Author’s version — provided for personal and academic use. Do not redistribute.

Self-Supervised
Online Learning of

Basic Object Push Affordances

Regular Paper

Barry Ridge'*, Ales Leonardis?3, Ales Ude', Miha Denisa' and Danijel Skocaj?

1 Humanoid and Cognitive Robotics Lab, Department for Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Slovenia
2 Faculty of Computer and Information Science, University of Ljubljana, Slovenia

3 School of Computer Science, University of Birmingham, UK
*Corresponding author(s) E-mail: barry.ridge@ijs.si

Abstract

Continuous learning of object affordances in a cognitive
robot is a challenging problem, the solution to which
arguably requires a developmental approach. In this paper,
we describe scenarios where robotic systems interact with
household objects by pushing them using robot arms while
observing the scene with cameras, and which must incre-
mentally learn, without external supervision, both the
effect classes that emerge from these interactions as well as
a discriminative model for predicting them from object
properties. We formalize the scenario as a multi-view
learning problem where data co-occur over two separate
data views over time, and we present an online learning
framework that uses a self-supervised form of learning
vector quantization to build the discriminative model. In
various experiments, we demonstrate the effectiveness of
this approach in comparison with related supervised
methods using data from experiments performed using
two different robotic platforms.

Keywords Cognitive and Developmental Robotics,
Affordances, Self-supervised Learning, Online Learning

1. Introduction

One of the fundamental enabling mechanisms of human
and animal intelligence- and equally, one of the great
challenges of modern-day robotics- is the ability to perceive
and to exploit environmental affordances [13]. To recognize
how to interact with objects in the world, thatis to recognize
what types of interactions they afford, is tantamount to
understanding cause and effect relationships; moreover,
from what we know of human and animal cognition,
practice and experience help forge a path towards such
understanding. This is clear from early childhood devel-
opment. Through countless hours of motor babbling,
children gain a wealth of experience from basic interactions
with the world around them, from which they are able to
learn basic affordances and, gradually, more complex ones.
This is indicative of a continuous learning process involv-
ing the assimilation of novel concepts over time, though it
is not yet evident precisely how this learning process
proceeds. Consequently, implementing such capabilities in
a robot is no trivial matter. This is an inherently multi-
disciplinary challenge, drawing on such fields as computer
vision, machine learning, artificial intelligence, psycholo-
gy, neuroscience, and others.

Author’s version — provided for personal and academic use. Do not redistribute.

Figure 1. An object affordance learning experimental setup using a Katana
arm, a Bumblebee stereo camera and a Flea RGB camera

For this paper, we approached the problem by using real
robotic systems, as depicted in Figures 1 and 2, to perform
experiments involving simple push manipulations on
household objects. This allowed us to implement and
explore the main idea behind our approach to object
affordance learning, as visualized in Figure 3. Cameras
record images, video and 3D data of these object interac-
tions from which computer vision algorithms extract
interesting features, separated into two data views: object
features extracted prior to interaction and effect features
extracted during and after interaction. These features are
used as data for a machine learning algorithm; a self-
supervised multi-view online discriminative learner that
dynamically forms class clusters in one data view that are
used to drive supervised learning in another.

Our main objective in designing this algorithm was that it
would enable our robot, when presented with objects, to
gradually learn how they behave from experiences inter-
acting with them. When presented with a new object, the
algorithm should be able to predict, from object features,
how that object will behave in terms of possible effects of
actions grounded in effect features. Given feature data from
such interactions, we wanted the algorithm to be able to
form its own affordance models online dynamically from
a naive starting point. To that end, our main requirements
were that it adhere to the following learning constraints:

1. The algorithm should be capable of incremental
learning and should be able to commence learning from
scratch without access to an initial batch of training
data. This is desirable since, given the complexity and
diversity of real-world environments, robots often
encounter entirely novel objects and scenarios not
contained in any prior training data.

2. Since the robot designer may not know in advance
what types of objects the robot will encounter or how
they will behave when the robot interacts with them,
task-specific prior object models should be avoided in favour
of providing the system with a sufficiently rich sensory
feature set from which to derive its own models.

3. The algorithm should learn autonomously/unsupervised,
such that, as the robot gains experience encountering

Figure 2. A second experimental setup using a KUKA-LWR arm, a
BarrettHand and a Microsoft Kinect RGB-D sensor

different objects, acting upon them, and observing the
effects, the exploration and exploitation aspects of
learning would be interleaved and proceed automati-
cally in the following ways:

a. Affordance classes grounded in object effect
features (e.g., motion features observed both
during and after object interaction) would be
derived based on qualitative differences between
data clusters.

b. Object features (e.g., shape features observed
prior to interaction) that are most relevant for
affordance class prediction, would be identified.

¢. Relationships between affordance classes and the
predictive object features would be modeled.

Taken together, the above constraints may be regarded as
guiding principles for developing a type of self-supervised
online discriminative learning, an idea that forms the core
of the learning approach in this paper.

Object Object Range Result Video of Object in
Image Data Motion
+ Arm
é Action

| Object Features | |

. Co-occurence |
R — —

Input Data View Output Data View

Figure 3. Main idea of our object affordance learning framework

Much of the research work related to the present work
stems from the domain of cognitive robotics. Perhaps the
most closely related work in the literature with respect to
affordance learning to our work is by Fitzpatrick et al. [11].
The authors trained a humanoid robot to recognize
“rolling” affordances of four household objects using a
fixed set of actions to poke the objects in different direc-

Author’s version — provided for personal and academic use. Do not redistribute.

tions, as well as simple visual descriptors for object
recognition. There are two main differences between their
method and ours. Firstly, in [11, 22], the feature associated
with the rolling direction affordance was predetermined,
whereas in our system, the learning algorithm is provided
with a number of different output features and it must
determine for itself the affordance classes within that
feature space. Secondly, their system used object recogni-
tion to identify the affordances of individual objects,
whereas our system determines the affordance class of
objects (grounded in object effect features) based, not on
their individual identity, but on input features representing
a broad set of general object properties (e.g., shape).

Saxena et al. [31] used the same Katana robotic arm used in
the present work (see Sec. 3.1) to attempt to grasp novel
objects based on a probabilistic model trained on synthetic
images of various other objects labelled with grasp points.
Later, Detry et al. [7] tackled a similar problem and, rather
than training their learning algorithm on synthetically
generated objects, they enabled an autonomous robotic
arm to grasp objects in an exploratory manner, trained on
these interactions with real objects. They described a
method for learning object grasp affordance densities, i.e.,
continuous probabilistic models of object grasp success
over object-relative grasp poses. In both of these works the
two possible affordances were specified in advance:
graspable or non-graspable. The system presented in this
paper, by comparison, generates its own affordance classes
through interaction with objects. The authors of [35]
worked with a robotic system consisting of a range scanner
and a robotic arm that learned affordances of objects in a
table-top setting using an unsupervised two-step approach
of effect class discovery and discriminative learning for
class prediction. They also applied similar techniques to a
scenario involving self-discovery of motor primitives and
learning grasp affordances [36].

Our learning approach is based on vector quantization via
the use of self-organizing maps (SOMs) [17], which have
been employed in past works on affordance learning in
various different ways [6, 26, 32]. In [6], a SOM was applied
to a simulated mobile robot learning how to prosper in an
artificial environment by exploiting affordances of objects
with survival values, such as nutrition and stamina. The
SOM was used to cluster visual sensor data in the input
space where nodes were assigned weights based on the
success or failure of actions. In our case, by comparison,
SOMs are used in two separate feature spaces in a multi-
view learning configuration similarly to recent work by
Sinapov et al. [32], where SOMs were used to cluster data
in both the proprioceptive and auditory sensory streams of
a humanoid robot while performing performing various
exploratory behaviours on objects. In [24], the authors used
a humanoid robot to push, grasp and tap objects on a table
as well as a Bayesian network to form associations between

actions, objects and effects. Though the goals were similar
to those expressed in this paper, the learning method is less
amenable to online learning, as a certain amount of data
must be gathered initially to find categories before the
network can be trained.

In the next section, we give an overview of our proposed
learning algorithm, which was developed to adhere to the
learning constraints outlined previously. The remainder of
the paper consists of Section 3, where we review the robotic
systems we used for performing experiments, Section 4,
where we describe the experiments themselves, and
Section 5, where we provide concluding thoughts.

