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Simulation-Aided Handover Prediction from Video
Using Recurrent Image-to-Motion Networks

Matija Mavsar, Barry Ridge, Rok Pahic, Jun Morimoto, and Ales Ude

Abstract—Recent advances in deep neural networks have
opened up new possibilities for visuomotor robot learning. In
the context of human-robot or robot-robot collaboration, such
networks can be trained to predict future poses and this infor-
mation can be used to improve the dynamics of cooperative tasks.
This is important, both in terms of realizing various cooperative
behaviors, and for ensuring safety. In this paper, we propose a
recurrent neural architecture, capable of transforming variable-
length input motion videos into a set of parameters describing a
robot trajectory, where predictions can be made after receiving
only a few frames. A simulation environment is utilized to expand
the training database and to improve generalization capability of
the network. The resulting architecture demonstrates good accu-
racy when predicting handover trajectories, with models trained
on synthetic and real data showing better performance than when
trained on real or simulated data only. The computed trajectories
enable the execution of handover tasks with uncalibrated robots,
which was verified in an experiment with two real robots.

Index Terms—Dynamic movement primitives (DMPs), Han-
dover, Machine vision, Recurrent neural networks, Robot learn-
ing, Simulation.

[. INTRODUCTION

N the past decade, robot workspaces have been moving

from closed areas with known and predictable conditions
into increasingly complex environments with limited amounts
of a priori information. Many recent works focus on human-
robot collaboration, where the aim is to enable robots and hu-
mans to work together in close proximity [1]. For humans and
robots to effectively work together in unknown environments,
a system for robust human motion prediction is required,
which guarantees safety and predictability. Machine vision can
provide the necessary information to respond to changes by
extracting the most important data while being invariant to less
important and random phenomena.

Object handover is a collaborative action where an agent,
the giver, gives an object to another agent, the receiver [2]. The
handover task typically consists of a pre-handover phase and a
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physical object exchange phase. Aspects such as communica-
tion, grasping, motion planning and control must be considered
to achieve optimal performance. In the pre-handover phase,
the receiver observes the motion of the giver and computes the
appropriate receiving motion trajectory. Accurate prediction of
motion trajectories from the partially observed giver motion
(captured as an RGB-D video) is the focus of this paper. Thus
the paper focuses on the pre-handover phase.

Obtaining meaningful information from a stream of digital
images can be facilitated by neural networks due to their effi-
ciency in modeling different nonlinear processes [3], [4], [5].
Because of the dynamic attributes of human-robot workspaces,
neural structures that incorporate time dependency are espe-
cially well suited for the task of predicting the movements of a
person or robot, with recurrent neural networks (RNNs) being
a good choice. One of the most widely used types of RNNs
is the long short-term memory (LSTM) network [6]. LSTM
networks can efficiently process temporal sequences [7], such
as RGB-D videos, while exploiting prior observations to make
future predictions. Since gathering large amounts of training
data can be expensive and time-consuming, especially in
robotics [8], simulation is being increasingly used for data
generation. The challenge lies in transferring models trained
with simulated data to the real world [9], [10].

In this work we focus on predicting motion trajectories from
RGB-D videos containing the giver motion. Current state-
of-the-art methods either rely on the body postures of the
giver [11], [12], [13], or can only predict the final pose or an
action description label [12], [14]. Conversely, we propose a
Recurrent Image-to-Motion Encoder-Decoder Neural Network
(RIMEDNet) capable of translating variable-length RGB-D
videos of a giver (human or robot) into a predicted trajectory
during a handover task (Fig. 1). RIMEDNet trained with the
appropriate data can predict either the motion trajectory of
the giver or the motion trajectory of the receiver. It consists of
convolutional layers to extract spatial representations, LSTM
layers to analyze temporal dependencies, and fully connected
layers to compute the motion parameters. Initial predictions of
the entire output trajectory can be made immediately during
the early stages of giver-receiver interaction based on only a
fraction of the entire RGB-D input video. The accuracy of the
predicted trajectory increases as more images are processed.
This way, the receiver can anticipate the handover action and
respond accordingly, e.g. by moving towards the predicted
pose of the handover while avoiding the giver’s path. To
reduce the amount of real data required for training, we
make use of simulation and domain randomization to acquire
an extensive and highly randomized synthetic dataset. The
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Fig. 1. The proposed recurrent neural network can predict joint or Cartesian
robot trajectories (bottom row) after processing only a fraction of the complete
RGB-D video of robot motion (upper two rows). Predictions are updated
online with each received frame. Note that the prediction accuracy improves
as more data become available.

proposed approach is compared to state-of-the-art architectures
and evaluated in robot-to-robot handover experiments, while
it may also be extended for use in human-to-robot handovers.
None of the methods described in a recent survey of object
handover tasks [2] utilizes such an approach.

The main contributions of the paper are: 1) a novel recurrent
encoder-decoder neural network architecture for online pre-
diction of entire robot trajectories encoded as third-order dy-
namic movement primitives (DMPs) based on variable-length
RGB-D input videos; 2) early prediction based on partial input
videos of motion trajectories (DMPs) while ensuring smooth
(up to the second order) transition from one predicted DMP
to another as the DMP parameters are refined once a larger
portion of the RGB-D video has been processed, 3) a real
dataset of video-trajectory pairs supplemented with a large
number of highly randomized synthetic samples; and 4) an
experimental evaluation showing that the proposed approach
exhibits good prediction accuracy of robot trajectories and
achieves higher accuracy when making use of large datasets
that include both synthetic and real data compared to when
smaller sets consisting only of real or simulated data are used.

