randomly chosen subset of 1000 grasps. In free-floating scenario
22,000 grasps, in table scenario — due to filtering — only 12,794
grasps.
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the grasp outcome of the two scenarios are very similar.
The distribution of successful grasps around the rim of
the object seem similar, whereas there seem to be differ-
ences around the handle of the pitcher, suggesting that
the addition of gravity makes it easier to grasp the han-
dle. Otherwise the most obvious observation is the lack
of grasps from the bottom of the object, due to colli-
sions with the table. This result indicates that although
there are some differences between the two scenarios due
to the required filtering, the similarity between them is
significant. The second results are presented in Figs. 29
and 30. These results show the prediction performance,
similar to the core results presented in section 6.2, on
the open objects for the two different scenarios. A num-
ber of conclusions can be derived from the results. First,
the random chance of successfully picking a successful
grasp is significantly increased for the table scenario (see
dotted black line). This increase is caused by the fil-
tering process and the fact that the successful grasps
primarily are at the top rim of the objects, hence the
vast majority of grasps filtered away are unsuccessful.
Regarding the performance of the prediction, a certain
pattern emerges. The parametrisation with, N = 2, β
performs to a significant extent similarly when com-
paring the two scenarios. The other parametrisations
show however a slightly different outcome. They all have
increased performance in the table scenario, which is
explained by the increased chance to be successful by
random choice. Other than that, the most significant
change is the increased performance in the table sce-
nario for the parametrisation where boundary informa-
tion is used. This can be in particular seen for the case
N = 1, β, which shows similar performance as the N = 2,
β case. The reason for this drastic improvement is that
by filtering away the grasps at the bottom of the ob-
jects, a significant amount of boundary features found
are not considered in learning and prediction, making
a single boundary an even more significant feature in
terms of successful grasps. See Fig. 16d and notice the
boundary semantic features at the bottom of the ob-
ject. The results for the percentage of objects that have
been grasped show a similar pattern for the two differ-
ent experiments. The percentages of grasped objects for
the table scenario seem to drop a bit faster as compared
to the free-floating scenario. A significant change is seen
for N=1 β, where in the table scenario a higher coverage
can be noted. This is explained with the same argument
as before, namely that the table scenario filtering lim-
its the perceptual space and therefore allows for better
generalisation over the objects.

A.3.3 Summary

Based on the previously presented results the following
points summarise the results: (1) Qualitatively a sce-
nario with gravity exhibit similar performance as one in
a free-floating environment, exemplified by the visuali-
sation in Fig. 28. (2) In terms of the ability to predict
grasp affordances with the most elaborated perceptual
representation (N = 2, β), prediction performance ex-
hibit comparable characteristics with success prediction
rate around 0.70. (3) There is a significant improvement
in the table scenario of the less elaborated feature repre-
sentations, this however is explained by the bias that the
filtering criteria needed for a table scenario produces,
allowing for the simpler representation to expose this
bias.

Given these results, we derive the following conclu-
sion. From a strict grasping point of view, it would be
preferable to perform the grasp simulations in an en-
vironment with gravity. However, in these experiments
it has been demonstrated that the free-floating envi-
ronment simulations deliver comparable performance,
both exposed from a qualitative point of view and in
the use for learning and predicting grasp affordances.
What the experiments also exposed was the strong con-
text specific bias, that a table scenario induces into the
system, making the exploration of the perceptual spaces
for grasp affordance learning and prediction performed
in this paper diffuse. Based on these conclusion we find
it justified to use the free-floating environment for our
investigations of the perceptual action space.
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Learning discrete Markov random fields (MRFs) has been an
important yet challenging machine learning task. In general,
learning Markov random fields (MRF) is intractable due to the
presence of partition function. Persistent contrastive divergence
(PCD), known as a state-of-the-art learning algorithm for Markov
random fields (MRFs), is a Robbins-Monro’s stochastic approx-
imation procedure (SAP) with Gibbs sampling as transitions
(Salakhutdinov, 2010). We conduct an empirical study on a
SAP with an alternative transition: binary Hamiltonian Monte
Carlo. Ususally sampling-based method (e.g. Markov chain
Monte Carlo) is employed for approximation. However, when
the disibution exhibts multiple modes, the standard Metropplois
algorithm will lead to low mxing rate of Markov chains. Hamil-
tonian Monte Carlo (HMC) is a Metropolis algorithm with a pro-
posal distribution analogous to Hamiltonian dynamics. Compared
to random walk in the standard Metropolis algorithm, HMC can
propose a distant jump while still preserving a high acceptance
rate. Suppose that we are interested in sampling from p(x) (where
x ∈ RD). An auxiliary variable q ∈ RD with q ∼ N (q;0,M)
is introduced (usually M = c · ID). A Hamiltonian function can
be constructed as:

H(x,q) = U(x) +K(q) (1)

where U(x), K(q) are negative logarithms of p(x) and p(q).
The changes of x and q over time ν are:

ẋ(ν) =
∂H
∂q(ν)

= M−1q(ν) q̇(ν) = − ∂H
∂x(ν)

= −dU(x)

dx(ν)
(2)

HMC can yield more effective sampling by making use of gradi-
ent information of target distribution’s density function. We can
also see, from (2), that HMC can only be applied on continuous
distributions of which the partial derivatives of the log density
function can be computed. Therefore, applying HMC to sample
from discrete MRFs is not straightforward. However, the ran-
dom variables are discrete in many applications (e.g. computer
vision, natural language processing), Luckily, Zhang et al. (2012)
pointed out that all discrete MRFs can be generally converted to
Boltzmann machines (BMs):

p(x;θ) =
exp (−E(x;θ))

Z(θ)
, E(x;θ) = −

∑
i<j

xixjWij (3)

where x ∈ {−1,+1}D , θ = {Wij}. In addition, Pakman and
Paninski (2013) developed an extension of HMC for binary dis-
tribution to learn Bayesian regression with spike-and-slab prior.
Here we attempt to apply this extended HMC, which we refer to
as binary HMC (bHMC), for our purpose of learning Boltzmann
machines (so also discrete MRFs). Assume that we are interested
in sampling from a Boltzmann machine p(x ∈ {−1,+1}D). An

auxiliary, continuous variable y ∈ RD can be added with its con-
ditional probability on x as a truncated Gaussian:

p(y|x) =
{
c · exp(−y>y

2
) ∀d ∈ [1, D], sign(yd) = xd

0 otherwise
(4)

Hence, instead of sampling x directly, we can sample y first and
take their signs as our desired samples. By making use of orthant
consistency constraint in (4), we can have:

p(y) =
∑
x

p(y|x)p(x;θ) = p(y|x)p(x;θ) (5)

Since y is continuous, we can employ HMC to sample them from
p(y). By substituting (5) into (1) and (2), we can have:

yd(ν) = ud sin(ωd + ν) qd(ν) = ud cos(ωd + ν) (6)

where ud =
√
yd(0)2 + qd(0)2, and ωd = tan−1

(
yd(0)
qd(0)

)
.