2. Self-supervised Multi-view Online Learning

Multi-view learning [33], sometimes also referred to using
the terms ’'cross-modal learning’, ‘'multi-modal learning’
or’co-clustering’ [9, 2, 1, 4, 8] is an area of machine learning
where, rather than having learning performed on data in a
single feature space, it is instead performed over multiple
separate feature spaces, otherwise known as ’data views’
or ‘'modalities’, in which data co-occur. Given this common
theme, the learning goal may otherwise differ depending
on the particular context [33]. In our scenario, object
properties such as shape features define the feature space
in one data view, the input space X < R", whereas object
effects under interaction, such as motion features and
changes in shape features, define the feature space in
another data view, the output space Y = R". We assume
that matching data co-occur in each of them.

Our learning goal is to find significant clusters in Y that
may be projected back to X and used as class labels to train
a classifier, thus forming a mapping f :R"” — N from input
space feature vectors to class labels representing affordan-
ces grounded in output space feature clusters. We consider
this as a multi-view learning problem given that there is a
natural separation between the two feature spaces under
consideration, which model potential causes and potential
effects respectively, and also as a self-supervised learning
problem given that, if the online learning constraints
described in the introduction are to be adhered to, the class
clusters must be discovered and exploited for discrimina-
tive learning both dynamically and autonomously. To this
end, we employed a similar form of an algorithmic frame-
work for self-supervised multi-view learning originally
proposed in [27]' Assuming we have two different modal-
ities or data views, each of them might yield two datasets
of co-occurring data, X ={xi cR™I i=l,..,,D} in the input
spaceand Y = {yi €R"li=1,...,D}inthe output space, where
we work under the assumption that the x; and y; data
vectors are not all available at once and that they arrive in
an online data stream. We aim to represent each of the data
views via vector quantization [17, 21] using codebooks of

1 Source code has been released under the GNU/GPL license at https://github.com/barryridge/SSLVQ.

Author’s version — provided for personal and academic use. Do not redistribute.

prototype vectors W ={w JER™I j=1,...,M] for the input
space and V ={vk €R"lk=1,...,N} for the output space,
respectively, approximating the data distributions in each
view, We adopt the same structural approach taken in [4],
[23] in that we define full network connectivity between the
two codebooks with what we refer to as a Hebbian co-
occurrence mapping as follows:

HW,V)={7,, €R|w, e W,v, eV, Vjk}, 1)

where the y ;, are weights that are used to record the level

of data co-occurrence between nearest-neighbour proto-
types in each of the codebooks.

Thus, we aim to find significant clusters of prototypes in
the output view (effect features) which we dub class
clusters and which we treat as classes to be used for
discriminative learning in the input-view (object features).
However, these clusters are not fully-formed during online
codebook training; thus, we use the information contained
within the codebook network to infer their development
and to guide the training process until the clusters are
derived outside of training during classification. Codebook
training within the input view, therefore, uses two learning
phases. The first phase (cf. Section 2.1), involves unsuper-
vised clustering of the prototypes such that the data
distributions are roughly approximated. The second phase
(cf. Section 2.2), involves self-supervised discriminative
learning such that the positions of the prototypes are
refined for classification purposes using cross-view co-
occurrence information. The classification process, which
may be applied at any given time-step during training and
involves clustering the output view prototypes to discover
the class clusters, is described below in Section 2.3. Finally,
in Section 2.4, we describe feature relevance determination
mechanisms that allow the algorithm to both infer and
exploit the most relevant features in each view for both
class discovery and class prediction.

2.1 Training Phase 1: Unsupervised Learning

For the first phase of codebook training, we employ the
SOM algorithm [17] to perform unsupervised vector
quantization of the prototypes in W and V. We describe
this learning procedure with respect to input view code-
book W only without loss of generality; the same algorithm
is applied to output codebook V. The prototypes in W
partition the input space into Voronoi regions or receptive
fields such that each prototype represents those data
vectors for which it is the nearest neighbour, and that thus
fall within its receptive field as dictated by the squared
Euclidean distance:

dz(x,w) = iﬂi(xi - wi)z,)

in which case the definition of the receptive field for
prototype w, would be

R, ={XEX‘dz(X,Wc)SdZ(X,Wj)VWj eW}. 3)

In (2) above, the A’ are weighting factors for each dimen-
sion, which allows for the possibility of an adaptive
distance function for the purposes of feature relevance
determination, as discussed later in Section 2.4.

Given x, the update rule for prototypes in W using the SOM
algorithm is:

t+1

Wi

=W, +ay, hév[(W)(x—w)), (4)

where &, is a weighted neighbourhood function (cf. (5)
below) for the nearest-neighbour prototype w,, that is, the
closest prototype to data sample x at time ¢, and a}, is the

learning rate at time t. The topology and neighbourhood
function may in principle be defined almost arbitrarily, but
often follow de facto definitions in the literature [17]. In our
case, the prototypes are arranged in a rectangular sheet-
shaped lattice such that, given prototype w ;, it would have

an associated location vectorr; € R? governing its position

within the lattice. We employ a Gaussian neighbourhood
kernel function:

d(rc,r])J)

hi,c (w))= exp[— 207

where the vectors r,€ R* and r;€R?* define 2D lattice
locations of the nearest-neighbour prototype w. and
prototype w ,, respectively, and the parameter o, specifies
the width of the kernel at time ¢. We can take a probabilistic
interpretation of the activation distribution over an entire
codebook by exploiting the neighbourhood kernel func-
tion- as follows- to define:

By, (W))

P(W, [X) = 5

S, w) ©

which is the conditional probability of the activation of
prototype w; €W given data sample x. We also define:

Ay () ={P(W, | X),P(W, |X),..., P(W,, | X)})

to be the discrete spatial probability density function of the
activation of codebook W given x. Analogous rules and

Author’s version — provided for personal and academic use. Do not redistribute.

definitions apply to the output view codebook V. A method
of exploiting the topological structure of the SOM is
provided in [23] such that, not only are the Hebbian weights
between the winning prototypes in each view updated, but
so too are those weights between the neighbours of the
winning prototypes. We make use of this idea as well as (5)
to apply the following update [23, 16] to all weights in
H(W,V) at each training step:

t+1

Vik :7;k +a;{h:~u (Wj)hiu (V) 8)

where af; refers to a learning rate for the co-occurrence

mapping, which may be specified differently from the
learning rates for the individual codebooks.

2.2 Training Phase 2: Self-supervised Learning

After the unsupervised training phase has proceeded for
long enough to provide a robust Hebbian mapping, the
self-supervised training phase may be initiated. In this
phase the output view codebook continues to be trained
with the usual SOM algorithm, while the input view
codebook switches to a modified version of learning vector
quantization (LVQ) [17] training that employs a cross-view
probabilistic supervision signal to improve its discrimina-
tive model. To develop this idea, we make use of two
additional theoretical concepts, cross-view Hebbian
projection and the Hellinger distance, which we discuss
next. Phase 2 training is illustrated in Figure 4.

2.2.1 Cross-view Hebbian Projection

The Hebbian co-occurrence mapping can be used to map
the relationship between the prototypes in the different
views, and one way to achieve this is through the use of
Hebbian projection [4, 5]. A Hebbian projection is a spatial
probability distribution over a codebook and is the result
of selecting a prototype in one codebook and normalizing
the Hebbian co-occurrence weights that map from it onto
another codebook. This is a useful tool that allows us to
measure how one data view looks from the perspective of
another in terms of past co-occurrences of data. Taking our
two data view codebooks W and V as before, given
prototype w; €W we define:

Vik
N
9
> ©)
]

P(v, |w))=

to be the conditional probability of data co-occurring in the
receptive field of prototype v, €V given data occurring in

the receptive field of prototype w;€W. We may now
define a Hebbian projection from prototype w ; in codebook
W to codebook V as:

Hy(w)) = {P(v,|W,),P(v, |W)).....P(vy, | W))}. (10)

2.2.2 Measuring Similarity Between Data Views

Using the definition from [12], for a countable state space
Q and given probability measures y and v :

ol —

(i) :=[z(m 4@)2} . a

weQ)

We use this to create a heuristic that allows us to measure
the similarity between prototypes in the input view
codebook and the output view codebook with respect to
the Hebbian mapping. The Hellinger distance takes values
in the bounded interval [O,ﬁ], making it amenable to
statistical analysis (e.g., calculating the mean distance).
Thus, given the input view training sample x, if we measure
dy (ﬁ (W Ay (y)), the Hellinger distance between the
Hebbian projection from a given prototype w; €W to V
and activation distribution over V given output view
sample y, we can get an impression of how well w; predicts
the activity of the output view codebook given x. Now that
we have the necessary tools in place, we may proceed to
present our modified LVQ algorithm.

