
SMACHA: An API for Rapid State Machine Assembly

Barry Ridge
Humanoid and Cognitive Robotics Laboratory

Department of Automatics, Biocybernetics and Robotics
Jožef Stefan Institute, Ljubljana, Slovenia

barry.ridge@ijs.si

ABSTRACT
Given the burgeoning complexity and diversity of both the
hardware and software components of robotic systems, soft-
ware libraries that use state machines as a basis for robot
control by seamlessly connecting between low-level impera-
tive task scripting and higher-level task planning have been
in active development over the past decade or so. However,
while they provide much in terms of power and flexibility,
their overall task-level simplicity can often be obfuscated at
the script-level by boilerplate code, intricate structure and
lack of code reuse between state machine prototypes. To ad-
dress these issues, we propose a code generation, templating
and meta-scripting methodology for state machine assem-
bly, as well as an accompanying application programming
interface (API) for the rapid, modular development of robot
control programs. The API has been developed within the
ROS ecosystem to function effectively as either a front-end
for concise scripting or a back-end for code generation for
visual programming systems. Its capabilities are demon-
strated in experiments using the Baxter robot simulator.

1. INTRODUCTION
The Robot Operating System (ROS) has, in recent years,
become a popular choice of middleware for communication
and control when designing robotic applications, and var-
ious packages within its ecosystem have come to the fore
as being especially useful for dictating control flow. The
SMACH high-level executive [3], in particular, has proven to
be an exceptionally versatile and robust task-level architec-
ture for state machine construction in ROS-based systems.
It allows for the description of nested hierarchical state ma-
chines in Python in which parent container states contain
child state sequences. State machines may describe lists of
different possible outcomes and transitions are specified be-
tween states that depend on the outcomes in order to spec-
ify the control flow. These transitions are easily remapped
across different depth levels in the hierarchy. Data may be
passed between states as defined by a userdata object and
the inputs and outputs of states may be remapped to user-
data variables in order to control the flow of data.

While the ideas encapsulated by SMACH are conceptually
simple, its usage still demands a significant degree of domain-
specific expertise and prototyping time in order to define a
functional state machine for a given robot control applica-
tion. Another library that builds on the functionality of
SMACH named FlexBE [5] aims at addressing this by pro-
viding a visual programming interface from which code may

Parser

Templater

Generator

SMACHA API
Templates
(Jinja2)

SMACH
Code
(Python)

Scripts
(YAML)

Figure 1: SMACHA API overview.

be generated. However, the generated code is language-
specific and would therefore be brittle with respect to any
significant changes to the programmatic approach.

Here we present an application programming interface (API)
named SMACHA1 that aims at distilling the task-level sim-
plicity of SMACH into compact scripts in the foreground,
while retaining all of its power and flexibility in code tem-
plates and a custom code generation engine in the back-
ground. One of the major potential advantages of SMACHA
is that it is is designed to be both language and framework
agnostic. Although this has not yet been implemented, it
would be possible, for example, to design templates to gen-
erate FlexBE code instead of SMACH code, or even state
machine code written in a language other than Python, while
maintaining the same scripting front-end.

2. SMACHA API OVERVIEW
The SMACHA API is composed of three main components
as depicted in Fig. 1: a parser, a templater and a gener-
ator. The parser parses simple data-oriented scripts that
describe the high-level arrangement of state machines to be
constructed into operational program code by the generator
and templater. We refer to this concept as meta-scripting
and it is described below in Section 2.1. The templater re-
trieves and renders code templates as required by the genera-
tor in order to produce the code, and is described in Section
2.2. The generator recursively processes the parsed script
and generates the final program code using the templater.
It is described in Section 2.3. The relationship between the
scripting and templating functionality, as well as the overall
recursive code generation process, is depicted in Fig. 2.

1https://github.com/ReconCell/smacha

19

Author’s version — provided for personal and academic use. Do not redistribute.