In addition, since (6) keeps Hamiltonian function (1) invariant,
change of y,q according to (6) are always accepted. It can be
seen in (6) that (qd, yd) actually moves counterclockwisely along
a circle with radius ud. However, one issue arising from disconti-
nuity of p(y|x) is that when yd hits 0 at time ν∗, whether it will
be reflected from the yd = 0 or cross it depends on the sign of:

q2d(ν
−
∗ )

2
− (E(−xd,x¬d;θ)− E(xd,x¬d;θ)) (7)

where qd(ν−∗ ) is the qd immediately before time ν∗, so it equlals
to ud. (7) can be considered as a pseudo Gibbs sampling. When
E(−xd,x¬d;θ)−E(xd,x¬d;θ) > 0, the probability of switch-
ing sign of xd is lower than not. According to (7), as long as
the energy raise is smaller than a threshold u2

d/2, the switch
still can take place. In addition, with different initializations
of (yd(0), qd(0)), different yd will hit 0 at different time νd∗ ,
so bHMC is a randomly scheduled sampling. Finally, since
yd(Nπ) = y(0) if yd always gets reflected, traveling time is
recommended as T = (N + η)π so as to avoid degeneracy of
samples (η ∈ (0, 1)). In conclusion, bHMC somehow resem-
bles Gibbs sampling but with a different acceptance criterion. To
verify its practical applicabilities, we compared it against Gibbs
sampling in SAP (with different c,N, η) on training a toy Bolt-
mann machine (D = 10), the results are presented as follows.
Our empirical results suggest that the SAP with bHMC is inferior
to the one with Gibbs sampling for learning discrete MRFs.
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Abstract
Along with the emergence of algorithms such as persistent contrastive divergence (PCD), tem-
pered transition and parallel tempering, the past decade has witnessed a revival of learning undi-
rected graphical models (UGMs) with sampling-based approximations. In this paper, based upon
the analogy between Robbins-Monro’s stochastic approximation procedure and sequential Monte
Carlo (SMC), we analyze the strengths and limitations of state-of-the-art learning algorithms from
an SMC point of view. Moreover, we apply the rationale further in sampling at each iteration,
and propose to learn UGMs using persistent sequential Monte Carlo (PSMC). The whole learn-
ing procedure is based on the samples from a long, persistent sequence of distributions which are
actively constructed. Compared to the above-mentioned algorithms, one critical strength of PSMC-
based learning is that it can explore the sampling space more effectively. In particular, it is robust
when learning rates are large or model distributions are high-dimensional and thus multi-modal,
which often causes other algorithms to deteriorate. We tested PSMC learning, also with other re-
lated methods, on carefully-designed experiments with both synthetic and real-world data, and our
empirical results demonstrate that PSMC compares favorably with the state of the art.
Keywords: Sequential Monte Carlo, maximum likelihood learning, undirected graphical models.

1. Introduction

Learning undirected graphical models (UGMs), or Markov random fields (MRF), has been an im-
portant yet challenging machine learning task. On the one hand, thanks to its flexible and powerful
capability in modeling complicated dependencies, UGMs are prevalently used in many domains
such as computer vision, natural language processing and social analysis. Undoubtedly, it is of
great significance to enable UGMs’ parameters to be automatically adjusted to fit empiric data, e.g.
maximum likelihood (ML) learning. A fortunate property of the likelihood function is that it is
concave with respect to its parameters (Koller and Friedman, 2009), and therefore gradient ascent
can be applied to find the unique maximum. On the other hand, learning UGMs via ML in general
remains intractable due to the presence of the partition function. Monte Carlo estimation is a prin-
cipal solution to the problem. For example, one can employ Markov chain Monte Carlo (MCMC)
to obtain samples from the model distribution, and approximate the partition function with the sam-
ples. However, the sampling procedure of MCMC is very inefficient because it usually requires a
large number of steps for the Markov chain to reach equilibrium. Even though in some cases where
efficiency can be ignored, another weakness of MCMC estimation is that it yields large estima-
tion variances. A more practically feasible alternative is MCMC maximum likelihood (MCMCML;

c© 2014 H. Xiong, S. Szedmak & J. Piater.
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Geyer 1991); see section 2.1. MCMCML approximates the gradient of the partition function with
importance sampling, in which a proposal distribution is initialized to generate a fixed set of MCMC
samples. Although MCMCML increases efficiency by avoiding MCMC sampling at every iteration,
it also suffers from high variances (with different initial proposal distributions). Hinton (2002) stud-
ied contrastive divergence (CD) to replace the objective function of ML learning. This turned out to
be an efficient approximation of the likelihood gradient by running only a few steps of Gibbs sam-
pling, which greatly reduces variance as well as the computational burden. However, it was pointed
out that CD is a biased estimation of ML (Carreira-Perpinan and Hinton, 2005), which prevents it
from being widely employed (Tieleman, 2008; Tieleman and Hinton, 2009; Desjardins et al., 2010).
Later, a persistent version of CD (PCD) was put forward as a closer approximation of the likelihood
gradient (Tieleman, 2008). Instead of running a few steps of Gibbs sampling from training data in
CD, PCD maintains an almost persistent Markov chain throughout iterations by preserving samples
from the previous iteration, and using them as the initializations of Gibbs samplers in the current
iteration. When the learning rate is sufficiently small, samples can be roughly considered as being
generated from the stationary state of the Markov chain. However, one critical drawback in PCD is
that Gibbs sampling will generate highly correlated samples between consecutive weight updates,
so mixing will be poor before the model distribution gets updated at each iteration. The limitations
of PCD sparked many recent studies of more sophisticated sampling strategies for effective explo-
ration within data space (section 3). For instance, Salakhutdinov (2010) studied tempered transition
(Neal, 1994) for learning UGMs. The strength of tempered transition is that it can make potentially
big transitions by going through a trajectory of intermediary Gibbs samplers which are smoothed
with different temperatures. At the same time, parallel tempering, which can be considered a paral-
lel version of tempered transition, was developed by Desjardins et al. (2010) for training restricted
Boltzmann machines (RBMs). Contrary to a single Markov chain in PCD and tempered transition,
parallel tempering maintains a pool of Markov chains governed by different temperatures. Multi-
ple tempered chains progress in parallel and are mixed at each iteration by randomly swapping the
states of neighbouring chains.

The contributions of this paper are twofold. The first is theoretic. By linking Robbins-Monro’s
stochastic approximation procedure (SAP; Robbins and Monro 1951) and sequential Monte Carlo
(SMC), we cast PCD and other state-of-the-art learning algorithms into a SMC-based interpreta-
tion framework. Moreover, within the SMC-based interpretation, two key factors which affect the
performance of learning algorithms are disclosed: learning rate and model complexity (section 4).
Based on this rationale, the strengths and limitations of different learning algorithms can be analyzed
and understood in a new light. The second contribution is practical. Inspired by the understanding
of learning UGMs from a SMC perspective, and the successes of global tempering used in parallel
tempering and tempered transition, we put forward a novel approximation-based algorithm, persis-
tent SMC (PSMC), to approach the ML solution in learning UGMs. The basic idea is to construct
a long, persistent distribution sequence by inserting many tempered intermediary distributions be-
tween two successively updated distributions (section 5). According to our empirical results on
learning two discrete UGMs (section 6), the proposed PSMC outperforms other learning algorithms
in challenging circumstances, i.e. large learning rates or large-scale models.
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2. Learning Undirected Graphical Models

In general, we can define undirected graphical models (UGMs) in an energy-based form:

p(x;θ) =
exp (−E(x;θ))

Z(θ)
(1)

Energy function: E(x;θ) = −θ>φ(x) (2)

with random variables x = [x1, x2, . . . , xD] ∈ XD where xd can take Nd discrete values, φ(x) is
a K-dimensional vector of sufficient statistics, and parameter θ ∈ RK . Z(θ) =

∑
x exp(θ>φ(x))

is the partition function for global normalization. Learning UGMs is usually done via maximum
likelihood (ML). A critical observation of UGMs’ likelihood functions is that they are concave with
respect to θ, therefore any local maximum is also global maximum (Koller and Friedman, 2009),
and gradient ascent can be employed to find the optimal θ∗. Given training data D = {x(m)}Mm=1,
we can compute the derivative of average log-likelihood L(θ|D) = 1

M

∑M
m=1 log p(x(m);θ) as

∂L(θ|D)

∂θ
= ED(φ(x))︸ ︷︷ ︸

ψ+

−Eθ(φ(x))︸ ︷︷ ︸
ψ−

, (3)

where ED(ξ) is the expectation of ξ under the empirical data distribution pD = 1
M

∑M
m=1 δ(x

(m)),
while Eθ(ξ) is the expectation of ξ under the model probability with parameter θ. The first term
in (3), which is often referred to as positive phase ψ+, can be easily computed as the average of
φ(x(m)),x(m) ∈ D. The second term in (3), also known as negative phase ψ−, however, is not
trivial because it is a sum of

∏D
d=1Nd terms, which is only computationally feasible for UGMs

of very small size. Markov chain Monte Carlo (MCMC) can be employed to approximate ψ−,
although it is usually expensive and leads to large estimation variances. The underlying procedure
of ML learning with gradient ascent, according to (3), can be envisioned as a behavior that iteratively
pulls down the energy of the data space occupied by D (positive phase), but raises the energy over
all data space XD (negative phase), until it reaches a balance (ψ+ = ψ−).