A. Related work

For the representation of handover trajectories, Dynamic
Movement Primitive (DMP) [15] representation has proven as
an attractive choice, since it can provide both a mechanism to
plan a feed-forward trajectory as well as the ability to modulate
the desired trajectory in a feedback loop. DMPs have shown
to be useful as a representation of likely giver trajectories to
estimate the handover location and timing based on human
hand position measurements and an extended Kalman filter
[16]. To encode several handover trajectories in a unified
representation, Ben Amor et al. [17] developed interaction

primitives, which build on DMPs by maintaining a distribution
over the DMP parameters. In [18], the authors proposed Neural
Dynamic Policies (NDPs) that make predictions in trajectory
distribution space for reinforcement learning. Probabilistic
Movement Primitives (ProMPs) similarly maintain a distribu-
tion of trajectories and can be applied to predict the observed
motion trajectories [19]. As an alternative to compact represen-
tations such as DMPs and ProMPs, Yamane et al. explored the
application of motion graphs to enable motion generation [20]
from a large database of example trajectories and demonstrated
that augmented motion graphs can be used to generate object
handover behaviors [21]. However, the above works do not
address the issue of discontinuities in receiver motion that arise
once the neural network changes the prediction of the giver
motion, e.g. based on information obtained as longer videos
of the giver motion become available, which is an important
feature of our approach based on third-order DMPs.

In recent years, deep neural networks have become a
method of choice when processing raw input images for object
detection [22]. In the context of interaction, Park and Kim
[23] utilized a novel convolutional neural network (CNN)
architecture for human identification from images for an im-
proved human-robot collaboration. CNNs were also employed
to generate robot trajectories in the form of DMPs from input
images [24], [25] and to detect the pick up location of the shaft
for a robot-to-robot handover [26], however without prediction
capability. Pahic et al. [27], [28] derived differential equations
for an effective gradient calculation during backpropagation
when using DMP representation. However, these approaches
are not suitable for prediction from variable-length (partial)
videos as they arise in object handover tasks.

Recurrent Neural Networks (RNNs) are more suitable
for the processing of a stream of incoming data in dynamic
settings such as object handover. LSTM-based RNNs [6] have
proven to be especially useful in such settings. They have
been applied for action recognition from optical flow [29], for
choosing optimal actions based on future predictions of input
images [30] and in route planning of ground-based mobile
robots for seed delivery [31]. In the context of human motion
prediction with a potential use in object handover settings,
RNNs have been successful in anticipating and classifying
human actions [32], [14], [33] and whole body motions [34],
while several methods for forecasting body poses were devel-
oped [11], [12], [13]. The above-mentioned methods, however,
either rely on motion capture systems for extraction of the
observed person’s skeleton, or can only predict labels and
final poses rather than smooth motion trajectories from RBG-D
videos as our proposed approach.

Simulation-to-real transfer has been used to reduce the
amount of real-world data needed for neural network training.
One of the methods for optimizing transfer of knowledge
gained through simulation is domain randomization, where
several parameters are randomized for each training sample.
It aims to train a neural network for as many environments as
possible, including the real world. Domain randomization has
been successfully used in robotics to train hierarchical manip-
ulation policies [35], to determine object grasping locations
from RGB images [9], to perform grasp planning on unseen
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objects by training on randomized shapes in simulation [36],
and for object detection [37]. Some methods attempt to
improve the performance by focusing on the most trouble-
some environmental parameters [38]. Others use generative
adversarial networks for domain adaptation [39], to translate
randomized simulation images into canonical versions and
then use the trained structure on real-world images [10], or
to map a simulation image to a realistic one while using a
policy trained in simulation [40]. An alternative approach for
efficient database gathering has been presented in [41], where
a small number of task executions is performed with a robot
and statistical generalization is applied to generate more data.
We incorporated synthetic data and domain randomization to
further improve motion prediction in the proposed system.
As explained above and different from our approach, the
current methods for motion observation and prediction during
object handover either provide the final handover pose or
classify the observed motion from RGB-D images or require
expensive motion capture systems to obtain appropriate in-
put data, such as pose measurements. Our method, on the
other hand, predicts the entire observed trajectories directly
from (partial) RGB-D videos and therefore provides richer
information about the handover process without requiring the
intermediate step of extracting the giver postures.

II. GENERATION OF OBJECT HANDOVER TRAJECTORIES

Given the object handover scenario, the aim of motion repre-
sentations described in this section is to enable the generation
of smooth receiver motion from the partially observed motion
of the giver, where the motion of the giver is observed by an
RGB-D camera. Thus the input data consist of a sequence of
RGB-D images, which are used either to predict the motion
of the giver or to directly compute the corresponding motion
of the receiver. The idea is that a recurrent neural network can
start predicting the handover motion based on the incomplete
motion of the giver, i.e. based on partial RGB-D videos, and
that this prediction is improved once more complete videos
are processed. We selected third-order DMPs to encode the
predicted motion. The motivation for this is that with third-
order DMPs, we can ensure smooth receiver motion transitions
(up to the second derivatives) when the RNN computes the
next predicted DMP, which provides a better estimate for the
desired motion. This cannot be guaranteed by many other
motion representations [15], [17], [19] that were utilized to
implement interaction tasks in the past.