2.2.3 Self-Supervised Learning Vector Quantization

In traditional LVQ training [17], prototypes are given fixed
class labels a priori. Subsequently, as training samples with
accompanying class labels are encountered, the nearest
neighbour prototypes are updated according to a set of
update rules. If the prototype class label matches that of the
training sample, the prototype vector is moved towards the
sample. If the labels do not match, the prototype vector is
moved away from the sample. In the modified form of LVQ
we present here, we do not label the prototypes a priori.
Given co-occurring (x,y) samples, input view prototypes
are updated based on a supervision signal formed by
dy (ﬁ Y(w,),A,(y)), the Hellinger distance between the
Hebbian projection from the nearest neighbour prototype
w,.EW to V and the activation distribution over V given
output view sample y. If the distance is small, w, is moved
closer to x, whereas if the distance is large, w, is moved
further away as follows:

w ol (x' -w')
if dyy (Hy (W), Ay (y) <£-6,

Wl - w)) (12)

if dy(Hy (W), Ay (y) 2 £+6,

w! otherwise.

Author’s version — provided for personal and academic use. Do not redistribute.

where, @/ is the LVQ learning rate and, assuming
dy (ﬁ v(w.), Ay (y)) is normalised, ¢ is some decision thresh-

old value with uncertainty window +6.

Output view codebook
activation Ay (y)

Hebbian
projection
iy (w;)

O—O

Output view codebook
activation Ay (y)

Hebbian
projection
7V

Hyy, (w;

Figure 4. Visualisations of the self-supervised training rules from (12). The
first figure shows the case when d, (H K,(wc),AV (y))<€—6 and the

second, when dH (ﬁ K/(Wc)/AV (y)) >e+0.

2.3 Cross-View Classification

For cross-view classification, we require a mapping
f:R™— L (V) that maps input view samples to class labels,
where L () is some labelling function. Our approach to this
is as follows. After clustering the data via vector quantiza-
tion using the prototypes in each of the separate data views,
we wish to form class clusters by clustering the prototypes
themselves in the output view which we treat as classes that
may be projected back to the input view prototypes as class
labels. The means for achieving this are described in the
following sub-sections.

2.3.1 Class Discovery

In order to find the class clusters of prototypes, we treat the
prototype vectors as data points and employ traditional
unsupervised clustering, specifically, the k-means cluster-
ing algorithm. Oneissue with regular k-means is that k must
be selected in advance. It is possible, however, to augment
the algorithm such that k is selected automatically. We
achieve this by running k-means for multiple different
values of k, then evaluating each of the clusterings using
multiple different cluster validity indices, and finally

selecting the k -value which is most consistently selected as
the best value by these. The validity indices we use are
Davies-Bouldin [3]; Dunn [3]; Calinski-Harabasz [10];
Krzanowski-Lai [10]; and the silhouette index [3]. Thus,
given multiple potential k-clusterings K/’,...,K,... as
eg. for k=1,...,10,
K/ ={C]V, .,.,Ckv} and the C;” are the clusters of prototypes

generated by k-means, where

v eV, the five validity indices are computed for each k and
vote for an optimal k value. The k-value with the most votes,
k’,is selected, and K" becomes the selected clustering.

2.3.2 Cross-View Class Projection

For cross-view classification, we require a mapping
f:R"— L (V) that maps input space samples to class labels,
where L () is some labelling function. To realise this
labelling function, the K,*. = {cy,... ,CkV,} class clusters found
in V via class discovery are projected back to the input
space codebook W. Given an input view test sample x to be
classified, the nearest-neighbour prototype in the input
view layer is found and its Hebbian weight links are
mapped to the output view class clusters via Hebbian
projection, as visualized in Figure 5.

By summing the posterior probabilities P(v; | w ;) provided
by such a projection, we can determine the posterior
probability of class cluster C;” in output view codebook V
given prototype w ; in input view codebook W as follows

P(CY W)=, VP(C‘.V |w)P(w))dv 13)

= 2 P(v,[w)P(w))

Mo (14
where R v =ka€ v Rvk is the receptive field for class cluster

CV. This allows us to assign an output view class cluster

label to each of the prototypes in the input view codebook
by maximizing the class cluster posterior probability for
each of them. Thus, givenw jrwe define a labelling function

L(w;)= argmaxi:lmk*P(Civ [w)) (15)

that labels the input view prototypes on that basis and we
may then also define class clusters K = fcw, ... ,CkW} in the

input view where C,” ={w,eWIL (w)=i}.
2.3.3 Class Prediction
Given an input space test sample x, its predicted output

space class cluster may finally be determined using the
labelling function from (15), the weighted squared Eucli-

Author’s version — provided for personal and academic use. Do not redistribute.

Clustering of output view codebook prototypes

O—O—

w

O
O

Figure 5. Cross-view classification

dean distance function from (2), and the nearest-neighbour
rule as follows:

fx)= L[arg mindz(X,Wj)]- (16)

w;eW

2.4 Feature Relevance Determination

Some feature dimensions can prove to be more relevant
than others, both for class discovery and class prediction,
and determining the extent of their relevance and exploit-
ing this information can improve accuracy. To this end, we
make use of the Fisher criterion score, a concept that has
been shown to be useful for feature relevance determina-
tion in learning vector quantization settings in previous
work [25].

2.4.1 Input Feature Relevance

We exploit the positioning of the prototypes in the input
feature space to estimate Fisher criterion scores for the
input dimensions. These scores, once normalised, are used
as the A’ weighting factors in (2) for an adaptive distance
function that accounts for dimensional relevance with
respect to classifier output. To summarise this, the Fisher
criterion score F(X) may be estimated for the i-th dimen-
sion of X as

where the A’ are assigned to normalized values of the
fractional term, of which

*

(i) Za (o) a9

is the estimated between-class variance over the i-th
dimension summed over each class c=1,...,k", where M

and M, are the cardinalities of the entire set of prototypes

W and the c-class prototypes C¥ respectively, and

W'=Y pw, and .=) puw) 19)
W]‘EW w]vngN

are weighted means over the i-th dimension of the proto-
types in W and CV respectively, where p; is a weighting

factor that is proportional to the number of times prototype
w ; was the nearest-neighbour during training, and

(20)

(K2) -3 % (el -at)

M W
ijCC

is the estimated within-class variance over the i-th dimen-
sion.

2.4.2 Output Feature Relevance

The obvious application of the Fisher criterion score lies in
the input space where, after a given point in training when
class prediction is attempted, the class clusters discovered
in the output space are projected onto the input space
prototypes as class labels, thereby making the class
information available a priori. However, we also make use
of it in the output space to augment the class discovery
process. In the output space, even though the class cluster
structure is initially unknown, it is still possible to select
features that are more likely to be relevant to forming good
cluster hypotheses. Firstly, given i, we split the i-th
dimension of V into multiple histogram partitions
QY,....QY, ..., where each Q) ={Blv’, ...,Bkv"} subdivides V
along the range of i into k evenly-sized bins containing V -
prototypes. Then using Q" in place of K"V in (17), calcu-
lating (17) for a range of k values (we used k=2,4,6,8,10 in
our experiments), averaging over k, and assigning a A’
weight to the k-averaged value, we may select features over
a certain threshold (we used the A’-average in our experi-
ments) that are likely to contribute most to good clustering

over arange of k-values. We use then these features as input
for the clustering algorithm described in Section 2.3.1.

3. Robot and Vision Systems

We used two different experimental platforms for our
experiments. Section 3.1 below gives an overview of each
of these setups, after which Section 3.2 discusses the object
push actions, while Sections 3.3 and 3.4 describe our visual
feature extraction implementations for object features and
effect features respectively. The feature choices were
motivated by the types of affordances we intended on
studying in our experiments: rolling and translating
affordances with the first platform using both flat and

Author’s version — provided for personal and academic use. Do not redistribute.

curved-surfaced objects, and rolling, translating and
toppling affordances in experiments with the second
platform using both flat-surfaced and spherical objects.

3.1 Experimental Platforms

In the first setup we used a 5-DOF Neuronics Katana 6M
robotic arm for manipulation, as well as two Point Gray
Research cameras for vision- the Flea monocular camera
and the Bumblebee 2 grayscale stereo camera, which
recorded images, video and 3D point clouds from range
data. The arm was mounted on a flat wooden table and was
made to produce linear pushing motions via the use of a
modified version of the Golem [18], control software for the
Katana arm. Further details are described in [27]. In the
second setup, as depicted in Figure 2, a7-DOF KUKA-LWR
with an attached 3-fingered Barrett Hand was used for
object push interactions, while a Microsoft Kinect RGB-D
sensor was used to gather 3D point clouds of the scene. The
Point Cloud Library (PCL)*> was used to extract and
manipulate object clouds from the resulting data.