2.1. Markov Chain Monte Carlo Maximum Likelihood

A practically feasible approximation of (3) is Markov chain Monte Carlo maximum likelihood
(MCMCML; Geyer 1991). In MCMCML, a proposal distribution p(x;θ0) is set up in the same
form as (1) and (2), and we have

Z(θ)

Z(θ0)
=

∑
x exp(θ>φ(x))∑
x exp(θ>0 φ(x))

(4)

=

∑
x exp(θ>φ(x))

exp(θ>0 φ(x))
× exp(θ>0 φ(x))∑

x exp(θ>0 φ(x))
(5)

=
∑
x

exp
(

(θ − θ0)>φ(x)
)
p(x;θ0) (6)

≈ 1

S

S∑
s=1

w(s) (7)
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Algorithm 1 MCMCML Learning Algorithm

Input: training data D = {x(m)}Mm=1; learning rate η; gap L between two successive proposal
distribution resets

1: t← 0, initialize the proposal distribution p(x;θ0)
2: while ! stop criterion do
3: if (t mod L) == 0 then
4: (Re)set the proposal distribution as p(x;θt)
5: Sample {x̄(s)} from p(x;θt)
6: end if
7: Calculate w(s) using (8)
8: Calculate gradient ∂L̃(θ|D)

∂θ using (9)

9: update θt+1 = θt + η ∂L̃(θ|D)
∂θ

10: t← t+ 1
11: end while
Output: estimated parameters θ∗ = θt

where w(s) is
w(s) = exp

(
(θ − θ0)>φ(x̄(s))

)
, (8)

and the x̄(s) are sampled from the proposal distribution p(x;θ0). By substituting Z(θ) =
Z(θ0) 1

S

∑S
s=1w

(s) into (1) and average log-likelihood, we can compute corresponding gradient
as (note Z(θ0) will be eliminated since it corresponds to a constant in the logarithm)

∂L̃(θ|D)

∂θ
= ED(φ(x))− Eθ0(φ(x)), (9)

where Eθ0(ξ) is the expectation of ξ under a weighted empirical data distribution pθ0 =∑S
s=1w

(s)δ(x̄(s))/
∑S

s=1w
(s) with data sampled from p(x;θ0). From (9), it can be seen that

MCMCML does nothing more than an importance sampling estimation of ψ− in (3). MCMCML
has the nice asymptotic convergence property (Salakhutdinov, 2010) that it will converge to the ex-
act ML solution when the number of samples S goes to infinity. However, as an inherent weakness
of importance sampling, the performance of MCMCML in practice highly depends on the choice of
the proposal distribution, which results in large estimation variances. The phenomenon gets worse
when it scales up to high-dimensional models. One engineering trick to alleviate this pain is to re-
set the proposal distribution, after a certain number of iterations, to the recently updated estimation
p(x;θestim) (Handcock et al., 2007). Pseudocode of the MCMCML learning algorithm is presented
in Algorithm 1.

3. State-of-the-art Learning Algorithms

Contrastive Divergence (CD) is an alternative objective function of likelihood (Hinton, 2002), and
turned out to be de facto a cheap and low-variance approximation of the maximum likelihood (ML)
solution. CD tries to minimize the discrepancy between two Kullback-Leibler (KL) divergences,
KL(p0|p∞θ ) and KL(pnθ |p∞θ ), where p0 = p(D;θ), pnθ = p(D̄n;θ) with D̄n denoting the data sam-
pled after n steps of Gibbs sampling with parameter θ, and p∞θ = p(D̄∞;θ) with D̄∞ denoting the

4
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data sampled from the equilibrium of a Markov chain. Usually n = 1 is used, and correspondingly
it is referred to as the CD-1 algorithm. The negative gradient of CD-1 is

−
∂
(
CD1(D;θ)

)
∂θ

= ED(φ(x))− ED̄1
(φ(x)) (10)

where ED̄1
(ξ) is the expectation of ξ under the distribution p1

θ. The key advantage of CD-1 is that it
efficiently approximates ψ− in the likelihood gradient (3) by running only one step Gibbs sampling.
While this local exploration of sampling space can avoid large variances, CD-1 was theoretically
(Carreira-Perpinan and Hinton, 2005) and empirically (Tieleman, 2008; Tieleman and Hinton, 2009;
Desjardins et al., 2010) proved to be a biased estimation of ML .

Persistent Contrastive Divergence (PCD) is an extension of CD by running a nearly persis-
tent Markov chain. For approximating ψ− in likelihood gradient (3), the samples at each iteration
are retained as the initialization of Gibbs sampling in the next iteration. The mechanism of PCD
was usually interpreted as a case of Robbins-Monro’s stochastic approximation procedure (SAP;
Robbins and Monro 1951) with Gibbs sampling as transitions. In general SAP, if the learning rate
η is sufficiently small compared to the mixing rate of the Markov chain, the chain can be roughly
considered as staying close to the equilibrium distribution (i.e. PCD→ML when η → 0). Never-
theless, Gibbs sampling as used in PCD heavily hinders the exploration of data space by generating
highly correlated samples along successive model updates. This hindrance becomes more severe
when the model distribution is highly multi-modal. Although multiple chains (mini-batch learning)
used in PCD can mitigate the problem, we cannot generally expect the number of chains to exceed
the number of modes. Therefore, at the late stage of learning, PCD usually gets stuck in a local
optimum, and in practice, small and linearly-decayed learning rates can improve the performance
(Tieleman, 2008).

Tempered Transition was originally developed by Neal (1994) to generate relatively big jumps
in Markov chains while keeping reasonably high acceptance rates. Instead of standard Gibbs sam-
pling used in PCD, tempered transition constructs a sequence of Gibbs samplers based on the model
distribution specified with different temperatures:

ph(x;θ) =
exp(−E(x;θ)βh)

Z(h)
(11)

where h indexes temperatures h ∈ [0, H] and βH are inverse temperatures 0 ≤ βH < βH−1 <
· · ·β0 = 1. In particular, β0 corresponds to the original complex distribution. When h increases,
the distribution gets more flat, where Gibbs samplers can more adequately explore. In tempered
transition, a sample is generated with a Gibbs sampler starting from the original distribution. It then
goes through a trajectory of Gibbs sampling through sequentially tempered distributions (11). A
backward trajectory is then run until the sample reaches the original distribution. The acceptance
of the final sample is determined by the probability of the whole forward-and-backward trajectory.
If the trajectory is rejected, the sample does not move at all, which is even worse than local move-
ments of Gibbs sampling, so βH is set relatively high (0.9 in Salakhutdinov 2010) to ensure high
acceptance rates.

Parallel Tempering, on the other hand, is a “parallel” version of Tempered Transition, in which
smoothed distributions (11) are run with one step of Gibbs sampling in parallel at each iteration.
Thus, samples native to more uniform chains will move with larger transitions, while samples native
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to the original distribution still move locally. All chains are mixed by swapping samples of randomly
selected neighbouring chains. The probability of the swap is

r = exp
(
(βh − βh+1)(E(xh)− E(xh+1))

)
(12)

Although multiple Markov chains are maintained, only samples at the original distribution are used.
In the worst case (there is no swap between β0 and β1), parallel tempering degrades to PCD-1. βH
can be set arbitrarily low (0 was used by Desjardins et al. 2010).

4. Learning as Sequential Monte Carlo

Before we delve into the analysis of the underlying mechanism in different learning algorithms, it
is better to find a unified interpretation framework, within which the behaviors of all algorithms can
be more apparently viewed and compared in a consistent way. In most previous work, PCD, tem-
pered transition and parallel tempering were studied as special cases of Robbins-Monro’s stochastic
approximation procedure (SAP; Tieleman and Hinton 2009; Desjardins et al. 2010; Salakhutdinov
2010). These studies focus on the interactions between the mixing of Markov chains and distribu-
tion updates. However, we found that, since the model changes at each iteration, the Markov chain
is actually not subject to an invariant distribution, the concept of the mixing of Markov chains is
fairly subtle and difficult to capture based on SAP.