A. Third-order dynamic movement primitives

Dynamic Movement Primitives (DMPs) are especially well-
suited to represent handover trajectories because they can be
used to smoothly pull the robot towards the desired motion
even if its current position is not on the desired trajectory. Let’s
assume that the trained network maps the incoming stream
of RGB-D images to the receiver motion represented by a
DMP. The receiver agent would typically start its movement
before the giver finishes its motion. This is possible in our
approach because RNNs compute the best estimate for the
receiver motion after every processed frame. This estimate is

improved as more data become available (see Fig. 1). Third
order DMPs provide a mechanism to smoothly switch from
one movement to another.

Let’s denote the robot control parameters (internal joint
angles or Cartesian space pose) by y € RY, where d is the
number of robot degrees of freedom. In the DMP formalism,
the control variable y and its derivatives are computed by
integrating a nonlinear dynamic system. To ensure continuity
up to the second order derivatives when switching from one
DMP to another and motivated by the DMP systems developed
in [42], [43], we propose the following third-order dynamic
system to specify the required handover motion:

v = K(r—y)—Dv—xK(r—yo)+Kf(x), (1)
o=V, (@)
o = H(g-r), 3)

where r, v € R? are auxiliary variables, yo, g € R? are the start
and end point of the movement, respectively, K, H € R¥*? are
spring matrices, D € R?*? is a damping matrix, and 7 >0 is a
temporal scaling factor, which is usually set to the duration of
motion. In our experiments we set K= KI, D= DI, H=HI,
D =2vVK, H= K, K >0, which provides for the critical
damping of the dynamic system. The dynamic system (1) —
(3) is driven by the phase variable x, which evolves according
to the following equation

Th = — 0, “

where o, > 0 is a positive constant.
The nonlinear forcing term f from (1) is defined as a
combination of radial basis functions (RBFs)
N
f(x) _ Zk?) Wk‘Pk(x)L 5)
Yoot Pe(x)
exp(—h(x —cx)?). 6)

The parameters ¢, hy € R and wy € R? define the centers,
widths and weights of individual RBFs, respectively, and N is
the number of RBFs. The weights wy are determined in such
a way that by integrating equation system (1) — (4) we obtain
the desired trajectory y starting at the initial configuration yq
and ending at the goal configuration g. The integration process
is initialized by setting y =yp, v=0, r =g, and x = 1. Note
that r remains constant unless g changes. If the goal position
g changes abruptly, r and consequently y converge to the
new goal position without causing any discontinuities in the
acceleration of y. This is important because y is used to specify
the desired robot trajectory.

b
—
=
=
I

B. Smooth switching between receiver DMPs

The recurrent neural network described in Section III com-
putes a complete new DMP after every processed video frame,
not just the final end position g. Thus to ensure that the
integrated motion remains smooth up to the second order
when switching to the next DMP, we have to make sure that
the initial integration parameters are all set correctly for the
next DMP integration. Third order DMPs have a sufficient
number of free parameters to guarantee such smoothness. Let’s
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denote the current DMP integration state as yp,Vp,Ip and
the terms defined by the previous and next DMP (temporal
scaling factor, forcing term, end and initial configuration)
as Tp,f,,8p,¥0p and 7,f, 8, yos, respectively. We should
initialize the next DMP integration state ys,Vg,Is so that the
position, velocity and acceleration of the robot motion remain
smooth, i.e. yp =¥, ¥p = ¥s,¥p = ¥s. Using Eq. (1) and
(2), we compute the following initialization values for the
integration of the next DMP, starting at the current phase x

Ys = Yp @)
Ts

Vg = ?V[SH (8)
P
2 1—12/72 —72
7 /Ty ToTs— T2

;= = K™D

s Tgrp+ —x 72 (1 —x) Vo
1 (72
T— (TE(XYOA,erfp(X)) —XYo.s fs(x)) )

By initializing the integration of the newly computed DMP
with (7) — (9) and by continuing the integration process at the
current phase x, we ensure that the generated robot motion is
twice continuously differentiable.

The computed initialization values ys, vg,rs do not necessar-
ily lie on the desired trajectory defined by the newly computed
DMP. However, since a DMP defines a control policy, the inte-
gration of the DMP can also be started away from the desired
trajectory. The DMP integration is nevertheless guaranteed to
converge to the desired final configuration where the object
exchange should take place.

C. Smooth switching using quintic polynomials

If the neural network predicts the giver trajectory, we can
generate the receiver motion by utilizing the predicted final
configuration g of the DMP. If the giver motion is predicted
in joint space, we first convert the predicted goal configuration
into Cartesian space coordinates using forward kinematics.
To enable collision-free object handover, we rotate the goal
orientation by 180 degrees so that the robot reaches the
desired final pose from the opposite side of the object. The
resulting pose is then converted into joint coordinates of the
receiver robot using its inverse kinematics, thus providing
the desired final configuration of the receiver robot. Finally,
we generate a smooth motion for the receiver robot from its
current configuration to the computed goal configuration using
quintic polynomials [44].

