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Abstract. A deep encoder-decoder network was previously proposed
for learning a mapping from raw images to dynamic movement primi-
tives in order to enable a robot to draw sketches of numeric digits when
shown images of same. In this paper, the network architecture, which
was previously constructed entirely with fully-connected linear layers, is
modified to include convolutional layers in order to improve the image
encoder component and make the network more robust to noise. The
convolutional layers are pre-trained as part of an MNIST digit classifier
and adapted for use in the encoder-decoder network, before the network
is trained using a dataset composed of digit images and corresponding
writing trajectories. This architecture was tested on several challenging
noisy digit datasets and the use of convolutional layers is shown to pro-
vide a robust improvement in results.
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1 INTRODUCTION

Effectively learning to predict action mappings directly from perceptual input
is a highly challenging problem in robotics research that has seen a broad va-
riety of approaches attempting to solve it in different settings. One example
is that of object-action complexes (OACs) [8], which is a grounded representa-
tion that binds objects, actions, and attributes in a causal model. The partic-
ular setting under consideration in this work is depicted in Fig. 1, in which a
robot must learn direct mappings between handwritten characters in input im-
ages and the motion trajectories needed to draw them. Our previously proposed
fully-connected encoder-decoder network architecture [9] used dynamic move-
ment primitives (DMPs) [6] for movement representation and this proved to be
an effective choice both for representation and learning with the neural network
and ultimately for control of the robot when drawing the actual digits. The
fully-connected architecture, however, was not ideal for image representation.

In this paper, we investigate a different architecture that combines the ben-
efits of convolutional layers for image encoding with those of a fully-connected
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encoder-decoder architecture for DMP parameter prediction and image-to-motion
representation in a low-dimensional latent space. This combination allows for
relatively robust prediction compared to the previously proposed architecture,
even when the input images are heavily corrupted by noise. The use of con-
volutional layers has the added benefit of significantly reducing the number of
network parameters and by pre-training these layers on images from a similar
image domain, the learning process is further improved.

Fig. 1. Writing digits with a robot using image-to-motion encoder-decoder network
prediction. The movements are generated using DMPs predicted by the network from
the images shown in upper left corners.

Autoencoders [4], as well as variational autoencoders [5], have been demon-
strated to be quite effective when it comes to calculating DMP-based representa-
tions of human motion. Since our focus is on learning direct mappings between
images and actions, instead of using such autoencoder networks in which the
DMP encoding occurs in the latent space, we use an encoder-decoder architec-
ture in which the image is encoded from the input layer, the DMP parameters
are predicted at the output layer and the transformation and generalization of
the image-to-motion representation occurs in the low-dimensional latent space.
Encoder-decoder networks in combination with convolutional layers have proven
to be useful in computer vision. A well-known example is SegNet [2], in which
pre-trained convolutional layers from a convolutional neural network (CNN) were
adapted to form a fully-convolutional encoder-decoder architecture for seman-
tic pixel-wise segmentation. We also use pre-trained convolutional layers from
a CNN in this work, although the architecture differs in that the convolutional
layers are only used to form the encoder part of the network. The CNN that
we use here is also comparatively basic, but the use case is a very different
one in which a more limited image recognition approach is sufficient and the
architecture would nonetheless be extensible for more advanced scenarios.

Prior to the adoption of deep learning methods for such tasks, an effort was
made by Ali [1] at modeling individual brush strokes of calligraphic characters
using Gaussian Mixture Models, combining the brush strokes using Gaussian
Mixture Regression and reproducing brush stroke trajectories using DMPs. The
reproduced stroke trajectories were iteratively refined using reinforcement learn-
ing for learning examples in the database, but each reproduction started from
scratch with no generalization between different examples or to new unseen
cases. Usually when CNNs are used for supervised learning of perception-action
couplings, they are used in combination with another neural network in two
separately trainable parts. In [13], Yang et al. first used a deep convolutional
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Fig. 2. The CIMEDNet architecture.

autoencoder for finding camera image features and then in combination with
recorded robot angles, formed sequences for the learning task dynamics with a
time delay neural network. Pervez et al. [11] used a pre-trained CNN for find-
ing task parameters from input images, while using a another fully-connected
neural network to learn to generate forcing terms from the clock signal and task
parameters, before combining both networks in an end-to-end training scheme.
Both of these two examples produce the next step from the image of the current
step while working in online loop, whereas our method, by contrast, uses just
single images for generating entire trajectories.