Alternatively, Asuncion et al. (2010) exposed that PCD can be interpreted as a sequential Monte
Carlo procedure by extending MCMCML to a particle filtered version. To have an quick overview
of sequential Monte Carlo More and how it is related to learning UGMs, we first go back to Markov
chain Monte Carlo maximum likelihood (MCMCML; section 2.1) and examine it in an extreme
case. When the proposal distribution in MCMCML is reset at every iteration as the previously
updated estimation, i.e. L = 1 in Algorithm 1 and the proposal distribution is left as p(x;θt−1)
at the tth iteration, the weights will be computed as w(s) = exp(θt − θt−1)>φ(x̄(s)). Since the
parameters θ do not change very much along iterations, it is not necessary to generate particles1

from proposal distributions at each iteration. Instead, a set of particles are initially generated and
reweighted sequentially for approximating the negative phase. However, if the gap between two
successive θ is relatively large, particles will degenerate. Usually, the effective sampling size (ESS)
can be computed to measure the degeneracy of particles, so if ESS is smaller than a pre-defined
threshold, resampling and MCMC transition are necessary to recover from it. The description above
notably leads to particle filtered MCMCML (Asuncion et al., 2010), which greatly outperforms
MCMCML with small amount of extra computation.

More interestingly, it was pointed out that PCD also fits the above sequential Monte Carlo
procedure (i.e. importance reweighting + resampling + MCMC transition) with uniform weighting
for all particles and Gibbs sampling as MCMC transition. Here we extend this analogy further
to general Robbins-Monro’s SAP, into which tempered transition and parallel tempering are also
categorized, and write out a uniform interpretation framework of all learning algorithms from SMC
perspective (see Algorithm 2). Note that all particle weights are uniformly assigned; resampling has
no effect and can be ignored. In addition, the MCMC transition step is forced to take place at every
iteration, believing that the particle set is always degenerated.

It is also worth noting that when we are applying algorithms in Algorithm 2, we are not inter-
ested in particles from any individual target distribution (which is usually the purpose of SMC).

1. From now on, we use “particles” to fit SMC terminology, it is equivalent to “samples” unless mentioned otherwise.
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Algorithm 2 Interpreting Learning as SMC

Input: training data D = {x(m)}Mm=1; learning rate η
1: Initialize p(x;θ0), t← 0

2: Sample particles {x̄(s)
0 }Ss=1 ∼ p(x;θ0)

3: while ! stop criterion do
4: // importance reweighting

Assign w(s) ← 1
S , ∀s ∈ S

5: // resampling is ignored because it has no effect
6: // MCMC transition
7: switch (algorithmic choice)
8: case CD:
9: generate a brand new particle set {x̄(s)

t+1}Ss=1 with one step Gibbs sampling from D
10: case PCD:
11: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}Ss=1 with one step Gibbs sampling

12: case Tempered Transition:
13: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}Ss=1 with tempered transition

14: case Parallel Tempering:
15: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}Ss=1 with parallel tempering

16: end switch
17: // update distribution

Compute the gradient ∆θt according to (3)
18: θt+1 = θt + η∆θt
19: t← t+ 1
20: end while
Output: estimated parameters θ∗ = θt

Instead, we want to obtain particles faithfully sampled from all sequence distributions. It can be
easily imagined that one badly sampled particle set at tth iteration will lead to a biased incremental
update ∆θt. Consequently, the learning will go to a wrong direction even though the later sampling
is perfectly good. In other words, we are considering all sequentially updated distributions p(x;θt)
as our target distributions.

In practice, the performance of SMC highly depends on the construction of sequential distri-
butions. In our learning case, sequential distributions are learned by iterative updates, therefore,
learning and sampling are somehow entangled. As we mentioned earlier, particles will degenerate
when the gap between successive sequential distributions is large. Checking ESS followed by re-
sampling and MCMC transition can help to some extent. However, in many practical cases where
real-world distributions are extremely complex, more consideration on MCMC transition is due. In
our case of learning UGMs, the gap can be intuitively understood as the product of learning rate
η and model complexity O(θ). Therefore, we believe that learning rate and model complexity2 are
two key factors to challenge learning algorithms.

2. Here we consider the multimodality of a distribution as its complexity, i.e. smooth distributions are less complex than
multi-modal distributions.
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Within this SMC-based interpretation, we can see that four algorithms differ from each other at
MCMC transitions, which is an important component in SMC (Schäfer and Chopin, 2013). In PCD,
a one-step Gibbs sampler is used as MCMC transition. As for tempered transition, a Metropolis-
Hasting (MH) move based on forward-and-backward sequence of Gibbs samplers of different tem-
peratures is employed. Likewise, parallel tempering also uses a MH move. This move is generated
by swapping particles native to the distributions of different temperatures. By contrast, in CD, a
brand new particle set is generated by running one-step Gibbs sampling from training data, which
is actually not a MCMC transition. When the learning rate is small and two successive distribu-
tions are smooth (e.g. at the early stage of learning or when the model is of low dimension), PCD,
tempered transition and parallel tempering can traverse sampling space sufficiently well. However,
when the learning rate is large or two sequential distributions exhibt multiple modes (e.g. at the
late stage of learning or when the model is high-dimensional), highly correlated particles from the
one-step Gibbs sampler’s local movement cannot go through the gap between two distributions.
Tempered transition and parallel tempering, instead, are more robust to the large gap since it moves
closer to the later distribution by making use of many globally-tempered intermediary distributions.
The worst case is CD, which always samples particles within the vicinity of training data D. So it
will eventually drop D down into an energy well surrounded by barriers set up by their proximities.

5. Persistent Sequential Monte Carlo

It was explained that learning UGMs can be interpreted as a SMC procedure. Here we propose to
apply this rationale further in learning UGMs with a deeper construction of sequential distributions.
The basic idea is very simple; given particles from p(x;θt), many sub-sequential distributions are
inserted to construct a sub-SMC for obtaining particles from p(x;θt+1). Inspired by global tem-
pering used in parallel tempering and tempered transition, we build sub-sequential distributions
{ph(x;θt+1)}Hh=0 between p(x;θt) and p(x;θt+1) as follows:

ph(x;θt+1) ∝ p(x;θt)
1−βhp(x;θt+1)βh (13)

where 0 ≤ βH ≤ βH−1 ≤ · · ·β0 = 1. In this way, the length of the distribution sequence will be
extended in SMC. In addition, obviously, pH(x;θt+1) = p(x;θt) while p0(x;θt+1) = p(x;θt+1).
Therefore, the whole learning can be considered to be based on a long, persistent sequence of
distributions, and therefore the proposed algorithm is referred to as persistent SMC (PSMC). An
alternative understanding of PSMC can be based on using standard SMC for sampling p(x;θt) at
each iteration. In standard SMC case, the sub-sequential distributions are:

ph(x;θt+1) ∝ p(x;θt+1)βh (14)

where 0 ≤ βH ≤ βH−1 ≤ · · ·β0 = 1. The schematic figures of standard SMC and PSMC
are presented in Figure 1 where we can see a prominent difference between them, the continuity
from p0(x;θt) to pH(x;θt+1). Intuitively, PSMC can be seen as a linked version of SMC by
connecting p0(x;θt) and pH(x;θt+1). In addition, in our implementation of PSMC, to ensure
adequate exploration, only half of the particles from p0(x;θt) are preserved to the next iteration;
the other half particles are randomly initialized with a uniform distribution UD (Figure 1(b)).
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{x̄(s)}Ss=1 ∼ UD

p0(x;θt) p1(x;θt) · · · pH(x;θt)Iteration t:

{x̄(s)}Ss=1 ∼ UD

p0(x;θt+1) p1(x;θt+1) · · · pH(x;θt+1)Iteration t+ 1:

{x̄t,(s)}Ss=1 ∼ pH(x;θt)

{x̄t+1,(s)}Ss=1 ∼ pH(x;θt+1)

(a)

{x̄(s)}S/2s=1 ∼ UD {x̄t−1,(s)}S/2s=1 ∼ pH(x;θt−1)

p0(x;θt) p1(x;θt) · · · pH(x;θt)

{x̄(s)}S/2s=1 ∼ UD {x̄t,(s)}S/2s=1 ∼ pH(x;θt)

p0(x;θt+1) p1(x;θt+1) · · · pH(x;θt+1)

{x̄t+1,(s)}S/2s=1 ∼ pH(x;θt+1)

(b)

Figure 1: The schematic figures of (a) standard sequential Monte Carlo and (b) persistent sequential
Monte Carlo for learning UGMs. Solid boxes denote sequential distributions and solid
arrows represent the move (resampling and MCMC transition) between successive distri-
butions. Dashed boxes are particle sets and dashed arrows mean feeding particles into a
SMC or sampling particles out of a distribution.