Let’s write down the quintic polynomial describing the mo-
tion of the receiver robot from the current robot configuration
Yo to the desired goal configuration g

5
y() =} a;t’, (10)
j=0
where q; € R? are the coefficients of the polynomial, 7 € [0, T,
and T represents the time at which the goal position g should
be reached with zero velocity and acceleration from the current
position yp. To prevent excessively fast motions, the duration

T is calculated as follows:
T = 0.5max{|gi il } ,
1

Vimax

(In

where V; ;4 18 the maximum velocity for the i-th robot degree
of freedom.

To ensure smooth robot motion, the position, velocity and
acceleration must be continuous when transitioning from one
predicted goal configuration to the next one. Denoting the
current robot position, velocity and acceleration with yo, Yo,
and ¥o, respectively, and resetting time to zero, we obtain

90 =Yo, 41 = ¥o, q2 = ¥o/2. (12)
The following formulas provide the rest of the coefficients:

20(g —yo) — 12y0T — 3§07?

G = e (13)
30(yo — g) + 16y0T + 3¥0T>

G = (Yo—g) 2T4YO $oT” (14)
12(g —yo) — 6507 — §oT>

0 = (g YO)ZTSyO ol 15)

Every time a new goal configuration is predicted by the neural
network, a new receiver trajectory is computed using the above
procedure.

III. LSTM-BASED NEURAL NETWORK FOR OBJECT
HANDOVER

Due to their ability to process temporal sequences of data,
recurrent neural networks (RNNs) are well-suited for the
task of motion prediction from a sequence of input images.
Their structure, consisting of memory units, allows them to
store information, dependent on inputs from previous states.
However, during the training of classic RNNs, the gradients of
the optimized loss function can explode or vanish [45]. This
was the motivation behind the development of a special kind
of RNN - the long short-term memory (LSTM) network [6].

Unlike classic RNNs, LSTM units are composed of a cell
and several gates, regulating the flow of information in and
out of the cell. Fig. 2 shows the structure of the LSTM unit,
where each new cell state ¢; and new hidden state /4, are fed
back to the LSTM unit when processing the next input. Thus
each new network output is affected by the results from the
previous time steps.

The trainable parameters in an LSTM unit are the weights
for the inputs x;, the weights for the combined hidden state 4,
and the biases for each of the four gates. For an LSTM layer
with m units and an input size of n, the number of trainable
parameters is therefore equal to 4m(n+m+1).

A. Network architecture

Our proposed architecture is called Recurrent Image-to-
Motion Encoder-Decoder Neural Network (RIMEDNet) and
consists of convolutional, fully connected, and LSTM layers. It
takes a sequence of images of the observed motion as input and
predicts either the motion trajectory of the giver performing
the handover task or the corresponding motion of the receiver,
where the resulting trajectory is represented by a DMP. The
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Fig. 2. Structure of an LSTM unit. The inputs to the unit are the hidden state
h;—1 and the cell state ¢, from the previous time step and the current input
data x;. The new cell state ¢; and the new hidden state &, are defined by the
inputs and the trainable parameters of the LSTM unit, with i, f;, g and o,
representing the outputs of different gates, i.e. the input gate, forget gate, cell
gate, and output gate.

basic network structure is shown in Fig. 3, where the input
data is in the form of RGB-D image sequences and the output
data are the DMP parameters.

Input images are passed into the convolutional part of the
network, which can either be custom-defined CNN layers
(see Fig. 3) or the layers from one of the popular pretrained
CNN architectures, commonly used for image classification
(e.g. ResNet [46], AlexNet [47], GoogLeNet [48], etc.). In
all cases, the convolutional part is followed by two fully
connected layers with ReLU functions, two LSTM layers, and
another two fully connected layers that finally produce the
output of the network. At the heart of the network architecture
are two stacked LSTM layers. For each element in the input
sequence, i.e. an RGB-D image, the LSTM network returns an
output based on all the previous input images in the sequence
and the previously computed states of the LSTM units.

The number of input features of the two LSTM layers has
been set to 1000 and 40, respectively, and the number of units
in each LSTM layer is 40, thus resulting in 40 outputs for
each layer and 179,520 trainable parameters. The proposed
encoder-decoder structure forces the network to create low-
dimensional representations of input images and thus extract
the essential features of the data, which may improve the
network’s ability to generalize to previously unseen data.

The network takes sequences of W x H x 4 pixel RGB-D
images as input, where W and H are the width and height of
input images. Let’s denote by d the number of robot degrees
of freedom (Cartesian or internal). The network outputs a
parameter vector consisting of DMP parameters that include d
values for start and goal configuration y( and g, respectively,
d X N values describing the weights (5) of the forcing term,
and one value for the temporal scaling factor 7, thus alto-
gether (N +2)d + 1 parameters. The robot degrees of freedom
are given either as Cartesian space positions p(t) € R* and
orientations q(t) € R*, y(r) = [p(t)",q(t)T]", or as robot joint
angles y(t) = [61(t),...,04(1)]T.

Convolution + GroupNorm
+ RelLU + MaxPool

RGB-D images
160 x 120 x 4 @

DMP parameters

Fig. 3. Example recurrent RIMEDNet architecture with the custom convo-
lutional part, fully connected, and stacked LSTM layers. RIMEDNet takes
RGB-D images as input to predict a motion trajectory in the form of DMP
parameters. Convolution layers have a kernel size of 4 x4 and a stride of
1, while all max pooling layers have a kernel size of 3 x 3 and a stride of
3, except the first one, which has a stride of 2. In this example, the input
image size was 160 x 120 x 4, the robot had 7 degrees of freedom, there
were 25 radial basis functions in the forcing term, 7 parameters for the initial
and end configuration, and the temporal scaling factor, thus altogether 190
output parameters. The total number of trainable parameters in this network
is 22,416, 346.