3.2 Object Push Actions

Fixed robot arm pushing actions were used in both of the
experimental setups, with objects being placed at pre-
defined start positions through which the push action
trajectories would intersect. Theoretical models of object
affordances are often approached in the literature [29, 24]
as being ternary relationships between objects, actions and
effects, and although we restricted the action component in
this way, our focus in this paper was on learning the
relations between the other two components. Even when
operating under such experimental assumptions, the use of
a variety of objects in various configurations in the experi-
ments presented in this paper nevertheless resulted in
reasonably diverse object effects, as illustrated in Figure
17. In a separate study [28], we relaxed this restriction and
placed the emphasis on how information from varied push
actions may be incorporated into the learning framework,
something that is discussed later in Section 5.

3.3 Object Feature Extraction

With regard to the object features, for our particular
scenario we were primarily interested in extracting features
that describe the global shape of an object, as they were
likely to be more relevant in determining how the object
would behave when pushed than the types of local
invariant visual features used predominantly in object
recognition scenarios.

3.3.1 Object Detection and Segmentation

To extract such global shape features, we required a means
of detecting and segmenting the objects from the scene. In
the case of the Katana/Camera setup, objects were seg-

2 http://pointclouds.org/

mented both from the image data and from the 3D point
clouds derived from the range data produced by the stereo
camera. To this end, we used the algorithm visually
outlined in Figure 6, for multi-modally segmenting the
objects from both regular images and their corresponding
3D point clouds, that leverages a notable feature of our
affordance learning environment, i.e., that the objects
always lie on a flat table surface (cf. [27] for further details).
In the case of the KUKA-LWR/Kinect setup, once again the
objects always lie on a flat table surface, so we were able to
make use of the Dominant Plane Segmentation module from
the PCL library to segment the objects from the scene point
cloud captured by the Kinect.

Fit plane to
table surface
using RANSAC

Iy
Subtract

Meanshift

Segmented range data.
o+

Graph cut seeding. l
o 28
Graph cut
segmentation
Segmented object intensity
l image & range data.

Crnaicoanss |) [& %,

Figure 6. Katana/Camera setup object segmentation pipeline

Range data.

clustering &
outlier removal

3.3.2 Visual Shape Features from Object Images

In the case of the Katana/Camera setup, visual features
were extracted from objects segmented from the greyscale
scene images produced by the Bumblebee camera. The
segmentation technique outlined in Figure 6 yielded
reasonably robust image silhouettes of objects, and these
were then used to calculate the following nine shape
features:

Of': Area: number of pixels in the object region.

O,': Convex area: number of pixels in the convex hull of the

object region.

Oy': Eccentricity: ratio of the distance between the foci of

the ellipse that has the same second-moments as the object
region and its major axis length.

O,: Equivalent circular diameter: diameter of a circle with

the same area as the object region.

O4': Extent: ratio of pixels in the object region to the pixels

in its bounding box.

Og¢': Filled area: number of pixels in the filled object region.

Author’s version — provided for personal and academic use. Do not redistribute.

O7: Major axis length: length of the major axis of the ellipse
that has the same normalized second central moments as
the object region.

O¢': Minor axis length: length of the minor axis of the ellipse
that has the same normalized second central moments as
the object region.

Oy': Perimeter: of the boundary of the object region.

3.3.3 3D Shape Features from Object Point Clouds

In order to capture object surface properties, 3D shape
features were extracted from segmented object point
clouds derived from both the Katana/Camera and the
KUKA-LWR/Kinect experimental setups. in both cases we
adopted a strategy of surface fitting. For instance, in the
case of the Katana/Camera setup, a quadratic surface was
fitted to an object point cloud, or to a part of an object point
cloud, in order to derive curvature features from the object
surface. Given the points for an object or part of an object,
we fit the following quadratic polynomial function:

Z=aX’+bXY +cY* +dX +eY + f (1)

solving for the coefficients a,b,c,d,e and f. The principal
curvatures of the surface are then given by taking eigenval-

a
ues of the matrix:
b ¢

a good description of the curvature of the surface. As well
as this, we fitted planes to objects or object-part point
clouds and used the normal to the plane to indicate the
orientation of the points, which provided two features (we
discard the z-coordinate, since the point clouds were
normalized with respect to the workspace coordinate
frame).

, providing two features which form

Figure 7. Examples of segmented images and 3D point clouds with fitted
quadratic surfaces taken with the stereo camera for two different types of
objects: a book which slides when pushed by the robotic arm, and a Pepsi
can which rolls when pushed by the arm

Using these four surface features (two for planar orienta-
tion and two for curvature) in the Katana/Camera setup,
we divided the object cloud into parts and extracted the
four features for each part. These parts consisted of the
global object cloud itself, as well as eight other parts found
by dividing the object cloud evenly along two of its axes in
various ways. This yielded the following list of features:

0! ,: Global object point cloud plane/curve features.

2

5 ¢:x-axis split, left plane/curve features.

0¢ ,:x-axis split, right plane/curve features.

0} 1¢:y-axis split, front plane/curve features.

0}, 5:y-axis split, back plane/curve features.

Of; ,4:x-y-axis split, front-left plane/curve features.
0) ,g:x-y-axis split, front-right plane/curve features.
0}y i x-y-axis split, back-left plane/curve features.

02, ,¢:x-y-axis split, back-right plane/curve features.

Overall Object Point Cloud

Z-Axis Part Split

Right |Side
Left Side e

Back Side
Bottom Side

Figure 8. Top row: original object point cloud. Middle row: partitioning
planes divide the point cloud evenly in each dimension to create sub-parts.
Bottom row: planes are fitted to each sub-part for feature extraction.

In the case of the KUKA-LWR/Kinect setup, we partitioned
the object point clouds slightly differently, as depicted in
Figure 8, this time dividing each of the x, y and z axes
evenly into two parts each and fitting planes to each of their
respective part point clouds as well as to the entire object
point cloud. The part division along the third dimension
was motivated by the need to detect the additional object
toppling affordance that resulted from the experiments
performed with this setup. This time, object part centroids
as well as plane normals and curvature features were used,
resulting in seven features per part, three for part centroids,

Author’s version — provided for personal and academic use. Do not redistribute.

as well as two for the plane normals and two for the
curvature features as before, resulting in the following list
of features:

Of ,: Global point cloud centroid/plane/curve features.
Og 14:x-split, left centroid/plane/curve features.

Oy, 51:x-split, right centroid/plane/curve features.

Oy, ,5:y-split, front centroid/plane/curve features.
O35, 35 y-split, back centroid/plane/curve features.

Oy, 4p:z-split, top centroid/plane/curve features.

O,3.. 49:2-split, bottom centroid/plane/curve features.

3.4 Effect Feature Extraction

When it came to the effect features, we chose to both track
the objects in motion globally in the workspace and to
compare changes in object properties locally, deriving three
main sets of features based on the global motion of the
object, changes in 3D shape, and local appearance changes
of the object, respectively, depending on the platform.

3.4.1 Tracking Object Motion

In the Katana/Camera setup, after an arm action was
performed on an object, the resulting videos of the interac-
tion gathered from the Flea camera were processed for
tracked object motion features. This was primarily ach-
ieved using a probabilistic tracker from [19], which is in
essence a colour-based particle filter that also makes use of
background subtraction using a pre-learned background
image. Object shapes were approximated by elliptical
regions, while their colour was encoded using colour
histograms and their motion was modelled using a
dynamic model from [20]. In order to compensate for
tracking overshoots and thereby produce more accurate
local object appearance change features (cf. Figure 9 and
Section 3.4.4), the estimates of object position from this
tracker were then further refined using colour histogram
back-projection [34]. See [27] for further details on this
method.

The KUKA-LWR/Kinect setup, on the other hand, made
use of the libpcl_tracking library from the PCL, which also
uses a particle filter to estimate 3D object poses using Monte
Carlo sampling techniques and calculates the likelihood
using combined weighted metrics for hyper-dimensional
spaces including Cartesian data, colors, and surface
normals. These 3D object models were gathered from scene
point clouds using the same dominant surface segmenta-
tion method discussed in Section 3.3.1. The real-time 3D
object tracking provided by this method is illustrated in
Figure 10.

Figure 9. Object tracking in the Katana/Camera setup. Upper row: Outer
rectangle is a likelihood window around the object from the particle filter.
Inner rectangle is the result histogram back-projection further localizing the
object. Lower row: Close-ups show how the appearance of the object
changes during motion.

3.4.2 Object Motion Features

Using the output of the visually-based particle filter tracker
of the Katana/Camera setup, the following nine features
were calculated:

E; ,: Total distance travelled in x & y dimensions,
EJ: Total Euclidean distance travelled,

E; 5: Mean velocity in x & y dimensions,

E¢ ,: Velocity variance in x & y dimensions,

E¢ o: Final x & y positions.