One issue arising in PSMC is the number of βh, i.e. H , which is also a problem in parallel
tempering and tempered transition3. Here, we employed the bidirectional searching method (Jasra
et al., 2011). When we construct sub-sequential distributions as (13), the importance weighting for
each particle is

w(s) =
ph(x̄(s);θt+1)

ph−1(x̄(s);θt+1)

= exp
(
E(x̄(s);θt)

)∆βh
exp

(
E(x̄(s);θt+1)

)−∆βh
(15)

where ∆βh is the step length from βh−1 to βh, i.e. ∆βh = βh − βh−1. We can also compute the
ESS of a particle set as (Kong et al., 1994)

σ =
(
∑S

s=1w
(s))2

S
∑S

s=1w
(s)2
∈
[

1

S
, 1

]
(16)

Based on (15) and (16), we can see that, when a particle set is given, ESS σ is actually a function of
∆βh. Therefore, assuming that we set the threshold of ESS as σ∗, we can then find the biggest ∆βh
by using bidirectional search (see Algorithm 3) . Usually a small particle set is used in learning
(mini-patch scheme), so it will be quick to compute ESS. Therefore, with a small amount of extra
computation, the gap between two successive βs and the length of the distribution sequence in
PSMC can be actively determined, which is a great advantage over the manual tunning in parallel
tempering and tempered transition. By integrating all pieces together, we can write out a pseudo
code of PSMC as in Algorithm 4.

3. Usually, there is no systematic way to determine the number of βh in parallel tempering and tempered transition, and
it is selected empirically.
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Algorithm 3 Finding ∆βh

Input: a particle set {x̄(s)}Ss=1, βh−1

1: l← 0, u← βh−1, α← 0.05
2: while |u− l| ≥ 0.005 and l ≤ βh−1 do
3: compute ESS σ by replacing ∆βh with −α according to (16)
4: if σ < σ∗ then
5: u← α, α← (l + α)/2
6: else
7: l← α, α← (α+ u)/2
8: end if
9: end while

Output: Return ∆βh = max(−α,−βh−1)

Algorithm 4 Learning with PSMC

Input: a particle set {x(m)}Mm=1, learning rate η
1: Initialize p(x;θ0), t← 0

2: Sample particles {x̄(s)
0 }Ss=1 ∼ p(x;θ0)

3: while ! stop criterion do
4: h← 0, β0 ← 1
5: while βh < 1 do
6: assign importance weights {w(s)}Ss=1 to particles according to (15)
7: resample particles based on {w(s)}Ss=1

8: compute the step length ∆βh according to Algorithm 3
9: βh+1 = βh + δβ

10: h← h+ 1
11: end while
12: Compute the gradient ∆θt according to (3)
13: θt+1 = θt + η∆θt
14: t← t+ 1
15: end while
Output: estimated parameters θ∗ = θt

6. Experiments

In our experiments, PCD, parallel tempering (PT), tempered transition (TT), standard SMC and
PSCM were empirically compared on 2 different discrete UGMs, i.e. fully visible Boltzmann ma-
chines (VBMs) and restricted Boltzmann machines (RBMs). As we analyzed in section 4, large
learning rate and high model complexity are two main challenges for learning UGMs. Therefore,
two experiments were constructed to test the robustness of algorithms to different learning rates
and model complexities separately. On one hand, one VBM was constructed with small size and
tested with synthetic data. The purpose of the small-scale VBM is to reduce the effect of model
complexity. In addition, the exact log-likelihood can be computed in this model. On the other hand,
two RMBs were used in our second experiment, one is medium-scale and the other is large-scale.
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Figure 2: The performance of algorithms with the first learning rate scheme. (a): log-likelihood vs.
number of epochs; (b) and (c): the number of βs in PSMC and SMC at each iteration
(blue) and their mean values (red).

They were applied on a real-world database MNIST4. In this experiment, the learning rate was set
to be small to avoid its effect. In both experiments, mini-patch of 200 data instances were used.
When PSMC and SMC were run, σ∗ = 0.9 was used as the threshold of ESS. We recorded the
number of βs at each iteration in PSMC, and computed the average value H . In order to ensure
the fairness of the comparison, we offset the computation of different algorithms. In PT, Hβs were
uniformly assigned between 0 and 1. In TT, similarly, H βs were uniformly distributed in the range
[0.9, 1]5. Two PCD algorithms were implemented, one is with one-step Gibbs sampling (PCD-1)
and the other is with H-step Gibbs sampling (PCD-H). In the second experiment, the computation
of log-likelihoods is intractable, so here we employed an annealing importance sampling (AIS)-
based estimation proposed by Salakhutdinov and Murray (2008). All methods were run on the
same hardware and experimental conditions unless otherwise mentioned.

6.1. Experiments with Different Learning Rates

A Boltzmann machine is a kind of stochastic recurrent neural network with fully connected vari-
ables. Each variable takes binary value x ∈ {−1,+1}D. Using the energy representation (2),
parameters θ correspond to {W ∈ RD×D,b ∈ RD×1} and φ(x) = {xx>,x}. Here we used
a fully visible Boltzmann machine (VBM), and computed the log-likelihood to quantify perfor-
mances. In this experiment, a small-size VBM with only 10 variables is used to avoid the effect of
model complexity. For simplicity, Wiji,j∈[1,10] were randomly generated from an identical distribu-
tion N (0, 1), and 200 training data instances were sampled. Here we tested all learning algorithms
with 3 different learning rate schemes: (1) ηt = 1

100+t , (2) ηt = 1
20+0.5×t , (3) ηt = 1

10+0.1×t . The
learning rates in the three schemes were at different magnitude levels. The first one is smallest, the
second is intermediate and the last one is relative large. For the first scheme, 500 epochs were run,
and the log-likelihood vs. number of epochs plots of different learning algorithms are presented in

4. http://yann.lecun.com/exdb/mnist/index.html
5. In our experiment, we used a TT similar to that used by Salakhutdinov (2010) by alternating between one Gibbs

sampling and one tempered transition.
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learning rate ηt = 1
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Figure 3: The performance of algorithms with the second learning rate scheme. (a): log-likelihood
vs. number of epochs; (b) and (c): the number of βs in PSMC and SMC at each iteration
(blue) and their mean values (red).
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Figure 4: The performance of algorithms with the third learning rate scheme. (a): log-likelihood
vs. number of epochs; (b) and (c): the number of βs in PSMC and SMC at each iteration
(blue) and their mean values (red).