B. Training method

The proposed RIMEDNet architecture is trained on data
pairs, defined as

L; M
D= {{X;;},Z,, d;};=1,
where M is the number of example sequences in the training
dataset, X;; € RW*#>4 is the i-th frame of the j-th input
video consisting of L; frames, and d; € RV+24+1 i the
corresponding ground-truth trajectory (either the trajectory of

the observed giver motion or the corresponding trajectory of
the receiver), encoded with DMP parameters

(16)

d; = {{wij 11, & Yo s Tiks (17)

where N is the number of weights in the forcing term (5). See
Section IV for details about how these data are gathered.

To train the proposed network, we need to define a suitable
loss function. We use the standard mean squared error (MSE)
as the basis for the definition of the loss function. However,
since the input data are image sequences instead of single
images, we employ a weighted variant of MSE. The loss of
the complete j-th training sample is computed as

Lj N
BU) = 7 Yoo X Iwes Wl + a g gl P
Ji=1 \k=1
o 12 0|2
oy |Iyo.j — ¥5,l” + ol 7j — 7| (18)
The parameters wy ;, g/, yo,j and 7; are the ground-truth DMP
parameters from the training set (17), while wzyi, 27,0,
and 77 are the output DMP parameters computed by the
neural network for the i-th input image. Additional weights
0O, Oy, 0z > 0 are used to balance the importance and scaling
of parameters with different units. A logistic function with
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Fig. 4. The training process flow. Real and synthetic videos are transformed using subsampling, rescaling and additional randomization techniques. The
processed data are then used to train the RIMEDNet architecture using backpropagation and a temporally weighted mean squared error loss.

scaling factor ¢4 is used to compute the weights ¥,
1

—a,ﬁms'

%= (19)
I+e
This way we decrease the significance of early video frames
and increase the significance of later frames, while ensuring
that the values of weights ¥; are in the range from O to 1.

The proposed neural network model and its training were
implemented using PyTorch [49] and an NVIDIA GeForce
GTX 1080 graphics processing unit. The training process was
carried out using the Adam optimizer [50] and a batch size
of 30. To prevent overfitting of the network to training data,
the error on validation dataset was computed after each epoch
and the training was stopped after 60 consecutive epochs of no
validation error decrease. The learning rate was changed in a
cyclical manner using the approach from [51], which increases
training speed and reduces the need for parameter tuning.

To enable batch training, which significantly reduces the
training time, the input videos were padded using the final
frame in each video so that all the videos in the batch were of
the same length. Besides speeding up the training process, by
padding the videos we also increase the robustness of motion
prediction when the images of the robot standing still are fed
into the network after the end of the motion. This enables more
accurate trajectory prediction even after the robot motion has
been finished.

IV. EXPERIMENTS

The goal of our experiments was to determine the accuracy
of the RIMEDNet architecture when predicting the giver
trajectories or the corresponding receiver trajectories during
robot-to-robot handover tasks and whether the accuracy can
be improved by utilizing simulation data. Table I shows
different experimental scenarios, where the combinations of
giver, receiver, Cartesian, and joint trajectories were used for
training, and either only real or mixed (real and synthetic) data
were used. To compare different scenarios we used the custom
CNN structure, depicted in Fig. 3, due to its simple structure
and faster training. Additional architectures are discussed in
Section IV-D. The process flow is depicted in Fig. 4.

A. Data collection

TABLE I
RIMEDNET TRAINING SCENARIOS

Name Robot Trajectory type Data source
R-GC Giver Cartesian Real
R-GJ Giver Joint Real
R-RC Receiver Cartesian Real
R-RJ Receiver Joint Real
SR-GC Giver Cartesian Sim + Real
SR-GJ Giver Joint Sim + Real
SR-RC Receiver Cartesian Sim + Real
SR-RJ Receiver Joint Sim + Real

1) Synthetic data: The generation of synthetic data (31,195
samples) was implemented using the robot simulator Cop-
peliaSim [52] in combination with the PyRep toolkit [53] for
robot learning research. To simulate a robot-to-robot handover
task, a giver robot performed minimum jerk motions [44] with
randomly selected initial position, fixed initial orientation and
randomly selected end pose, while being recorded with a sim-
ulated camera. The initial and final positions as well as final
orientations were confined to a fixed range of values. During
each simulation episode, a stream of RGB-D image data were
recorded with a simulated camera, and joint and Cartesian
trajectories were generated both for giver and receiver robots,
the duration ranging from 1.5 to 5 seconds. The corresponding
motion of the receiver robot was generated as a minimum
jerk trajectory, starting from the fixed initial pose to the end
position of the giver, while the orientation was rotated by 180
degrees to enable collision-free object handover. Note that the
receiver motion is only generated for data collection and does
not need to be executed.