SMACHA Script

name: sm
template: BaxterBase
...
states:
 ...
 - PICK_BLOCK:
 template: StateMachine
 ...
 states:
 - IK_PICK_BLOCK_HOVER_POSE:
 template: PoseToJointTrajServiceState
 ...

 - MOVE_TO_PICK_BLOCK_HOVER_POSE:
 template: MoveToJointPositionsState
 ...

BaxterBase Template
{% extends Base %}
...
{% block body %}
 {{ super() }}
 {{ body }}
 ...Rendered Container Code...
{% endblock body %}
...

Base Template
...
{% block body %}
 ...{{ body }}...
{% endblock body %}
...

StateMachine Template
...
{% block body %}
 {{ body }}
 ...Rendered State Code...
 ...Rendered State Code...
 ...
{% endblock body %}
...

PoseToJointTrajServiceState Template
...
{% block body %}
 ...State Template Code...
{% endblock body %}
...

MoveToJointPositionsState Template
...
{% block body %}
 ...State Template Code...
{% endblock body %}
...

..

...

...
with sm:
 ...
 with sm_pick_block:
 StateMachine.add('IK_PICK_BLOCK_HOVER_POSE',...)
 StateMachine.add('MOVE_TO_PICK_BLOCK_HOVER_POSE',...)
 ...
 StateMachine.add('PICK_BLOCK', sm_pick_block,...)
...
...
...

Generated SMACH Code

Figure 2: SMACHA recursive meta-scripting, templating and code generation pipeline example. Dashed arrows show nested
state template selection from the SMACHA script and the blue shaded boxes indicate the depth level in the state hierarchy.
Solid arrows and green shaded boxes show recursive template rendering flow, from child state templates at bottom-left and
bottom-right, to a parent container StateMachine template at bottom-centre, to its parent BaxterBase template in the middle,
to the final generated SMACH code on the right. Template inheritance is indicated by the dotted arrow and orange boxes.

2.1 Meta-Scripting
One of the core ideas behind the development of SMACHA
is that state machines are essentially simple entities that can
be almost entirely described via natural language constructs,
perhaps augmented by some essential additional information
necessary to describe how transitions should occur and how
data should be passed between states. With this in mind,
in order to transcribe the high-level logic of state machine
description in as simple a manner as possible with a view
towards offloading the more complex aspects to be processed
by a code generation system working in the background
we selected YAML (YAML Ain’t Markup Language) as our
scripting front-end [2]. YAML scripts are data-oriented and
so are built around constructs such as lists and associative
arrays that may be easily translated into corresponding ma-
chine code constructs and, more importantly for our pur-
poses, can be used to represent both sequences of states
and their individual data representations respectively. They
can also represent data hierarchies very effectively, and are
therefore well-suited to describing SMACH container states
and nested state hierarchies. Thus, SMACHA scripts are
YAML files that are used to describe how SMACHA should
generate SMACH code. An example of a script that was
written for a pick and place demonstration for the Baxter
simulator can be see in Listing 1.

2.1.1 Base Variables
The base of a main SMACHA script file specifies the fol-
lowing variables: name (a name for the overall state ma-
chine), template (the name of its base template), manifest
(an optional ROS manifest name), node name (a name for
its associated ROS node), outcomes (a list of its possible
outcomes) and states (a list of its constituent states). Each
of the states in the base script may, in turn, specify similar
variables of their own, as discussed in the following.

1 --- # Modular SMACHA pick and place test script for the Baxter simulator.
2 name: sm
3 template: BaxterBase
4 node_name: baxter_smach_pick_and_place_test
5 outcomes: [succeeded, aborted, preempted]
6 userdata:
7 hover_offset: [[0.0, 0.0, 0.15], [0.0, 0.0, 0.0, 1.0]]
8 states:
9 - LOAD_TABLE_MODEL:

10 template: LoadGazeboModelState
11 model_name: cafe_table
12 model_path: rospkg.RosPack().get_path(’baxter_sim_examples’) +
13 ’/models/cafe_table/model.sdf’
14 userdata:
15 table_model_pose_world: Pose(position=Point(x=1.0, y=0.0, z=0.0))
16 table_model_ref_frame: world
17 remapping: {pose: table_model_pose_world,
18 reference_frame: table_model_ref_frame}
19 transitions: {succeeded: LOAD_BLOCK_MODEL}
20
21 - LOAD_BLOCK_MODEL:
22 template: LoadGazeboModelState
23 model_name: block
24 model_path: rospkg.RosPack().get_path(’baxter_sim_examples’) +
25 ’/models/block/model.urdf’
26 userdata:
27 block_model_pick_pose_world: [[0.6725, 0.1265, 0.7825],
28 [0.0, 0.0, 0.0, 1.0]]
29 block_model_pick_ref_frame: world
30 block_model_pick_pose: [[0.7, 0.15, -0.129],
31 [-0.02496, 0.99965, 0.00738, 0.00486]]
32 block_model_place_pose: [[0.75, 0.0, -0.129],
33 [-0.02496, 0.99965, 0.00738, 0.00486]]
34 remapping: {pose: block_model_pick_pose_world,
35 reference_frame: block_model_pick_ref_frame}
36 transitions: {succeeded: MOVE_TO_START_POSITION}
37
38 - MOVE_TO_START_POSITION:
39 template: MoveToJointPositionsState
40 limb: left
41 userdata: {joint_start_positions:
42 [-0.08000, -0.99998, -1.18997, 1.94002, 0.67000, 1.03001, -0.50000]}
43 remapping: {positions: joint_start_positions}
44 transitions: {succeeded: PICK_BLOCK}
45
46 - PICK_BLOCK:
47 script: pick_block
48 remapping: {pick_pose: block_model_pick_pose,
49 hover_offset: hover_offset}
50 transitions: {succeeded: PLACE_BLOCK}
51
52 - PLACE_BLOCK:
53 script: place_block
54 remapping: {place_pose: block_model_place_pose,
55 hover_offset: hover_offset}
56 transitions: {succeeded: succeeded}

Listing 1: SMACHA pick and place demo script.

2.1.2 States
Each state, including the base, must specify a template from
which its respective code should be generated (see e.g. lines
3, 10, 22 and 39 of Listing 1). States may be specified as lists
specifying their transition order (see e.g. lines 8, 9, 21, 38, 46

20

Author’s version — provided for personal and academic use. Do not redistribute.

and 52 of Listing 1), and may also be nested as described in
the SMACH documentation using appropriate combinations
of template and state specifications. Possible state outcomes
may be specified as a list in the base state machine and in
each container state (see e.g. line 5 of Listing 1). Possible
state transitions may be specified as an associative array in
each state (see e.g. lines 19, 36, 44, 50 and 56 of Listing 1).
Input and output remappings of user data may be specified
as an associative array in each state (see e.g. lines 17, 34,
43, 48 and 54 of Listing 1).

2.1.3 Modularity
Modularity is achieved at the scripting level by allowing use-
ful subroutines wrapped in container states to be saved as
separate YAML script files called sub-scripts which can be
included in a main script as states. Examples of this can
be seen in lines 46–50 and 52–56 of Listing 1, where the
sub-scripts “pick block” and ”place block” are included in
the main pick and place state machine script to define its
sub-states. The input and output userdata keys expected by
the container states in the sub-scripts may be remapped as
appropriate in the main script along with their state transi-
tions. The use of this functionality encourages low coupling
and high cohesion, while allowing for extremely rapid and
easily specified reuse of common patterns.

2.2 Templating
Code templating is implemented using the Jinja2 templat-
ing library [1]. Core templates are provided by default to
support standard SMACH states and custom templates may
be defined for particular use cases.