Figure 2(a). The number of βs in PSMC and SMC are also plotted in Figures 2(b) and 2(c) respec-
tively. We can see that the mean value H in PSMC is around 10, which is slightly higher than the
one in SMC. For the second and third learning rate schemes, we ran 100 and 40 epochs respectively.
All algorithms’ performances are shown in Figure 3(a) and 4(a). We found that the number of βs in
PSMC and SMC are very similar to those of the first scheme (Figures 3(b), 3(c), 4(b) and 4(c)). For
all three schemes, 5 trials were run with different initial parameters, and the results are presented
with mean values (curves) and standard deviations (error bars). In addition, maximum likelihood
(ML) solutions were obtained by computing exact gradients (3). For better quantitative comparison,
the average log-likelihoods based on the parameters learned from six algorithms and three learn-
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Models (Avg.) Log-Likelihoods

(Size) Learning rate schemes PCD-1 PCD-H PT TT SMC PSMC
VBM ηt = 1

100+t
-1.693 -1.691 −1.689 -1.692 -1.692 -1.691

(15) ηt = 1
20+0.5×t

-7.046 -2.612 -1.995 -2.227 -2.069 −1.891
ηt = 1

10+0.1×t
-25.179 -3.714 -2.118 -4.329 -2.224 −1.976

MNIST

RBM training data -206.3846 -203.5884 206.2819 -206.9033 -203.3672 −199.9089
(784× 10) testing data -207.7464 -204.6717 206.2819 -208.2452 -204.4852 −201.0794

RBM training data -176.3767 -173.0064 -165.2149 -170.9312 -678.6464 −161.6231
(784× 500) testing data -177.0584 -173.4998 -166.1645 -171.6008 -678.7835 −162.1705

Table 1: Comparison of Avg.log-likelihoods with parameters learned from different learning algo-
rithms and conditions.
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Figure 5: The performance of algorithms on the medium-scale RBM. (a): log-likelihood vs. num-
ber of epochs for both training images (left) and testing images (right) in the MNIST
database; (b) and (c): the number of βs in PSMC and SMC at each iteration (blue) and
their mean values (red).

ing rate schemes are listed in the upper part of Table 1. The results of the first experiment can be
summarized as follows:

1. When the learning rate was small, PT, TT, SMC, PSMC and PCD-10 worked similarly well,
outperforming PCD-1 by a large margin.

2. When the learning rate was intermediate, PT and PSMC still worked successfully, which were
closely followed by SMC. TT and PCD-10 deteriorated, while PCD-1 absolutely failed.

3. When the learning rate went to relatively large, the fluctuation patterns were obvious in all
algorithms. Meanwhile, the performance gaps between PSMC and other algorithms was
larger. In particular, TT and PCD-10 deteriorated very much. Since PCD-1 failed even worse
in this case, its results are not plotted in Figure 4(a).
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Figure 6: The performance of algorithms on the large-scale RBM. (a): log-likelihood vs. number of
epochs for both training images (left) and testing images (right) in the MNIST database;
(b) and (c): the number of βs in PSMC and SMC at each iteration (blue) and their mean
values (red).

6.2. Experiments with Models of Different Complexities

In our second experiment, we used the popular restricted Boltzmann machine to model handwrit-
ten digit images (with the MNIST database). RBM is a bipartite Markov network consisting of a
visible layer and a hidden layer, it is a “restricted” version of Boltzmann machine with only inter-
connections between the hidden layer and the visible layer. Assuming that the input data are binary
and Nv-dimensional, each data point is fed into the Nv units of the visible layer v, and Nh units in
hidden layer h are also stochastically binary variables (latent features). Usually, {0, 1} is used to
represent binary values in RBMs to indicate the activations of units.The energy function E(v,h) is
defined as E(v,h) = −v>Wh−h>b−v>c, where W ∈ RNv×Nh , b ∈ RNv×1 and c ∈ RNh×1.
Although there are hidden variables in the energy function, the gradient of likelihood function can
be written out in a form similar to (3) (Hinton, 2002). Images in the MNIST database are 28×28
handwritten digits, i.e. Nv=784. To avoid the effect of learning rate, in this experiment, a small
learning rate scheme ηt = 1

100+t was used and 1000 epochs were run in all learning algorithms.
Two RBMs were constructed for testing the robustness of learning algorithms to model complexity,
one medium-scale with 10 hidden variables (i.e. W ∈ R784×10), the other large-scale with 500
hidden variables (i.e. W ∈ R784×500)6. Similarly to the first experiment, we first ran PSMC and
SMC, and recorded the number of triggered βs at each iteration and their mean values (Figure 5(b),
5(c), 6(b) and 6(c)). For the medium-scale model, the number of βs in PSMC and SMC are similar
(around 100). However, for the large-scale model, the mean value of |{β0, β1, · · · }| is 9.6 in SMC
while 159 in PSMC. The reason for this dramatic change in SMC is that all 200 particles initialized
from the uniform distribution were depleted when the distribution gets extremely complex. For
other learning algorithms, H was set 100 and 200 in the medium- and large-scale cases, respec-
tively. Since there are 60000 training images and 10000 testing images in the MNIST database, we
plotted both training-data log-likelihoods and testing-data log-likelihoods as learning progressed
(see Figure 5(a) and 6(a)). More detailed quantitative comparison can be seen in the lower part of
Table 1. Similarly, we conclude the results of the second experiments as follows:

6. Since a small-scale model was already tested in the first experiment, we did not repeat it here.
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1. When the scale of RBM was medium, PSMC worked best by reaching the highest training-
data and testing-data log-likelihoods. SMC and PCD-100 arrived the second highest log-
likelihoods, although SMC converged much faster than PCD-100. PT, TT and PCD-1 led
to the lowest log-likelihoods although PT and TT raised log-likelihoods more quickly than
PCD-1.

2. When the scale of RBM was large, all algorithms displayed fluctuation patterns. Meanwhile,
PSMC still worked better than others by obtaining the highest log-likelihoods. PT ranked
second, and TT ranked third, which was slightly better than PCD-200. PCD-1 ranked last.
SMC failed in learning the large-scale RBM, so its results are not presented in Figure 6(a).

7. Conclusion

A SMC interpretation framework of learning UGMs was presented, within which two main chal-
lenges of the learning task were disclosed as well. Then, a persistent SMC (PSMC) learning al-
gorithm was developed by applying SMC more deeply in learning. According to our experimental
results, the proposed PSMC algorithm demonstrates promising stability and robustness in various
challenging circumstances with comparison to state-of-the-art methods. Meanwhile, there still ex-
ist much room for improvement of PSMC, e.g. using adaptive MCMC transition (Schäfer and
Chopin, 2013; Jasra et al., 2011), which suggests many possible directions for future work. Be-
sides, although PSMC is expected to approach the maximum likelihood solution in learning UGMs,
sometimes maximizing the posterior function is more desirable (e.g. when the prior is available), so
it is also interesting to extend PSMC for maximum a posteriori learning.
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Abstract. This paper exploits how Bayesian learning of restricted Boltz-
mann machine (RBM) can discover more biologically-resembled early vi-
sual features. The study is mainly motivated by the sparsity and selectiv-
ity of visual neurons’ activations in V1 area. Most previous work of com-
putational modeling emphasize selectivity and sparsity independently,
which neglects the underlying connections between them. In this paper, a
prior on parameters is defined to simultaneously enhance these two prop-
erties, and a Bayesian learning framework of RBM is introduced to infer
the maximum posterior of the parameters. The proposed prior performs
as the lateral inhibition between neurons. According to our empirical
results, the visual features learned from the proposed Bayesian frame-
work yield better discriminative and generalization capability than the
ones learned with maximum likelihood, or other state-of-the-art training
strategies.

1 Introduction

Over the past decades, there have been a large volume of literature dedicated
to model the statistics of natural images in biologically plausible ways. Espe-
cially, the primary visual cortex (V1) has been intensively studied and various
computational models were proposed to reproduce its functionalities [10,6,12].
It has been well documented that mainly V1 simple cells perform an early stage
processing of the visual input signal from the retina and the lateral geniculate
nucleus (LGN). One important property of V1 simple cells is that their receptive
fields are selective in terms of locations, orientations and frequencies, which can
be modelled as Gabor filters. Another characteristic on V1 simple cells is that
their activations are sparse. To be more clear, selectivity means that one neuron
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only strongly responds to a small number types of stimuli while rarely respond-
ing to other types. Sparsity means that the population size of activated neurons
should be small given a stimulus, i.e. only a tiny fraction of neurons are acti-
vated by a stimulus. Since selectivity and sparsity are interpreted as rareness in
lifetime and population domain, sometimes they are also called “lifetime sparse-
ness” and “population sparseness” respectively [12]. It has been hypothesized
that the selective and sparse responses of visual neurons are due to certain
redundancy reduction mechanism, with which the visual cortex is evolved to
encode visual information as efficiently as possible [1]. Based on this hypothe-
sis, a sparse coding strategy was proposed to enhance the coding efficiency, and
has led to Gabor-like representations [10]. Although sparse coding has shown
success in producing receptive fields similar to those of simple cells, yet it was
pointed out that selectivity does not have to be correlated with sparseness in
practice [12]. Moreover, it was even suspected that sparse activations of simple
cells is only an epiphenomenon or side effect of selectivity [2]. (see section 3 for
a detailed analysis). Recently, as another stream of feature learning, restricted
Boltzmann machines (RBMs) have attracted increasingly more attention thanks
to its success in many application domains [7]. However, the capability of RBMs
is rather limited when learning receptive fields of V1 simple cells. To make infer-
ence and learning easier, there is no connection between hidden units in RBMs.
Consequently, given visible data, all hidden units are conditionally independent
to each other (see section 2). It can be easily envisioned that when RBMs are
trained on natural images, many learned features will be rather distributed, un-
localized and repeated, which is far from the (selective and sparse) nature of the
learning task.