A customized fork of PyRep! was developed featuring
domain randomization functionality that was employed in
the simulation environment in an attempt to minimize the
discrepancy between the source domain (simulation) and the
target domain (real world). The purpose of randomization is to
capture the variability of real images in simulated images. To
achieve appropriate variability, the colors and texture patterns
of all surfaces (including those of the robot) were randomized,
along with the locations of the table and the back wall as

Thttps://github.com/abr-ijs/PyRep/tree/feature/domain_randomization
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Fig. 5. Comparison of test errors for RIMEDNet models with the custom CNN structure, trained on different trajectory and data types, where an increase in
accuracy can be observed with more processed frames for all models. Additionally, in nearly all cases accuracy is better when mixed data are used instead of
only real data. Errors in a) and b) are defined as mean squared errors between the actual and predicted robot trajectories, while only goal errors are shown

in d) and e). In c), the mean trajectory errors after processing 100% of input video are shown.

well as camera and light source poses. In addition, brightness,
contrast and saturation were randomly adjusted and Gaussian
noise was added to the acquired frames.

2) Real data: The real environment closely resembled the
simulated setting. The acquisition of real data was carried
out by performing a portion (7,198) of the generated simu-
lation trajectories with a real giver robot and recording its
movements with an Intel RealSense D435 depth camera. The
Robot Operating System (ROS) was used to synchronize robot
commands and the camera recording program by sending the
appropriate start and stop signals through a ROS topic. We
applied small random rotations to the captured RGB-D images
to account for possible small changes of the camera view
directions. Just like in simulation, brightness, contrast and
saturation were randomly adjusted and Gaussian noise was
added to the acquired frames. However, the standard deviation
of changes and noise was smaller in this case.

B. Datasets

All RGB-D frames (simulated and real) were resized to
160 x 120 pixels and the video streams were sampled at 5
Hz. Values of input videos and output DMP parameters were
normalized to be in the range from 0 to 1. The datasets used
in the experiments were as follows:

e SimVTTrain: This set consists of 31,195 simulated

video-trajectory pairs and was used for network training.

« RealVTTrain: This set consists of 5,879 video-trajectory

pairs, obtained with a real robot, and was also used for
training.

e RealVTVal: For validation of the training performance,

we used 654 video-trajectory pairs, obtained with a real
robot and with the same processing as the RealVTTrain.

« RealVTTest: For evaluation of the final neural network
models, we used 665 video-trajectory pairs, obtained with
a real robot and with no additional randomization.

All videos were sampled at 5 Hz. The frame rate of 5 Hz is
sufficient for accurate motion prediction because we only need
to recover specific robot receiver or giver motions for which
the networks were trained, not any arbitrary motion.

C. The performance of RIMEDNet in different scenarios

The RIMEDNet architecture with the custom CNN structure
was trained using different scenarios from Table I. The datasets
described in Section IV-B were employed for this purpose.
The resulting training, validation and test errors are shown in
Table II, where the mean squared error between ground-truth
and predicted normalized DMP parameters from Eq. (17) are
depicted. The training and test errors for each network are
relatively similar, with the training errors being lower by a
factor of 1.31 to 2.42. This indicates negligible overfitting of
the networks to training data, which is due to the fact that the
analysis of the validation dataset results stopped the training
process before significant overfitting could occur.

The trained networks were evaluated using the Real VT Test
dataset, which was excluded from the training and validation
process. The test videos were passed through the models in
order to obtain trajectory predictions for each frame, as shown
in Fig. 1. The prediction accuracy of the obtained trajectories
was analyzed in Cartesian space, both in terms of the spatial
course of motion and the duration of the trajectories.

The comparison of trajectory test errors for RIMEDNet
architectures is shown in Fig. 5. The position, orientation and
duration prediction errors for each model are represented in
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TABLE II
RIMEDNET TRAINING/VALIDATION/TEST DMP ERRORS

Training error Validation error Test error
R-GC 0.293 0.402 0.384
R-GJ 0.175 0.418 0.423
R-RC 0.780 1.384 1.19
R-RJ 0.765 1.233 1.028
SR-GC 0.144 0.274 0.269
SR-GJ 0.154 0.331 0.335
SR-RC 0.829 1.378 1.121
SR-RJ 0.645 1.230 0.997

Note: The values in the table should be multiplied by 102 to obtain the

correct errors.
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Fig. 6. Mean goal pose errors after processing 40/70/100% of the motion
video. The position and orientation errors are decreasing as more of the motion
video is processed, reaching as low as 2.16 cm and 2.86 degrees.

relation to the percentage of the motion video that has been
processed by the network, starting at 30%, where the errors
are shown for the entire trajectories as well as for only the goal
poses. The mean trajectory errors after processing the entire
input video are also compared, while the average goal pose
errors after processing 40%, 70% and 100% of motion video
are shown in Fig. 6.

The results show gradual decrease of the prediction errors
when more frames of the recorded motion are processed.
The models trained on both synthetic and real data exhibit
higher prediction accuracy than when trained only on real data.
Models trained in SR-GC, SR-GJ, SR-RC and R-RC scenarios
all performed comparably well. While the models computed in
the SR-RC and R-RC scenarios achieved especially low mean
position trajectory errors towards the end of motion, their goal
pose errors were similar or higher. The low average trajectory
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Fig. 7. Box-and-whiskers plot of position and orientation errors for the SR-GC
model. The black middle lines are the medians. The boxes show the range
of data between the first quartile Q1 (25%) and the third quartile Q3 (75%).
The whiskers extend from the 5-th to the 95-th percentile.

errors arising in the SR-RC and R-RC scenarios are probably
due to the fact that the receiver motions all begin from the
same starting position and are thus less variable, whereas
the giver trajectories can start from different initial positions.
The higher errors of the predicted joint trajectories, on the
other hand, probably arise from the conversion of joint space
trajectories into Cartesian space, which may increase the scale
of error due to the nonlinear mapping. The trajectory duration
error for all models is below 0.2 seconds after approximately
50% of motion.