2.2.1 Core Templates
SMACHA provides default core templates for many of the
SMACH states and containers, as well as for other useful
constructs. At the time of writing, the following core tem-
plates are present and functional: Base (Python script skele-
ton), State (contains functionality common to all states, e.g.
userdata specification), StateMachine (container), Concur-
rence (container), ServiceState (generic state), SimpleAc-
tionState (generic state), ReadTopicState (custom state used
for reading messages from ROS topics) and TF2ListenerState
(custom state used for reading TF2 transforms).

2.2.2 Code Generation Variables and Code Blocks
There are a number of core code generation variables and
code blocks present in the core templates that enable SMACHA
to produce code in the appropriate places. In most cases, a
code block contains a variable of the same name within it
to indicate where code from child state templates should
be rendered into. The main code blocks are as follows:
base header (for code that must appear near the top of the
program script), defs (for function definitions), class defs
(for class definitions), main def (for the main function def-
inition), header (for code that is to be rendered into the
header variable the parent template), body (for code that is
to be rendered into the body variable of the parent template),
footer (for code that is to be rendered into the footer variable
of the parent template), execute (for the code necessary for
executing the state machine), base footer (for any code that
must appear near the bottom of the program script) and
main (for the code necessary to execute the main function).

The most important block for most state templates is the
body block and its associated body variable, as it is where the
state template should render the code necessary to add the
state to the parent state machine, which will either be some
container state or the base state machine itself. Note that
all of the above code generation variables and code blocks
may be either removed, modified or arbitrarily customized
within the API for particular use cases. The code insertion
order may also be specified within the API, i.e. code may
be either prepended or appended to a variable. An example
of how code generation variables work together with code
blocks is depicted in Fig. 2.

2.2.3 Template Inheritance
Jinja2 provides powerful functionality, including the abil-
ity to extend templates via template inheritance, such that
their constituent code blocks may be overridden or extended.
SMACHA aims to incorporate as much of this functionality
as possible, thus the core templates may be overridden or
augmented by custom user-specified templates via the usual
Jinja2 template inheritance mechanisms, with some caveats.
This works in the usual way using the following Jinja2 vari-
ables and expressions: {% extends "<template_name>" %}

(to inherit code blocks from the parent template specified by
<template_name>), {{ super() }} (when this appears in a
block, the code from the same block in the parent template
as specified by {{ extends }} will be rendered at its po-
sition) and {% include "<template_name>" %} (to include
all code from the template specified by <template_name>).

Regarding the aforementioned caveats, there is a behaviour
that is specific to SMACHA that goes beyond the usual ca-
pabilities of Jinja2 and that was designed as a means of deal-
ing with the recursive state machine processing required by
this particular use case. If a state template contains blocks,
but does not contain an {{ extends }} expression at the
top of a template, it is implied that the code for the blocks
will be rendered into variables and blocks with the same
names as the blocks in the state template as dictated by the
SMACHA script and as defined usually either by the base
template or container templates. In the current implementa-
tion, only base templates use the {% extends %} inheritance
mechanism, whereas state and container templates use the
{% include %} mechanism to inherit code from other tem-
plates. This is partially illustrated in Fig. 2.

2.3 Code Generation
The SMACHA code generator is a custom-designed engine
for recursively generating state machine code based on the
scripts described in Section 2.1 and using the templates de-
scribed in Section 2.2. Recursive processing was necessary
given the potentially arbitrary depth levels of state machine
nesting that are possible under the SMACH API. The ba-
sic operation scheme behind the code generator is thus to
iterate through the data constructs of a parsed script, eval-
uate them based on their type, and determine whether they
should be rendered as code using the appropriate templates,
passed on for recursive processing, or some combination of
both. When iteratively processing a script, data items that
are encountered are either lists or associative arrays. When
a list is encountered, it is assumed that it is a list of states
and is passed on for further recursive processing. When pro-
cessing an associative array, there are three main cases that

21

Author’s version — provided for personal and academic use. Do not redistribute.

Figure 3: Pick and place (left) and stacking (right) tasks running on the Baxter simulator using SMACHA-generated code.

need to be handled separately: container states, sub-script
states and leaf states. The recursive processing of container
and leaf states is partially illustrated in Fig. 2.