In the case of the KUKA-LWR/Kinect setup, since the 3D
point cloud-based particle filter tracker from the PCL
library allowed for tracking objects in three dimensions, we
were able to extend some of the 2D features used on the
previous setup into the z dimension. Some alternative
features were also designed- in addition- to suit the
experiments performed with this platform. The 17 resulting
features are listed as follows:

E! ,: Total distance travelled in x, y & z dimensions.
E}: Total Euclidean distance travelled in R%

EZ: Total Euclidean distance travelled in R®.

El o: Final x, y & z positions.

E¢: Time in motion.

E}: Trajectory extent volume.

E}: Trajectory convex hull volume.

EJ: Trajectory convex hull surface area.

E%: Summed trajectory point distance from start position.

Author’s version — provided for personal and academic use. Do not redistribute.

E},: Mean trajectory point distance from start position.
EJy: Trajectory point distance variance from start position.
EL:E}, weighted to favour points near end of trajectory.

Eb:EL, weighted to favour points near end of trajectory.

Figure 10. PCL-based particle filter tracking from the KUKA-LWR/Kinect
experiment. Blue points: model of the ball object derived from segmenting
the ball from the table prior to interaction. Orange points: particle filter
points used to track the object during interaction and update the model.

3.4.3 Object Shape-change Features

In the case of the experiments performed using the KUKA-
LWR/Kinect setup, since we intended to study toppling
affordances, we required features capable of detecting the
types of changes in object shape in three dimensions that
would result from such affordances. Thus, using a similar
methodology to that of Ugur et al. [36], we derived a set of
3D shape change features by taking the difference between
the Of 4 3D shape features from Section 3.3.3 recorded
from the object pre-interaction and the same features
recorded from the object post-interaction. These new

features, E{ ,,, were therefore derived as follows:

E{ 4ot Of(t,)-Of(t,) for i=1...49, where Of(t,) and O(t,)
are the object shape features O/ extracted from the object
attime t, when it is at its start position, and at time t,, when

at its end position, respectively.

3.4.4 Object Appearance Change Features

In the experiments involving the Katana/Camera setup, in
order to estimate appearance changes of objects during
motion (cf. Figure 9), and thus potentially capture some of
the differences in visual effects between rolling and non-
rolling objects, we calculated the average difference of both
colour and edge histograms between video frames of the
objects, the aim being to detect both motion blur and the
texture changes characteristic of many rotating objects.
Histogram difference averages were then calculated from

the start of object motion until the end. We derived three
effect features from this procedure:

E{: Average colour histogram difference.
EJ': Average edge histogram difference.

E{: Product of E{ and E/'.

4. Experiments

We performed experiments using both of the robotic
platforms described in Section 3, gathering real world data
from affordance learning trials, and comparing our
proposed self-supervised algorithm to well-known super-
vised vector quantization algorithms. The learning trials
were divided into a number of sub-experiments, using
different combinations of the feature sets described in
Sections 3.3 and 3.4 depending on the particular platform
being used and the goals of the experiment. The Katana/
Camera experiment involved objects and pushes that
resulted in two different affordance ground-truth effect
classes being produced- rolling and non-rolling classes-
whereas in the KUKA-LWR/Kinect experiment, more
complex effects were produced from the objects used, their
poses and the scenario, resulting in three different ground-
truth classes: rolling, non-rolling and toppling. The
supervised algorithms that were compared were general-
ized learning vector quantization (GLVQ) [30], generalized
relevance learning vector quantization (GRLVQ) [15] and
supervised relevance neural gas (SRNG) [14], the latter two
of which also provide feature relevance estimates. We
compared their performance relative to our self-supervised
learning approach by applying the evaluation procedure
described below.

4.1 Evaluation Procedure

In the following, a modified form of leave-one-out cross-
validation, which we call leave-one-object-out cross-
validation (LOOOCV) was employed. In order to evaluate
our learning approach, given an {X,Y'} dataset of features
extracted from interactions with various objects from a
given experiment, LOOOCYV involved splitting the dataset
into a test set consisting of all of the samples for a given
object, and a training set of all of the samples for the
remaining objects. The learning task was then to train
learners using the training set, find the affordance classes
in the output view and try to classify the test set samples of
the left-out object on that basis. Cross-validation was
performed by using each of the objects in the full dataset in
turn as the test object to form multiple test and training sets,
performing the learning task using each of these, and
averaging class discovery and class prediction scores across
all of them. Performing the evaluation in this way, using
LOOOCYV, allowed us to test the performance of affordance
prediction for novel objects that the algorithms do not
encounter during training, a more stringent evaluation

Author’s version — provided for personal and academic use. Do not redistribute.

than would otherwise be provided by LOOCYV or k-folds
cross validation.

Our self-supervised learning vector quantization algo-
rithm (SSLVQ) was compared to a self-supervised self-
organizing map (SSSOM), as well as variations employing
feature relevance determination at classification time
(SSLVQ (FRC) and SSSOM (FRC)) alongside the supervised
algorithms GLVQ, GRLVQ and SRNG. SSSOM differed
from SSLVQ in that it only made use of the update in (4) in
both input and output views, whereas SSLVQ also em-
ployed the self-supervised update of (12) in the input view.
In the case of the experiments with the Katana/Camera
setup presented below in Section 4.2, codebooks in each
data view consisted of 49 prototypes arranged in a 7x7
hexagonal lattice with a sheet-shaped topology [17],
whereas in the experiments using the KUKA-LWR/Kinect
setup presented in Section 4.3, larger 10x10 codebooks
were used. The feature weights of the codebook prototype
vectors were randomly initialized to test the abilities of the
algorithms to learn from scratch. LOOOCV was therefore
performed in 10 trials and results were averaged in order
to account for the variation in codebook initialization
between trials. Constant learning rates of o;),=0.1, a/=0.1,
were used for the prototype update of (4) in codebooks W
and V, respectively, in the unsupervised learning phase,
and a; =0.1 was used for (12) in the self-supervised learning
phase. Learning phases were switched from unsupervised
to self-supervised halfway through training in the Katana/
Camera experiments, and one tenth of the way through
training in the KUKA-LWR/Kinect experiments where a
longer training period was employed over multiple epochs.

The results examine three different aspects of our learning
framework: class discovery, class prediction and feature
relevance determination. An important consideration in
evaluating whether or not our algorithm is capable of self-
supervised multi-view learning is to examine whether it is
capable of successfully finding class clusters in the output-
view, without which self-supervised discriminative
learning in the input-view would not be possible. But how
quickly do the prototypes position themselves, such that
this clustering can happen successfully? To answer this
question, clusters of prototypes were found in the output
view as described in Section 2.3.1 and subsequently
matched to the ground truth classes by first matching all
ground truth labelled training data to nearest-neighbour
output view prototypes, then assigning each cluster the
ground truth label which their respective prototypes
matched to most frequently. Then, to evaluate prediction,
given a test sample consisting of an input view test vector
x' and an output view test vector y', the input view code-
book was tasked with predicting an output view cluster V /
for x' using the process described in Section 2.3. The output
view test vector y' was then matched to a cluster V ¥ in the
output view via the nearest-neighbour rule. If the V /
cluster predicted by the input codebook matched the V' *

cluster and that cluster also matched the ground-truth label
for the test sample, this was deemed to be a true positive.
We evaluated the feature relevance components by
averaging their A; weights after training.

4.2 Experiments using Katana/Camera Platform

To test our affordance learning system with the Katana/
Camera platform, the experimental environment was set
up as shown in Figure 1. During the experiments, objects
were placed at a fixed starting position prior to interaction.
The two camera systems were used to provide both
sufficiently detailed close-up range data of the object
surfaces and a sufficiently wide field of view to capture
object motion over the entire work area. To achieve this, the
stereo camera was positioned above the start position,
while the monocular camera was positioned at a higher
position in front of the workspace, giving both cameras a
top-down viewpoint of the work surface.