A detailed box-and-whiskers graph of goal and trajectory
errors for SR-GC scenario is displayed in Fig. 7, showing that
the median errors decrease with the number of frames. The
goal errors reach 2.11 cm and 2.35 degrees after processing an
entire motion video. Fig. 8 similarly demonstrates the improve-
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Fig. 8. Examples of trajectory predictions for the motion of the giver. Each group of 4 rows belongs to the same motion example, where rows 2 and 3 display
position predictions as paths in 3D space and orientation predictions as quaternion values through time (obtained using the SR-GC scenario). Row 4 shows
the motion trajectory of the receiver robot, generated by switching between the predicted receiver trajectories as described in Section II-C. Here the dashed
lines show the ground truth receiver trajectories, while the actual robot receiver joint trajectories are shown with thick lines.
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variants with custom-designed convolutional layers (Custom-RIMEDNet),
convolutional layers from GoogLeNet (GoogLe-RIMEDNet), convolutional
layers from ResNet-34 (ResNet-RIMEDNet), and convolutional layers from
AlexNet (Alex-RIMEDNet). The modified recurrent neural network architec-
ture from [14] (Mod-RCNN) was also evaluated. Finally, the performance of
RIMEDNet with custom-designed convolutional layers trained on simulation
data only (Sim-RIMEDNet) is shown.

ment of accuracy as more frames are processed and also shows
examples of giver trajectory predictions and the associated
robot receiver trajectories generated by the approach described
in Section II-C.

The accuracy of the generated robot trajectories, especially
in the SR-GC and SR-RC scenarios, is acceptable for object
handover in many real environments, particularly when using
compliant robots, where the error of a few centimeters does
not prevent a successful handover.

D. Comparative study of variants of RIMEDNet

To the best of our knowledge, there exists no previous
recurrent deep neural network for direct prediction of DMP-
encoded trajectories from RGB-D videos. However, the re-
current neural network architecture from [14] similarly uses
RGB-D videos to classify the observed human actions. We
modified this network by adapting the output layer to allow
for DMP parameter prediction and enable comparison to our

proposed model. In addition to this network and the network
with custom-designed CNN layers shown in Fig. 3, we also
tested the variants of RIMEDNet where the convolutional
layers were provided by pretrained state-of-the-art CNN archi-
tectures: ResNet-34 [46], GoogLeNet [48] and AlexNet [47].
The aim was to identify the best convolutional layers for
RIMEDNet. In addition, we also evaluated the RIMEDNet
with custom CNN layers trained with synthetic data only.

Since the network in [14] has an input size of 227 x 227
and common state-of-the-art CNN networks usually have an
input size of above 224 x 224, we set the input size of all
compared architectures to 227 x 227. The frames of RGB-D
videos were appropriately transformed to match the input size.
Layers of our custom CNN structure from Fig. 3 were slightly
modified to preserve the roughly same number of parameters,
i.e. the kernel sizes of the three convolution layers were
changed to 6, 5 and 4, while the stride of the first max
pooling layer was changed to 3. An additional 1894 training
video-trajectory sample pairs, randomized in the same way
as RealVTTrain dataset, were obtained using a real robot to
improve the accuracy for use in a real handover experiment
(see Section IV-E). All networks were trained using the SR-GC
scenario due to the high accuracy shown in Section IV-C,
i.e. using both real and synthetic data and predicting giver
Cartesian trajectories. For the network trained with simulated
data only, we used the SimVTTrain dataset. All the networks
were validated using the RealVTVal dataset and tested on the
RealVTTest dataset. The batch size was reduced to 10 due to
the larger resolution of input images.

The comparison of mean trajectory position and orientation
errors in relation to the percentage of processed motion video
is shown in Fig. 9. RIMEDNet with AlexNet convolutional
layers has shown the highest pose prediction accuracy, with
mean position and orientation errors reaching 1.33 cm and
1.72 degrees at the end of motion, respectively. The RIMED-
Net architecture with custom CNN layers performed better
than RIMEDNet with GooglLeNet and ResNet-34 convolu-
tional layers, especially when predicting position trajectories.
The modified network from [14] also performed well, but not
as well as RIMEDNet with convolutional layers from AlexNet.
The RIMEDNet with custom convolutional layers trained on
synthetic data only performed considerably worse than the
same architecture trained on the mixed simulated and real
data. This shows that adding real data to simulated data greatly
improves the overall accuracy.

RIMEDNet with convolutional layers from AlexNet has
thus proven to be the best choice and significantly better than
RIMEDNet with convolutional layers taken from ResNet-34
and GoogLeNet. The additional improvement of the accuracy
compared to the results from Section IV-C was presumably
achieved with the increase of image resolution to 227 x 227.