Prior work have exploited different strategies to adapt RBMs towards learn-
ing selective and/or sparsely activated neurons [8,9,5] on visual input. However,
most of them focus only on one property and does not ensure sparsity and se-
lectivity simultaneously in reproduced neurons. Usually, these strategies are to
impose certain regularization to bias learning. To overcome this deficiency, in this
paper, we propose to encode an inductive bias about the task as prior probability
on parameters. Then, the parameter estimation can be done within a consistent
Bayesian learning framework, i.e. maximum a posterior (MAP). In particular,
the prior probability on parameters encourages the diversity of neurons’ recep-
tive fields, which performs equivalently to the lateral inhibition between neurons.
The MAP learning is achieved via a Markov chain Monte Carlo (MCMC)-based
simulated annealing. In addition, due to the fact that the parameter space is
high-dimensional and multi-modal, annealing importance sampling (AIS) and
parallel tempering are employed in subroutines to avoid local maxima (see sec-
tion 4). In section 5, we verify our Bayesian learning of RBMs on a bench-
mark database of natural images, comparing to maximum likelihood learning
and other state-of-the-art learning strategies. Our empirical results demonstrate
that neurons in our model display better sparsity and selectivity than in others;
in addition, the features encoded by our neurons via Bayesian learning show
better generalization capabilities than the ones from other learning methods.
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2 Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) is a two-layer, bipartite neural net-
work, it is a “restricted version” of the Boltzmann machine with only inter-
connections between hidden layers and visible layers. Input data is binary and
Nv dimensional, they are fed into Nv units in the visible layer v, Nh units in the
hidden layer h are stochastic binary variables, i.e. v ∈ {0, 1}Nv , h ∈ {0, 1}Nh ,
the joint probability of {v,h} is1:

p(v,h) =
1

Z
exp(−E(v,h)) E(v,h) = −v>Wh (1)

where W ∈ RNv×Nh is the matrix of symmetry weights, Z =
∑

v,h exp(−E(v,h))
is the partition function for normalization. Because of the restricted connections
in RBMs, hidden units hj are independent of each other conditioned on the
visible data v, and similarly, visible units vi are conditionally independent of
each other given h. Given training data D = {v(l)}Ll=1, RBM can be learned by
maximizing the average log-likelihood of D:

W∗ = arg max
W
L(D) = arg max

W

1

L

L∑
l=1

(
log
∑
h

p(vl,h)
)

(2)

based on(1), the gradient of L(D) is computed as:

∇L(D) =
1

L

L∑
l=1

[Ev(l)∈V,h∼p(h|v(l))(v
(l)h>)− Ev,h∼p(v,h)(vh

>)] (3)

where Ep(·) denotes the expected values with respect to p. Obviously, the sam-
pling v,h ∼ p(v,h) makes learning practically infeasible because it requires a
large number of Markov chain Monte Carlo (MCMC) iterations to reach equi-
librium. Fortunately, we can compute an efficient approximation to the exact
gradient: contrastive divergence (CD), which works well in practice [7]. By using
CDk, only a small number k steps are run in block Gibbs sampling (usually
k = 1), and (3) can be approximated as:

∇L̂(D) =
1

L

L∑
l=1

[v(l)p(h(l)+|v(l))> − p(v(l)−|h(l)+)p(h(l)−|v(l)−)>] (4)

3 Bias Learning with Selectivity and Sparsity

Simple cells in V1 area are well known to be selective to locations, orienta-
tions and frequencies, and their activations are sparse [10] to visual stimuli. The
concepts of selectivity and sparsity are illustrated in Figure 1(a), where each
row (red) represent how one neuron selectively respond to different visual stim-
uli while each column (blue) describes how many neurons are activated by one
stimulus. Although selectivity and sparsity are related at their average values,

1 Bias vectors on visible and hidden units are omitted them for notation simplicity,
but we would like to note that we use such biases in our experiments.
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Fig. 1. Understanding sparsity and selectivity: white circles mean activations while
gray circles denote inactivations. See text for more description.

they are not necessarily correlated [12]. Selective neurons cannot ensure sparse
neuron coding (Figure 1(c)); sparsely activated neurons can also be not narrowly
selective (Figure 1(d)).

Sparse group restricted Boltzmann machine (SGRBM) [9] is a RBM trained
with the CD algorithm plus a l1/l2 norm regularization on the activations of
neuron population. Although l1/l2 norm regularization can ensure sparsity, yet
it can also lead to many “dead” (never respond) and “potential over-tolerant”
(always respond) neurons (see Figure 1(d) and section 5). On the other hand,
a selectivity-induced regularization was used in [8] by suppressing the average
activation probability of each neuron to all training data. One limitation of this
strategy, as argued in [5], is that decreasing average activation probabilities can
not guarantee selectivity, instead, it will result in many similar neurons with
uniformly low activation probabilities to all types of visual stimuli, which prone
to be “dead” as well (see section 5). One closely related work to ours is proposed
in [5], of which the essence is to tune the activation matrix (Figure 1) towards
a target one that is both selective and sparse while maximizing likelihood.

Based on the analysis above, we can see that the motivation of sparsity is
to better differentiate neurons while the goal of selectivity is to avoid “over-
tolerant” neurons. Assume that there exist N types of visual stimuli and K
neurons, and usually N � K. Obviously, the ideal selectivity rates of neurons
is N/K. At the same time, for sparsity, we also want to prevent the existence of
any duplicate or similar activations in the neuron population. The best scenario
is that there is no overlap among the activations of different neurons (rows in
Figure 1), i.e.K neurons respond to non-overlapping N/K types of visual stimuli
respectively. In the RBM case, the weights W , to some extent, can represent the
activation matrix. For so, a natural choice of biasing parameters is to diversify
the columns of W as much as possible. Here we approach diversification by
minimizing absolute cosine similarities among columns of W:

arg min
W

Nh∑
j=1

Nh∑
k 6=j

∣∣∣∣∣ W>
·,jW·,k

||W·,j ||||W·,k||

∣∣∣∣∣ (5)

where W·j denotes the jth column of W. Note that the denominator in (5) is nec-
essary, because eliminating it will generate many “dead” or principal component
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analysis (PCA)-like neurons. An extreme case is that the activation probabilities
of neurons are exclusive to each other. Despite selectivity is not so obvious in
(5), it can be imagined that it can be better minimized when |W·,j:∀j∈Nh

| are
small. Therefore, sparsity and selectivity are enhanced simultaneously by using
diversity-induced bias (5) (Figure 1(b)).