Figure 11. Object image segmentations (not to scale) from the Katana/
Cameras experiment

We selected eight household objects (cf. Figure 11) for the
experiments: four flat-surfaced objects (a book, a CD box, a
box of tea and a drink carton) and four curved-surfaced
objects (a box of cleaning wipes, a cola can, a soda can and
a tennis ball box. A dataset was gathered consisting of 20
object push tests for each of the eight objects and the
resulting data was processed, leaving 160 data samples.
During tests, the curved objects would tend to roll after
being pushed, whereas the flat objects would stop sudden-
ly; accordingly, the samples were then hand-labelled with
two ground-truth labels: rolling and non-rolling. These
ground-truth labels were not used to train the self-super-
vised learners but they were required for the performance
evaluation. This data was processed to produce the visual

shape features {Ol", ...,Og"} and 3D shape features
{Olb, ...,O3h6} (cf. Sections 3.3.2 & 3.3.3), as well as the global
motion effect features {El“, .‘.,Eg"} and the local appearance
change features {El”’, ... ,Ef} (cf. Sections 3.4.2 & 3.4.4). In the
first of the two sub-experiments (the results of which are
described below), the features {01“, - ,Og"} were paired with

the two 3D global object curvature features {Osb,Of} to

produce input view space X “" consisting of vectors of the
form x={07, ...,08,0L,0}}7, while in the second, vectors of

Author’s version — provided for personal and academic use. Do not redistribute.

the form x={0/, ..., 04" using all of the 3D shape features

formed the basis for input-view space X ’. In both sub-
experiments, both the global motion effect features and the
local appearance change effect features were grouped,
defining the output view space Y ¢ composed of vectors

of the form y={E1“, ...,Eg",Eld, ...,E3d}T.

4.2.1 Results: 3D + 2D Object Features

In this experiment, the self-supervised learners were
trained using data from {x by @} while the supervised
learners were trained with {X L or(X ah)}, where L er

applies ground-truth labels to the input view samples.
Online evaluation and comparison of the learners was
performed using LOOOCYV over one epoch of training.

Supervised Vs. Self-Supervised Class Prediction
‘/‘P“‘N' .?--*-A R S]

100
1 v d
R4

- —S8SSOM — SSLVQ -#-GLVQ =-s=SRNG

-~ SSSOM (FRC) e SSLVQ (FRC) = GRLVQ

50 =ttt et~
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Samples

Ground Truth Classification Accuracy %

Figure 12. LOOOCYV (cf. Section 4.1) class prediction results for the Katana/
Camera 3D + 2D object feature experiment (cf. Section 4.2.1). The vertical
dashed line indicates the transition from unsupervised to self-supervised
learning (cf. Section 2).

Self-Supervised Output Feature Relevance

1
Wer 0Fs Oes BE ks @Es
° H{0FE¢ BES BEs BE! BES JEL|- SOV D SO
2 T
SNV YT M | A W [—
o
[0}
(SN U B | D U R SR NSRS
0 [
Supervised Vs. Self-Supervised Input Feature Relevance
1o
Wo: @os Wos Doi Mo: Wog I
o 1Mo WMOs WO WO} [OF fo o
S | |
S 0.5 e e
2 |
: | I
0 e el
|

GRLVQ SRNG SSSOM (FRC)

SSLVQ (FRC)

Figure 13. Feature relevance results for the Katana/Camera 3D + 2D object
features experiment (cf. Section 4.2.1). The vertical dashed line in the lower
figure separates the input-view feature histograms for two supervised and
two self-supervised learners. The upper figure shows output view results
which were applicable to self-supervised learners only and were the same
in both cases (SSSOM & SSLVQ). Features are colour-coded (see legends).

Class Discovery: Optimal performance was achieved very
early in training, after 10 samples, with class-cluster-to-
ground-truth match accuracy being maintained at 100%
throughout, meaning that cross-view prediction from
input view test samples should at least have the opportu-
nity to reach optimal ground truth prediction rates within
the training period.

Supervised Vs. Self-Supervised Input Feature Relevance

1
ot ok Bos [ok ot Mok 104 Mok 1o% Mot [0t ot B0k, [lot, [ot ot ot ot
0%, 0% 105 [05: B0k 104, 105 105 B0k [0k [0t B0k B0k §0%: 105 104 104 04

Relevance

GRLVQ SRNG

SSSOM (FRC) ssLvQ (FRC)

Figure 14. Input view feature relevance results from the Katana/Camera experiment using the 3-D object features (cf. Section 4.2.2)

Supervised Vs. Self-Supervised Class Prediction

S

3 100 4 s

O 4 4~

3 I

S 90

< |

5 1 |

2 g L ———

Q] u

7 !

S 70 |

2 !

£] ,

g 60 — - = SSSOM - SSLVQ - GLVQ -==SRNG

e] - e~ SSSOM (FRC) =e SSLVQ (FRC) == GRLVQ

I

o

o %0 T
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Samples

Figure 15. LOOOCYV class prediction results for the Katana/Camera 3-D
object feature experiment (cf. Section 4.2.2)

Class Prediction: When it comes to predicting these newly
discovered classes, Figure 12 shows how the various self-
supervised learners perform and how they compare to
supervised classifiers predicting ground-truth labels using
input view features. In this test, only a small subset of the
object features (curvature features {Of,Of}) is relevant for
class prediction, and the most significant result is that there
is a prominent difference between those self-supervised
learners with feature relevance mechanisms and those
without, most likely due to this reason. Interestingly, all of
the self-supervised classifiers out-perform the supervised
classifiers throughout training. This initially surprising
result is likely due to the fact that, owing to the randomized
prototype initialization, the prototype class labels of the
supervised classifiers are not optimally distributed with

Author’s version — provided for personal and academic use. Do not redistribute.

respect to the class distributions at the outset, whereas the
self-supervised classifiers undergo dynamic labelling of
their input view prototypes as described in Section 2.3.2.
This means that the supervised classifier prototypes
potentially take more time to adjust their positions with
respect to the class distributions. It is also worth noting that
SSLVQ appears to maintain more predictive stability over
this short training period than SSSOM, which lacks the self-
supervised discriminative learning mechanism of SSLVQ
(cf. Section 2.2.3).

Feature Relevance Determination: Figure 13 illustrates the
mean results of feature relevance determination at the end
of training for both the input and output views. The input
view graph features comparisons with the supervised
learners GRLVQ and SRNG that feature feature relevance

determination mechanisms. The features E,,E{,Ed,E4 and
E{, those being total distance traveled in y, total Euclidean
distance traveled, final y position, the average edge
histogram difference and the product of it and its colour
counterpart, are highlighted as being the most relevant in
the output view for class discovery, which makes sense
given their assumed potential for distinguishing rolling
versus non-rolling behaviours in the context of this
experiment. In the input view, most of the learners correctly
select the O/ feature, or the object curvature along the x-
dimension (along the rolling direction), as being the most
relevant for class prediction. Both GRLVQ and SRNG make
the least prominent distinction because- in the short
training time tested- their gradient descent-based feature
relevance mechanisms most likely do not have sufficient
training time in which to function optimally.

4.2.2 Results: 3D Object Features

Class Discovery: In this experiment, both the output view
data and the learning parameters were the same as in the
previous experiment; thus class discovery results were
indistinguishable, with optimal performance again being
attained early in training and maintained throughout.

Class Prediction: In this experiment, the 2D visual object
features were removed in favour of purely 3D surface
features of feature space X ?, and since many more of these
features were relevant for class prediction than in the
previous case, there were correlated improvements in the
class prediction capabilities of all learners, as illustrated in
Figure 15. This time, all of the self-supervised learners
performed comparably well, reaching 100% performance
early in training, as well as beating the supervised classifi-
ers over one epoch of training.

Feature Relevance Determination: Since both the features that
were used in the output view- as well as the output view
learning parameters- were identical to those used in the
previous experiment, the results for output feature rele-
vance determination were almost identical, and so we omit
those results here. The input-view feature relevances, on

the other hand, as shown in Figure 14, reveal that many of
the features of X * are relevant for class prediction. Features
071,0¢,0}, and 0% are favoured prominently by both the
supervised and self-supervised learners. The selection of
0} matches with the results from the previous experiment,
where it was one of two curvature features included in

input space X **, and was selected as the most relevant
feature. The right side of the x-axis split that generated the

0¢ plane normal feature was the closest side to the stereo
camera, and so produced more 3D points (thus yielding
more reliable surface fits and resulting features). Similarly,
0/,is generated from the back side of the y-axis split, which
is the closest object part to the camera along that dimension.
Finally, feature Oj} is generated from the part at the

intersection between the previous two, and so benefits from
the increased reliability of both.

oo
-9V

Figure 16. Object clouds from the KUKA-LWR/Kinect experiment

4.3 Experiment using the KUKA-LWR/Kinect Platform

In the KUKA-LWR/Kinect platform experiment, we set out
toapply our learning framework to a slightly more complex
pushing scenario that would yield more than two afford-
ance classes: rolling, toppling and translating. The envi-
ronment was set up in similar fashion to the experiments
with the Katana/Camera system (cf. Figure 2). This time,
we selected 10 household objects (cf. Figure 16) for the
experiments: six flat-surfaced objects and four curved-
surfaced objects. During the experiment, objects were again
placed at a fixed starting position prior to interaction. This
time, however, objects were placed in more varied poses
when possible in order to generate more varied affordance
effects: flat, sideways or upright, and either with the major
axis of the object perpendicular to or parallel to the push
direction vector if that was well-defined, i.e., for the non-
ball objects. These descriptions are provided here for the
readers’ benefit and were not used for training (except for
the pose information potentially being encoded in the input
feature vectors). During these trials, the flat-surfaced
objects would either tend to translate forward or topple
over after being pushed, depending on their pose, and the
balls would tend to roll, though along much more complex
and varied trajectories than in the Katana/Camera experi-
ments, as illustrated in Figure 17.