2 CONVOLUTIONAL IMAGE-TO-MOTION
ENCODER-DECODER NETWORKS

The structure of the data under consideration in this work is the same as in
[9] where the input and output data pairs take the form D = {Cj ,Mj}Mj=1

where M is the number of input and output training pairs, Cj ∈ RH×W are the
input images of width W and height H, and Mj the corresponding movements

associated with each image, i. e. Mj = {yi,j , ti,j}Tj

i=1 . Here yi,j ∈ Rd are the
vectors describing the movement’s degrees of freedom, e. g. Cartesian positions
or joint angles, ti,j ∈ R the measurement times for the j-th movement, and d
is the number of degrees of freedom. However, it should be noted that in this
paper, we convert the movements Mj to DMPs and construct all of the datasets

used to train the network models as follows: D′ = {Cj ,kj}Mj=1, where kj are the
DMP parameters calculated for each movement Mj and are represented as

kj =
{
{wk}Nk=1, τ, g, y0

}
. (1)

The construction of DMPs and the nature of the parameters {wk}Nk=1, τ , g and
y0 are explained in detail in the following subsection.
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2.1 Motion Representation with DMPs

Letting a time-dependent movement trajectory be denoted as y(t) ∈ Rd, a DMP
specifying this trajectory is given by the following system of differential equations

τ ż = αz(βz(g − y)− z) + diag(g − y0)F(x), (2)

τ ẏ = z, (3)

where y0 ∈ Rd is the initial position on the trajectory, g ∈ Rd the final position
on the trajectory, diag(g − y0) ∈ Rd×d a diagonal matrix with components of
vector g − y0 on the diagonal, F(x) ∈ Rd a nonlinear forcing term, z ∈ Rd a
scaled velocity of motion, and x ∈ R the phase defined by the following equation

τ ẋ = −αxx. (4)

The phase x is used instead of time to avoid explicit time dependency. It is fully
defined by setting its initial value to x(0) = 1. Eq. system (2) – (4) constitutes
a dynamic movement primitive (DMP). If the parameters τ, αx, αz, βz ∈ R are
defined appropriately, e. g. τ, αx > 0 and αz = 4βz > 0, then the linear part of
equation system (2) – (3) becomes critically damped and y, z monotonically
converge to a unique attractor point at y = g, z = 0. The forcing term F(x) is
usually defined as a linear combination of radial basis functions

F(x) =

∑N
k=1 wkΨk(x)
∑N

k=1 Ψk(x)
x, (5)

Ψk(x) = exp
(
−hk (x− ck)

2
)
, (6)

where ck are the centers of Gaussians distributed along the phase of the tra-
jectory, and hk their widths. The role of F is to adapt the dynamics of (2) –
(3) to the desired trajectory y(t), thus enabling the system to reproduce any
smooth movement from the initial position y0 to the final configuration g. This
can be accomplished by computing the free parameters wk ∈ Rd using regression
techniques. See [12] for more details.

αz, βz, and αx are usually constants that do not change between movements.
Thus the neural network needs to learn the other parameters of differential
equation system (2) – (4) to fully specify a DMP as defined in Equation (1).

2.2 Network Architecture

In our improved architecture, images are encoded via convolutional layers that
are pre-trained as part of a basic CNN classifier that was trained on the original
MNIST dataset. The input is a 40× 40× 1 grayscale pixel image, followed by a
convolutional layer with 5 × 5 kernel size and 10 feature maps, a convolutional
layer with 5 × 5 kernel size and 20 feature maps, a 0.5 dropout layer, a fully-
connected layer of size 320, a fully-connected layer of size 50 and the output
layer of size 10 matching the number of digits. After training the classifier, the
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fully-connected layers are removed and the convolutional layers are retained and
are used to form the first layers of the encoder in our proposed architecture.
These convolutional layers are illustrated on the left side of Fig. 2. In different
variations of the architecture, the encoder is either composed entirely by the
convolutional layers or the convolutional layers are followed by additional fully-
connected layers before reaching the decoder. The latter case is illustrated in
Fig. 2 which shows two fully-connected layers with sizes of 600 neurons and 200
neurons respectively in the encoder following the two convolutional layers. These
two variations of the encoder structure as well as their differences in terms of
performance are described further in Section 3.