4 Bayesian Learning of Restricted Boltzmann Machines

In contrast to the incremental updates composed of CD approximation and
regularization-based gradients [8,9,5], we propose to train RBMs in a consistent
Bayesian framework. Based on the discussion in the previous section, we can
define the prior probability on parameters p(W) as:

p(W) ∝ exp(−λ ·
Nh∑
j=1

Nh∑
k 6=j

∣∣∣∣∣ W>
·,jW·,k

||W·,j ||||W·,k||

∣∣∣∣∣) (6)

then the parameters can be estimated via maximum a posterior (MAP):

W∗ = arg max
W

p(W|D) = arg max
W

p(W)

L∏
l=1

∑
h

p(v(l),h|W) (7)

Since the derivative of (7) w.r.t. W can not be analytically computed, and (7) in
general is not concave, here a Markov chain Monte Carlo (MCMC)-based simu-
lated annealing is employed to find the optimal solution. In the basic Metropolis
algorithm, a sample W′ is accepted with probability min(1, p(W′|D)/p(W|D))
where:

p(W′|D)

p(W|D)
=
p(W′)

p(W)

p(D|W′)

p(D|W)
=
p(W′)

p(W)

∏L
l=1

∑
h p(v

(l),h|W′)∏L
l=1

∑
h p(v

(l),h|W)
(8)

Because of the special structure of RBM, the term
∑

h p(v,h|W) can be written
in a polynomial form as:

p(v|W) =
∑
h

p(v,h|W) =
1

Z(W)

Nh∏
j=1

exp(1 + v>W·,j) (9)

Consequently, (8) can be further expanded as:

p(W′|D)

p(W|D)
=
p(W′)

p(W)

( Z(W)

Z(W′)

)N
exp

{ L∑
l=1

Nh∑
j=1

v(l)>(W′
·.j −W·.j)

}
(10)

Since (10) is invariant to different scales of W, without loss of generality, we
constraint ∀wij ∈ W, wi,j ∈ [−1,+1]. One difficulty in computing (10) is the

ratio of normalization terms Z(W)
Z(W′) . Instead of computing it analytically, we use

a tractable approximation of it via annealing importance sampling (AIS) [11].
Basically, importance sampling can be used for estimating the ratio:

Z(W)

Z(W′)
=

∑
v p(v|W)∑
v p(v|W′)

=
∑
v

p(v|W)

p(v|W′)

p(v|W′)∑
v p(v|W′)

= Ep(v|W′)(
p(v|W)

p(v|W′)
) (11)
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However, the estimation will be poor if W and W′ are not close. By contrast, AIS
constructs many intermediary distributions between p(v|W′) and p(v|W) as:
ps(v) ∝ p(v|W′)1−αsp(v|W)αs with 0 < α0 < α1 < · · · < αs < · · · < αS = 1.
Then one AIS run is as follows:

1.Initialize v
(m)
0 ∼ p0(v)

2.for s = 1→ S, sample v
(m)
s give v

(m)
s−1 with one Gibbs sampling w.r.t. ps(v);

3.w(m) =
p1(v

(m)
1 )

p0(v
(m)
1 )

p2(v
(m)
2 )

p1(v
(m)
2 )
· · · pS(v

(m)
S )

pS−1(v
(m)
S )

.

When M runs of AIS are implemented, the ratio can be estimated as:

Z(W)

Z(W′)
≈ 1

M

M∑
m=1

w(m) (12)

In addition, to avoid being trapped in local maxima, we construct the state
transition of a Markov chain as a mixture of a local Metropolis kernel (10)
and an independent Metropolis-Hasting kernel. To better explore the sampling
space, the uniform distribution U on W is set as the Metropolis-Hasting kernel.
Therefore, the whole sampling is a weighted combination of local exploitation
and global exploration, and here we use the mixture weight η = 0.5. At iteration
n, the invariant distribution which the Markov chain is subject to is p(W|D)1/Tn ,
where Tn is a decreasing temperature schedule. When Tn → 0, the Markov chain
can hardly move and the still state will be used as the maximum. Usually W
is high-dimensional (with large number of neurons and high-dimensional visual
input), so the parameter space can be rather complicated, e.g. sharp with many
isolated modes, and simulated annealing based on one single Markov chain is
unreliable. One simple way is to run multiple Markov chains in parallel, and pick
the states of one chain which lead to the best result. However, a better strategy is
parallel tempering [3]. R+1 Markov chains are constructed under different initial
temperatures {pr(W|D) ∝ p(W|D)βr}Rr=0, 0 ≤ βR < · · ·βr < · · ·β0 = 1, β0 is
referred to the base distribution, and others correspond to more flat distributions
smoothed with different temperatures. As the simulated annealing on differently
tempered Markov chains progress, the states of neighbouring chains Wr, Wr+1

can be swapped with probability:

min(1,
pr(Wr+1|D)pr+1(Wr|D)

pr+1(Wr+1|D)p(Wr|D)
) = min(1, exp{

L∑
l=1

Nh∑
j=1

(βr−βr+1)v(l)>(Wr+1
.,j −W

r
.,j}))

(13)

5 Experiments

To evaluate the proposed learning strategy, a benchmark database [10] was used
for training. 100000 small patches (size 14 × 14) were extracted from random
positions of ten whitened images. A sigmoid function was applied on the pixel
intensities to fit their values in the range [0, 1]; in addition, the patches with
variances smaller than 0.1 were filtered out to accelerate training. For compar-
ison, three additional RBMs were trained by using the CD algorithm, the CD
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(a) (b) (c) (d)

Fig. 2. The receptive fields of neurons learned from (a) CD algorithm, (b) sparse CD,
(c) selective CD and (d)our Bayesian strategy. See text for more description.

CD Sparse CD [9] Selective CD[8] Bayesian Learning

# Dead Neurons 0 68 88 0
Ave. Selectivity 0.4582 0.3552 0.4090 0.3221
Ave. Sparsity 0.3749 0.1883 0.1939 0.1671

Error rate on MNIST[%] 27.21 17.54 19.32 14.21

Fig. 3. Performance of different learning methods.

algorithm with sparse regularization (sparse CD) [9] and the CD algorithm with
selectivity regularization (selective CD) [8]. For each RBM, 200 hidden neurons
were learned and their receptive fields are presented in Figure 2. We can see that
many neurons’ receptive fields learned from the CD algorithm (Figure 2(a)) are
very vague and unlocalized, compared to which, the neurons’ receptive fields
learned from sparse CD and selective CD (Figure 2(b) and 2(c) ) look “clearer”
and “sharper”. However, both sparse CD and selective CD led to many use-
less, “dead” neurons. The neurons obtained from our Bayesian learning strategy
display rather diverse receptive fields and there seems no “dead” neuron (Fig-
ure 2(d)). We roughly obtained the number of “dead” neurons by counting the
number of neurons whose maximal activation probabilities to all training visual
stimuli is smaller than 0.1, and the results are in the first row of Figure 3.

Selectivity and sparsity are usually measured using activity ratio [4]. For a
neuron, its selectivity is computed across all L input visual stimuli: selectivity =(∑L

l=1 rl/L
)2
/
(∑L

l=1 r
2
l /L

)
where rl is the activation rate of the neuron given

the lth stimulus. The sparsity of activations by one stimulus is computed across

all Nh neurons: sparsity =
(∑Nh

j=1 rj/Nh

)2
/
(∑Nh

j=1 r
2
j/Nh

)
. We computed the

selectivity and sparsity of 4 RBMs on the MNIST patch dataset2, which contains
digit images. Although natural images and digit images are two absolutely dif-
ferent visual domains, we believe that early features encoded in neurons should
be able to successfully adapt from one domain to the other. The results were
presented Figure 3. It can be seen that our Bayesian learning method yields bet-

2 Available on http://yann.lecun.com/exdb/mnist.
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ter selectivity and sparsity to other cases. Furthermore, to check the practical
effectiveness of learned neurons, we use them as basis filters on the digit images
for a multi-classification task. Given a digit image, the activations of hidden
neurons are computed as input of a softmax function, and its corresponding la-
bel is output. The testing results with four sets of neurons are presented in the
bottom part of Figure 3. We can see that the features from Bayesian learning
yield lower average test error than others, which suggests superior discriminative
and generalization capability.

6 Conclusion

A Bayesian learning framework for RBM was put forward based on many state-
of-the-art approximation techniques. To mimic V1 simple cells, a diversity-
induced prior was introduced on RBMs’ parameters, and maximum a posterior
learning yields better results than other learning strategies. In particular, the
features encoded in learned neurons display nice discriminative and generaliza-
tion property for domain adaption. As a possible future work direction, we are
studying more sophisticated priors to approach other simple neurons’ properties.
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