E. Robot-to-robot object handover experiment

The proposed approach was used to implement the handover
task with two Franka Emika Panda robots (Fig. 10), where the
best performing RIMEDNet architecture with convolutional
layers from AlexNet was used. The designed handover control
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Fig. 10. The application of RIMEDNet to implement the object handover task.
The giver robot (right) passes an object to the receiver robot (left). Trajectory
predictions are computed online and used to control the receiver robot. With
each processed camera frame, a new receiver motion trajectory is generated.

system was implemented in ROS. Intel RealSense camera was
used to record the motion of the giver robot, with the recording
starting at the beginning of motion. Frames were sent in real
time with a rate of 5 Hz to a computer running the recurrent
neural network model, while the giver robot was following a
trajectory from the test dataset at 120 Hz. The durations of test
trajectories varied from 1.5 to 5 seconds, where the average
end effector speed of the giver robot was 0.32 m/s. The system
predicted the DMP parameters of the giver robot in Cartesian
space, i.e. the SR-GC scenario from Section IV was used.
The predicted goal pose of the giver robot was thus used to
generate the receiver trajectory towards the object using the
approach described in Section II-C. The receiver started its
motion one second after the giver and its speed was determined
by Eq. (11).

A subset of 168 randomly selected test motions from the
RealVTTest dataset were carried out by the giver robot for
two different objects. The pre-handover phase trajectories were
designed to approach the predicted goal pose at the distance of
10 cm. In the object exchange phase, the receiver robot moved
along a straight line towards the goal pose and attempted to
grasp the object.

TABLE III
HANDOVER SUCCESS RATE

Object 1 Object 2
Dimensions (W x H X D) [cm] 20x8.3x2.5 10x8x3
Success rate (168 handovers) 74.4% 66.3%

Note: W — width, H — height, D — depth of the object.

Table III shows the success rate of the handover process
for both objects. Two examples showing one successful and
one unsuccessful object handover for Object 1 are shown in
Fig. 11. The handover success rate was 74.4% for the narrower
Object 1 (D =2.5 cm) and 66.3% for the wider Object 2
(D =3 cm). The main reason for the unsuccessful handovers
becomes evident if we analyze the accuracy of the applied
RIMEDNet with convolutional layers from AlexNet (1.35 cm
with standard deviation of 0.73 cm for position and 2.59°

P, Unsuccessful

Successful
handover

Fig. 11. An example of a successful and an unsuccessful attempt of a robot-
to-robot object handover, implemented using RIMEDNet with convolutional
layers from AlexNet. The images were taken before the final approach of
the receiver robot to grasp the object. The left example shows an accurate
prediction of the goal pose, while the grasp attempt on the right image would
fail after the approach of the receiver.

with standard deviation of 1.87° for orientation), the distance
between the fingers of the fully opened gripper (6.8 cm), and
the width of the two objects (2.5 and 3 cm). Thus there is only
a small clearance between the object and the gripper fingers,
which can be exceeded when the error reaches its mean plus
standard deviation. A more reliable object handover could be
achieved by utilizing a gripper with wider distance between the
fingers or by applying a visual servoing system to fine tune the
final position of the receiver motion. This is similar to human-
to-robot object handover, where the human can appropriately
adapt the object pose so that the robot can successfully grasp
it. In all cases, the proposed system is effective at generating
the pre-handover phase motion for the receiver robot.

V. CONCLUSION

In this paper we propose a new approach for motion
prediction and generation from RBG-D videos in the context
of robot-to-robot object handover tasks. At the core of the
approach is the new recurrent neural network architecture
RIMEDNet, which has been designed for motion prediction
from incomplete videos. It consists of stacked convolutional,
LSTM, and fully connected layers. RIMEDNet can start
making predictions based on the partially observed motion
of the giver agent and can process variable-length RGB-D
videos. To exploit RIMEDNet’s predictions for the generation
of robot receiver trajectories, we designed an appropriate
motion generation system based on third-order dynamic move-
ment primitives and quintic polynomials. This system enables
smooth switching (up to the second-order derivatives) between
the predicted trajectories. Additionally, we have shown that the
amount of real-world training examples can be significantly
reduced by supplementing the training data with synthetic data,
which are usually much easier to gather. The developed system
allows for the implementation of an efficient and dynamic
object handover procedure, where the receiver robot can start
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moving towards the object handover location before the giver
robot completes its motion.

We plan to extend our approach to a human-to-robot
handover task, where the ground-truth data can be obtained
using motion trackers. One of the challenges that remain for
future research is the generalization power of the proposed
network; ideally, the network should generalize to entirely new
environments that were not included in the training dataset,
especially in the real world. One option is to record the
sample videos in front of a green screen and digitally change
the background with real images to obtain environments as
diverse as possible. This way we can avoid performing too
many movements with a real robot while still gathering a
large amount of examples based on real robot motion and real
images. Another promising method is the domain adaptation
approach, where the network can utilize the target domain
data without ground truth data, making it easier to transfer
knowledge from one domain to another. This approach is
especially suitable for the case of human-to-robot handover,
where gathering ground-truth data is difficult.

Another possible extension is to include a general-purpose
pose tracker network for motion estimation from RGB-D
videos. Such a network can provide a separate estimation of
the current robot or human pose. The results can be used
to improve the accuracy of the predicted trajectories and for
segmentation, i.e. to determine the start and end of the giver
motion. This way all parts of the proposed system could be
fully automated.
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