The samples were again hand-labelled with the ground-
truth labels: rolling, translating and toppling. 126 samples

Author’s version — provided for personal and academic use. Do not redistribute.

Figure 17. Object trajectories and trajectory convex hulls from the KUKA-
LWR/Kinect experiment, colour-coded by ground-truth; red: rolling; green:
toppling; blue: translating

were collected, in total, of a biscuit box (12 samples: eight
toppling, four translating), a coffee box (20 samples: five
toppling, 15 translating), a cookie packet (eight samples: all
translating), a contact lens solution box (16 samples: all
toppling), a marshmallow box (23 samples: nine toppling,
14 translating), a book (14 samples: six toppling, eight
translating), a handball (eight samples), a small football (six
samples), and both lightly coloured (eight samples) and
darkly coloured (11 samples) larger plastic toy balls. This
time, the data was used to generate the 3D shape features
described in Section 3.3.3 for the input view space X °
consisting of feature vectors of the form x= {Of, ...,Of9}T, as
well as the 3-D shape change features and the global motion
effect features described in Sections 3.4.2 and 3.4.3, respec-
tively, to form the output-view space Y ¢’ consisting of
feature vectors of the form y={Ef, ... ,.ESEL, ..., ELIT.

4.3.1 Staged Feature Relevance Determination

Initial learning trials with the full {x ¢y feature set
proved inconsistent, so we opted for a more advanced
learning strategy: staged self-supervised learning, in
which the most relevant features are determined via
thresholding feature relevance at each stage, and where
the there remaining features were discarded before
retraining with the reduced feature set at the next stage.
This emulates an aspect of developmental learning where
concepts are refined over multiple learning stages. We
thus performed three rounds of self-supervised learning
using LOOOCV on the SSLVQ (FRC) learner over 10
epochs for the first two stages, before performing a final
run of LOOOCYV on all of the learners over 50 epochs
using the remaining features. After the first stage, only
the features from the output view were reduced, whereas
after the second stage, both the input and output view
feature sets were reduced. When reducing feature sets,
thresholds were set to the mean feature relevance value
plus one standard deviation. Output feature relevances
were calculated separately for the shape difference
features and for the motion features.

4.3.2 Results

Feature Relevance Determination: The input vectors used in
the first stage were of the form x'={0y,...,05}", with
output vectors ysl={Elf,...,Efg,E1h,...,Ef}}T. After the first
stage, the input vectors remained as x”=x" for the second
stage, while the output vectors were reduced to the form
YSZ={E9E15161/E2E3/E254/E3C8/E§9/E465/E11)4/E1}16}T (cf. upper part of
Figure 18). After the second stage, the input vectors were
reduced to
x7= {O4c /011,015053,054, 055,053, 051,05,05,043, Ozfs} T (cf.
lower part of Figure 18), while the output vectors were
reduced to y®= {E 4 E]Z}T. By the end of the final third stage,
in the output view, only the E (z-axis split top side part
centroid z-coordinate difference) and E{, (mean trajectory point
distance from the start position) features remain the most
relevant for class discovery, whereas the input-view
features Oy (y-axis split front-side part y-curvature) and O
(z-axis split top-side part centroid z-coordinate) are the most
relevant for class prediction. This demonstrates that
affordance concepts which associate curvature in the
direction of the push (O,;) and object height (Oy;) with
affordance effect classes defined primarily by object height
difference (E;) and the distance travelled by the object in
motion (E{,), having been formed autonomously using
staged self-supervised learning. This appears to match with
human intuition for this scenario, although this has not
been tested empirically. It is also worth noting that the
SSLVQ-based method proposed in this paper proves to be
more effective than SSSOM at discerning relevant discrim-
inative features in the input view. This is not too surprising
given that the SSSOM lacks a cross-view discriminative
learning mechanism (cf. Section 4.1).

Self-Supervised Output Feature Relevance

1 Shape: [|E5 [1E7, BE5; BE5, [E5s BES IS ,,,l
Motion: | EY, [1 EYs

Relevance
o
(9]

Supervised Vs. Self-Supervised Input Feature Relevance
(195 005005 105: [05: 1955 005: BOs: BOs: 105 0051005 |

1

|
t
|
t

Relevance
o
(4]

GRLVQ SRNG SSSOM (FRC) SSLVQ (FRC)
Figure 18. Mean feature relevance results for both input and output views
in staged feature relevance learning for the KUKA-LWR/Kinect experiment
as described in Section 4.3.1. The upper figure shows the relevance
histogram of the reduced output feature set after the second learning stage
with a vertical line separating the shape and motion features, which were
clustered and reduced separately at each stage. The lower figure shows
reduced feature relevance histograms for the input view after the third stage
where the vertical dashed line separates supervised and self-supervised
learners.

Author’s version — provided for personal and academic use. Do not redistribute.

Class Discovery:Figure 19 shows the average class discovery
results for each of the self-supervised learners over 10 trials
of the 50-epoch third stage LOOOCV evaluation. The
learning parameters were the same in the output-view in
all cases, so the results are similar for each of the learners.
The learners discover the ground-truth classes with a mean
accuracy of 90% after 50 epochs of training, which sets a
limit on their potential results for class prediction.

Class Prediction:Figure 20 shows both average class predic-
tion results for all learners and the average SSLVQ (FRC)
class prediction for specific test objects. While GRLVQ and
SRNG achieve just over 85% accuracy on average during
most of the 50-epoch training period, the self-supervised
leaners start out quite poorly, before reaching 75% accuracy
by the end of training. SSLVQ (FRC) appears to give slightly
better performance over the other self-supervised learners,
but the results are inconclusive. This might be explained by
the fact that the feature sets have been significantly refined
by this final learning stage. The lower graph of Figure 20
shows that SSLVQ (FRC) appears to struggle most when
either the dark- or the light-coloured large balls are left out
of the training set. This may be due to the fact that when
either of these objects are left out, there are far fewer
training samples that are both curved in the direction of the
push (Oy; feature) and are relatively tall (O feature). For
example, when the dark ball is left out, there are 115 total
training samples, 22 of which are rolling samples, and only
eight of which are samples of relatively tall ball-shaped
rolling objects. By comparison, when the small football is
left out, there are 120 total training samples, 27 of which are
rolling samples and 19 of which are samples of relatively
tall rolling balls. Without adequate numbers of samples of
tall rolling balls in the training set, the self-supervised
learner struggles when it encounters them as novel samples
in the test set.

Self-Supervised Class Discovery
100 =
90
il ég:.é
80 -
] '._/J
i »

60— ‘-,r/

50
1 - —SSSOM — ssLvQ
-~ SSSOM (FRC) - SSLVQ (FRC)

404

Class Cluster/Ground Truth Accuracy %

30 T T T T~ T T T T T T T T T T 1
0 1119 2238 3357 4476 5595
Samples

Figure 19. Mean class discovery results for the third stage of LOOOCV (cf.
Section 4.1) run over 50 training epochs in the KUKA-LWR/Kinect
experiment as described in Section 4.3

5. Conclusion

In this paper, we presented a self-supervised multi-view
online learning algorithm along with two robotic systems
used for performing object push-affordance learning

experiments and demonstrated how the algorithm could be
used to enable the autonomous acquisition of novel
affordance concepts. We formalized a multi-view learning
scenario where data co-occur over two separate data views
over time, and where the task is to exploit significant
clusters that emerge in one view as classes that can be used
to perform online discriminative learning in the other view.
Our proposed algorithm uses a self-supervised form of
learning vector quantization to build the discriminative
model by mapping information between the data views
using the co-occurrence information gained from online
learning experience. We tested our approach using data
from real-world experiments by comparing it with related
supervised methods and showed how the inclusion of a
feature relevance determination mechanism can boost
predictive accuracy when many redundant features are
present in the data. In particular, we demonstrated how a
such self-supervised learning process can be applied in
developmental stages where the feature set is refined at
each stage in order to enhance the learning process.