Following the final convolutional layers or fully-connected layers of the en-
coder depending on the precise network architecture, at the bottleneck of the
network that forms the latent space representation, a decoder is formed via a
number of fully-connected layers that gradually expand the number of units in
each layer until the final output layer which has a size set to 55 units in order to
match the DMP parameters {wk}Nk=1, τ , g and y0. The layers of the decoder are
illustrated on the right side of 2 starting with the bottleneck of size 20, followed
by a layer of size 35 and finishing with the output layer. This is the same decoder
structure as used [9] and we retain it here as-is, having found it to be effective
throughout our experiments for this particular use case. The cost function used
to evaluate the output of the network is the same as that of Equation (9) in [9],
which is defined for the j-th DMP as follows:

Ep(j) =
1

2

(
N∑

k=1

‖wk −wk,j‖2 + (τ − τj)2 + ‖g − gj‖2 + ‖y0 − y0,j‖2
)
, (7)

where {{wk}Nk=1, τ, g, y0} denotes the output of the neural network and
{{wk,j}Nk=1, τj , gj , y0,j} the DMP parameters from the training data kj ∈ D′.
For further details on the gradient calculations required for minimizing the cost
function via backpropagation we refer the reader to [9].

3 EXPERIMENTS

In our experiments, we trained both the fully-connected image-to-motion encoder-
decoder architecture (IMEDNet) and the convolutional architecture (CIMED-
Net) on various digit image and motion trajectory datasets. We experimented
with two different versions of the new architecture, one of which used exclusively
pre-trained convolutional layers in the encoder CIMEDNet used pre-trained con-
volutional layers followed by some additional fully-connected layers in the en-
coder with the decoder constructed entirely with fully-connected layers. The
IMEDNet architecture was the same as described in [9] with fully-connected
hidden layer sizes of 1500, 1300, 1000, 600, 200, 20, and 35 neurons, respectively.
The CIMEDNet architecture was as described in Section 2.2 and as illustrated in
Fig. 2 where the two additional fully-connected layers in the encoder are shown
to have sizes of 600 and 200 respectively. We used PyTorch [10] in order to im-
plement all networks and trained our models on NIVIDIA GTX 1080 and 1080Ti
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GPUs. When pre-training the MNIST CNN classifier, we used a stochastic gradi-
ent descent optimizer, a negative log-likelihood loss, a batch size of 64, a learning
rate of 0.01 with momentum 0.5, and trained for 10 epochs. This achieved a 98%
accuracy which we deemed sufficient for our purposes in extracting the trained
convolutional layers for use in the encoder-decoder networks.

When training the encoder-decoder networks, we used the Adam optimizer [7]
with a learning rate of 0.0005 and the epsilon parameter for numerical stability
set to 0.001. In order to avoid learning plateaus, the optimizer parameters were
periodically reset to initial values every 500 epochs. A mean squared error loss
was used to evaluate the cost function in Equation (7) and the batch size was set
to 128 for weight updates. As a stopping criterion, if the best validation loss was
unchanged after 60 epochs, training was halted. The above training procedure
was used for both the IMEDNet and CIMEDNet architectures. However, in the
case of CIMEDNet, we also experimented with either freezing the convolutional
layer weights or training the entire network end-to-end. The results for these
different training regimes are cataloged in Table 1.

3.1 Datasets

In order to construct D, we employed the same scheme described in [9] to gener-
ate 40×40 images of synthetically written digits and associated two-dimensional
artificial writing trajectory movements. Briefly, the synthetic trajectory data was
generated using a combination of straight lines and elliptic arcs. These geometric
elements were used to generate grayscale digit images and their paramaters were
varied according to a uniform distribution. The resulting images were processed
with a Gaussian filter and some moderate salt-and-pepper noise was added to
the foreground pixels. Finally, both the generated trajectories and the resulting
images were transformed using affine transformations composed of translation,
rotation, scaling, and shearing. These parameters were again taken from a uni-
form distribution. For the DMP representation of the trajectories, 25 radial-basis
functions were selected for every dimension. The weights of these basis functions
form together with the common time constant (1 parameter) and the start and
the goal values of a planar movement (2× 2 parameters), the full set of 55 DMP
parameters that represent the motion. Using this procedure, several datasets
were generated both with and without similar noise as used in the noisy MNIST
(n-MNIST) datasets [3] as follows:

– s-MNIST: 2000 pairs of images and trajectories without any added noise
were generated for each digit, for a total of 20000 samples that were split in
a 70%/15%/15% ratio between training/validation/test data,

– s-MNIST-AWGN-19.0: 300 samples per digit/3000 total samples, using
additive white gaussian noise with a signal-to-noise ratio of 19.0,

– s-MNIST-AWGN-9.5: 300 samples per digit/3000 total samples, using
additive white gaussian noise with a signal-to-noise ratio of 9.5,

– s-MNIST-MB: 300 samples per digit/3000 total samples, using a motion
blur filter emulating a linear motion of the camera of 5 pixels and a 15 degree
motion in the counterclockwise direction,
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– s-MNIST-RC-AWGN: 300 samples per digit/3000 total samples, using a
contrast range scaled down to half as well as additive white gaussian noise
with a signal-to-noise ratio of 9.5.