3. EXPERIMENTS
For the experiments, we chose to use the Rethink Robotics
Baxter robot [4] simulator which uses the Gazebo simulation
system and comes equipped with extensive ROS support by
default. Custom code templates were designed to facilitate
the development of the necessary states required for the ex-
periments. Two experiments were performed in total using
these templates: a pick and place experiment and a block
stacking experiment2. The first of these is a replication of
the pick and place demo that comes as standard with the
Baxter SDK. It was initially re-programmed from scratch in
order to make use of SMACH and such that the control logic
of the demo could be specified using a state machine. After
that it was possible to design the necessary code templates
and script the demo using SMACHA. Once the custom tem-
plates and the SMACHA script had been created for the first
demo, it was possible to reuse both of them to very rapidly
script the second experiment for block stacking. In both
cases, it was possible to run the Python SMACH code gen-
erated by SMACHA without further modification with both
experiments completing successfully.

The Baxter SMACHA package3 includes the following cus-
tom code templates: BaxterBase (extends the core Base
template), LoadGazeboModelState (allows allows a specified
Gazebo model to be loaded into the simulator), MoveTo-
JointPositionsState (moves a Baxter limb to a specified set
of joint positions), PoseToJointTrajServiceState (uses in-
verse kinematics to calculate a set of joint positions from
a specified end-point pose), and GripperInterfaceState (ei-
ther opens or closes a specified gripper). In the inital states
of the pick and place experiment state machine, as specified
by the SMACHA script in Listing 1, a table model must
be loaded into the simulator using the LoadGazeboModel-
State template, followed by a block model placed at a spec-
ified pose on the table, and the left limb of the robot must
be moved to a starting position using the MoveToJoint-
PositionsState template. Subsequently, the robot enters a
“PICK BLOCK” state as specified by the “pick block” sub-

2Video available at: https://youtu.be/WFp keDsA6M
3https://github.com/abr-ijs/baxter smacha

script in order to pick the block from the table, followed by
a ”PLACE BLOCK” state as specified by the “place block”
sub-script in order to place the block at a given placement
pose. The stacking experiment initialises similarly to the
pick and place experiment, only in this case, two block mod-
els are loaded instead of one, and the robot is tasked with
stacking one on top of the other. This essentially involves
two pick and place sequences, one for each block, so the
“pick block” and “place block” sub-scripts used in the previ-
ous experiment are reused. The results of both experiments
are depicted in Fig. 3.

4. CONCLUSION
We have developed an API for the rapid assembly of state
machines for modular robot control using a meta-scripting,
code templating and code generation paradigm. It has been
demonstrated on a simulated humanoid robot platform in
two different experiments.

5. ACKNOWLEDGEMENTS
This work has been funded by the Horizon 2020 ICT-FoF
Innovation Action no 680431, ReconCell (A Reconfigurable
robot workCell for fast set-up of automated assembly pro-
cesses in SMEs) and by the GOSTOP programme, contract
no C3330-16-529000, co-financed by Slovenia and the EU
under the ERDF.

6. REFERENCES
[1] Jinja2 (The Python Template Engine).

http://jinja.pocoo.org/. (Last accessed 2017-07-24).

[2] YAML Ain’t Markup Language (YAMLTM)
Version 1.1. http://yaml.org/spec/1.1/. (Last
accessed 2017-07-25).

[3] J. Bohren and S. Cousins. The SMACH High-Level
Executive [ROS News]. IEEE Robotics Automation
Magazine, 17(4):18–20, Dec. 2010.

[4] E. Guizzo and E. Ackerman. How rethink robotics built
its new baxter robot worker. IEEE spectrum, page 18,
2012.

[5] P. Schillinger, S. Kohlbrecher, and O. von Stryk.
Human-robot collaborative high-level control with
application to rescue robotics. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), pages 2796–2802, May 2016.

22

Author’s version — provided for personal and academic use. Do not redistribute.