Supervised Vs. Self-Supervised Class Prediction
100 =

90

80 7‘

70 ; ¥
\

o] Nﬁ
| ==

50 | La®
- —SSSOM — ssLva ~«-GLVQ -==SRNG
40 | © | -e-SSSOM (FRC) = SSLVQ (FRC) ~-GRLVQ

30 T T T T T T T~ T T T T T T T 1
0 1119 2238 3357 4476 5595
Samples

Ground Truth Classification Accuracy %

Self-Supervised Specific Object Prediction

100
90
80—
704
60
50—

Ground Truth Classification Accuracy %

40 —e—Handball —— Biscuit Box ~a= Cookie Pack
30 - Football =+ Coffee Box = Book
20— =e=Dark Ball =w=Solution Box
104 ‘~._.. s A ~®"Light Ball -v-Mallow Box

0 pad A ROEAV4 3

T T T T T T T T T T T T T T 1
0 1119 2238 3357 4476 5595
Samples

Figure 20. Mean class prediction results for all learners (upper graph) & for
SSLVQ (FRC) with specific test objects (lower graph) for the third stage of
LOOOCV (cf. Section 4.1) run over training 50 epochs in the KUKA-LWR/
Kinect experiment (cf. Section 4.3)

In future work, we aim to expand on the number of classes
and objects used, perhaps by training multiple learners
under a mixture of experts model. We would also extend
the model so that more data views are included, which
could be useful when other sensory modalities, e.g., haptic,
are used alongside the visual ones. Actions are a crucial
component of affordance learning, and although a more
thorough investigation of their potential in our learning
setup went beyond the scope of this work, there are many
possible ways in which they could be exploited, one avenue

Author’s version — provided for personal and academic use. Do not redistribute.

of which we have explored elsewhere [28]. Otherwise,
learning by imitation could help select the initial feature set
and guide exploratory behaviours in a goal-directed
manner. Reinforcement learning could also help the robot
guide its own exploration once the goals are defined, thus
improving the learning-rate. In this sense, our approach is
complementary to such approaches, and we hope to
explore these connections in future.

6. Acknowledgements

This research was supported by both the EU FP7 project
CogX (ICT-215181) and the EU FP7 project Xperience
(ICT-270273).

7. . References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(%]

(10]

S. Bickel and T. Scheffer. Multi-view clustering. In
Proceedings of the IEEE International Conference on
Data Mining (ICDM), pages 19-26, Washington
D.C., USA, November 2004.

A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proceedings of the
eleventh annual conference on Computational learning
theory, page 92-100, 1998.

N. Bolshakova and F. Azuaje. Cluster validation
techniques for genome expression data. Signal
Processing, 83(4):825-833, April 2003.

Michael H. Coen. Cross-modal clustering. In
Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI), volume 2, page 932-937,
Pittsburgh, PA, USA, July 2005. AAAI Press.

Michael H. Coen. Self-supervised acquisition of
vowels in american english. In Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI),
volume 2, page 1451-1456, Boston, MA, USA, July
2006. AAAI Press.

I. Cos-Aguilera, L. Canamero, and G. Hayes. Using
a SOFM to learn object affordances. In Proceedings of
the 5th Workshop of Physical Agents, Girona, Spain,
2004.

Renaud Detry, Dirk Kraft, Oliver Kroemer, Leon
Bodenhagen, Jan Peters, Norbert Kriiger, and Justus
Piater. Learning grasp affordance densities.
Paladyn, 2(1):1-17, 2011.

Virginia de Sa, Patrick Gallagher, Joshua Lewis, and
Vicente Malave. Multi-view kernel construction.
Machine Learning, 79(1):47-71, 2010.

V. R. de Sa. Learning classification with unlabeled
data. In Advances in Neural Information Processing
Systems 6, pages 112-119, Denver, CO, USA, 1994.
Morgan Kaufmann.

Sandrine Dudoit and Jane Fridlyand. A prediction-
based resampling method for estimating the
number of clusters in a dataset. Genome Biology,
3(7):research0036, June 2002.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G.
Sandini. Learning about objects through action-
initial steps towards artificial cognition. In Proceed-
ings of the 2003 IEEE International Conference on
Robotics and Automation (ICRA), volume 3, 2003.

Alison L Gibbs and Francis Edward Su. On choos-
ing and bounding probability metrics. International
Statistical Review, 70(3):419-435, December 2002.

J.J Gibson. The Ecological Approach to Visual Percep-
tion. Houghton Mifflin, 1979.

B. Hammer, M. Strickert, and T. Villmann. Super-
vised neural gas with general similarity measure.
Neural Processing Letters, 21(1):21-44, 2005.

B. Hammer and T. Villmann. Generalized relevance
learning vector quantization. Neural Networks,
15(8-9):1059-1068, 2002.

D. O. Hebb. The Organization of Behavior: A Neuro-
psychological Theory. New York: Wiley, 1949.

T. Kohonen. Self-organizing maps. Springer, 1997.

Marek Kopicki. Prediction learning in robotic manip-
ulation. Ph.D. thesis, University of Birmingham,
April 2010.

M. Kristan, J. Pers, A. Leonardis, and S. Kovacic. A
hierarchical dynamic model for tracking in sports.
In Proceedings of the Sixteenth Electrotechnical and
Computer Science Conference, September 2007.

M. Kristan, J. Pers, M. Perse, and S. Kovaci¢. Closed-
world tracking of multiple interacting targets for
indoor-sports applications. Computer Vision and
Image Understanding, 113(5):598-611, 2009.

Y. Linde, A. Buzo, and R. Gray. An algorithm for
vector quantizer design. IEEE Transactions on
Communications, 28(1):84-95, 1980.

G. Metta and P. Fitzpatrick. Early integration of
vision and manipulation. Adaptive Behavior, 11(2):
109-128, 2003.

R. Miikkulainen. Dyslexic and category-specific
aphasic impairments in a self-organizing feature
map model of the lexicon. Brain and Language, 59(2):
334-366, 1997.

L. Montesano, M. Lopes, A. Bernardino, and J.
Santos-Victor. Learning object affordances: From
sensory-motor coordination to imitation. IEEE
Transactions on Robotics, 24(1):15-26, 2008.

Barry Ridge, AleS Leonardis, and Danijel Skocaj.
Relevance determination for
quantization using the fisher criterion score. In
Proceedings of the Seventeenth Computer Vision Winter
Workshop (CVWW), Mala Nedelja, Slovenia, Febru-
ary 2012.

Barry Ridge, Danijel Skocaj, and Ales Leonardis. A
system for learning basic object affordances using a
self-organizing map. In Proceedings of the First

learning vector

Author’s version — provided for personal and academic use. Do not redistribute.

(27]

(28]

(29]

(30]

(31]

International Conference on Cognitive Systems, pages
65-70, Karlsruhe, Germany, 2008.

Barry Ridge, Danijel Skocaj, and Ales Leonardis.
Self-supervised cross-modal online learning of
basic object affordances for developmental robotic
systems. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation (ICRA), pages
5047-5054, Anchorage, USA, May 2010. IEEE.
Barry Ridge and Ales Ude. Action-grounded push
affordance bootstrapping of unknown objects. In
IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS 2013), Tokyo, Japan,
November 2013.

E. Sahin, M. Cakmak, M. R Dogar, E. Ugur, and G.
Ucoluk. To afford or not to afford: A new formali-
zation of affordances toward affordance-based
robot control. Adaptive Behavior, 15(4):447, 2007.
A.Sato and K. Yamada. Generalized learning vector
quantization. In Advances in Neural Information
Processing Systems 8, page 423-429, Denver, CO,
USA, 1996. MIT Press.

A. Saxena,]. Driemeyer, and A. Y Ng. Robotic
grasping of novel objects using vision. International
Journal of Robotics Research, 27(2):157, 2008.

[32]

[33]

[34]

[35]

[36]

Jivko Sinapov, Taylor Bergquist, Connor Schenck,
Ugonna Ohiri, Shane Griffith, and Alexander
Stoytchev. Interactive object recognition using
proprioceptive and auditory feedback. The Interna-
tional Journal of Robotics Research, 30(10):1250-1262,
September 2011.

Shiliang Sun. A survey of multi-view machine
learning. Neural Computing and Applications, page 1—-
8,2013.

M. J Swain and D. H Ballard. Color indexing.
International Journal of Computer Vision, 7(1):11-32,
1991.

E. Ugur, E. Oztop, and E. Sahin. Goal emulation and
planning in perceptual space using learned affor-
dances. Robotics and Autonomous Systems, 2011.

E. Ugur, E. Sahin, and E. Oztop. Self-discovery of
motor primitives and learning grasp affordances. In
Proceedings of the 2012 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS),
pages 3260 -3267, October 2012.