It should be emphasized that in the results that follow, only the s-MNIST dataset
was used for training the presented models.

Table 1. DMP reconstruction statistics. The results are in pixels. The best result for
each dataset is highlighted in boldface.

s-MNIST
s-MNIST-

AWGN-19.0
s-MNIST-
AWGN-9.5

s-MNIST-
MB

s-MNIST-
RC-AWGN

IMEDNet
(End-to-End) 0.22 ± 0.08 0.56 ± 0.20 1.66 ± 0.60 0.35± 0.15 2.32 ± 0.77
CIMEDNet
(Frozen Conv.) 0.26 ± 0.10 0.54 ± 0.20 1.48 ± 0.55 0.47 ± 0.25 2.19 ± 0.76
CIMEDNet
(End-to-End) 0.19± 0.08 0.36± 0.14 1.02± 0.45 0.36 ± 0.12 1.93± 0.66

3.2 Results

The main quantitative results are presented in Table 1 while qualitative results
for selected samples are presented in Fig. 3. After training on the noiseless s-
MNIST dataset each of the models were tested on all five of the noiseless and
noisy s-MNIST datasets described in the previous section. The CIMEDNet archi-
tecture was trained with two separate training regimes in which the convolutional
layer weights were frozen and the models were trained end-to-end respectively.
For the quantitative evaluation, dynamic time warping was used to measure the
mean pointwise pixel distance between the trajectories generated by the DMPs
predicted by the networks from the digit images and the actual digit trajectories.

As can be seen in Table 1, the CIMEDNet model that is trained end-to-end
significantly out-performs the IMEDNet model on both the noiseless s-MNIST
dataset and on most of the noisy s-MNIST datasets, apart from the dataset
featuring motion blur noise. We reason that this may be due to the fact that
motion blur can significantly distort overall object shape and edge profiles and
given that convolutional neural networks function the basis of exploiting hierar-
chies of image filters often heavily represented by edge detectors, this may impact
on their effectiveness in such circumstances. The CIMEDNet that was trained
with frozen convolutional layers also fared well, beating the IMEDNet model on
the same noisy datasets despite not scoring as well on the noiseless dataset. This
indicates that the feature detectors in the convolutional layers allow for more
robust generalization whereas fully-connected layers are more inclined to overfit.

The qualitative result samples in Fig. 3 are also interesting. Results using the
s-MNIST-RC-AWGN dataset are omitted as the noise levels are so pathologically
difficult that the qualitative results are comparatively worthless. However, the
CIMEDNet model often performs surprisingly well given that it was not trained
or fine-tuned on the noisy data. Both models appear to produce highly legible
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writing trajectories that closely match the actual trajectories in the case of the
s-MNIST-MB dataset, but the CIMEDNet model is demonstrably superior to
IMEDNet in many cases with the s-MNIST-AWGN-19.0 and s-MNIST-AWGN-
9.5 data, producing much more legible results and demonstrating the robustness
of the convolutional layers in dealing with even high noise levels.

Fig. 3. Example results for IMEDNet (rows 1, 3, 5 & 7) & CIMEDNet trained end-
to-end (rows 2, 4, 6 & 8). Rows 1 & 2: s-MNIST, rows 3 & 4: s-MNIST-AWGN-19.0,
rows 5 & 6: s-MNIST-AWGN-9.5 and rows 7 & 8: s-MNIST-MB. Original trajectories
are shown in blue, trajectories calculated by the neural networks are shown in red.
Samples in matching dataset rows are identical.

4 CONCLUSIONS AND FUTURE WORK

We have presented an extended form of an encoder-decoder neural network for
image-to-motion prediction that employs convolutional layers in the encoder in
order to make the image recognition component more robust to noisy input.
We have demonstrated that this architecture outperforms its predecessor on a
variety of different kinds of noise. Regarding future work, we intend to further
expand the capabilities of this model by incorporating layers from more powerful
pre-trained CNN models into the encoder and training the network on more
challenging image sets. One challenge here lies in either finding suitable image
datasets that include trajectory information in their target outputs or in finding
other means of producing images with corresponding motion trajectories, e.g.
by gathering both in a robot simulation environment.
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