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Abstract— When a cognitive system encounters particular integrated over a distributed architecture, shown in Fig. 1
objects, it needs to know what effect each of its possible ashs  The main idea is to allow the system to perform a variety of
will have on the state of each of those objects in order to be &b simple push actions on objects that are placed on the work

to make effective decisions and achieve its goals. Moreoyet f d video foot fth It h t thia d
should be able to generalize effectively so that when it enoa- surtace, record video footage or the resuft, harvest thia da

ters novel objects, it is able to estimate what effect its amns ~ for appropriate features and attempt to learn the simigarit
will have on them based on its experiences with previously inherent in the behaviour of those objects that are physgical
encountered similar objects. This idea is encapsulated byhe  similar when affected by such actions.

term “affordance”, e.g. “a ball affords being rolled to the
right when pushed from the left.” In this paper, we discuss

the development of a cognitive vision platform that uses a ) Machine 1 Machine 2
robotic arm to interact with household objects in an attempt ‘@’
) . . . -0 N
to learn some of their basic affordance properties. We outfie Y cm—
the various sensor and effector module competencies that vee
needed to achieve this and describe an experiment that uses a
self-organizing map to integrate these modalities in a woring Katana Arm Corba Server Matlab-
affordance learning system. Control &
Corba/HTTP Leaming
Server ystem
I. INTRODUCTION “
Recent years have seen a surge of activity in the area C—

of developmental robotics [1], a trend that can be seen Flea Camera
to underscore the desire to move away from task-specific  >'*°"
systems and towards more robust, adaptable platforms and
architectures. Desirable traits of such systems include th

ability to learn coqtinuously duri_ng the course of a lifespa A yumber of researchers have sought to develop systems
or deployment period, the capacity to construc_t_new cors_ace%r learning affordances in different settings [3], [4]],[5].
from previously learned or known ones, the ability to adfive |, 131 the author devised a similar experiment for afforcan
learn via interaction with a tutor or another knowledgeablﬁeaming to the one listed here, where a robot was given a set
ent_lty, etc. Naturally, these are difficult pro?'ems thae ar 4t 4 actions to perform on 4 toy objects. However, the system
unlikely to be amenable to wholesale solutions, but manyy jearmed one affordance feature, a measurement of how
mterestlng_, more trgctable sub-problems can be |den,t|f|eﬁke|y it would be for an object to roll along its principal &x
one of which is the issue of gﬁordance learning. _ in our case, 11 features are presented to a more generalized
The termaffordance was coined by the psychologist J.J.jearning system. The author of [4] allowed a robotic arm to
G|b§on [2] f[o descrlb_e the interactive possmllmgs of 3,5e a set of tools to manipulate a hockey puck on a work
particular object or environment, e.g., “a ball affordding” g ;face and considered two types of affordandssding
or “a lightswitch affords the |IIu'm|nat|on of a light bulb”. 4tordances for potential arm tool attachments, awdtput
For our purposes here, we will be framing the problemysorgances for the effect that that tool would have on the
of affordance learning by considering *what will happen if ¢ An object manipulation tool is also used by the robotic
action 4; is performed on objeav;”. system presented here, as detailed in Section 1V, but rather
In this paper we will presentacognlt_lve vision SySt?_m thaghan learning the tool affordances, we focus on learning
learns basic object affordance properties by interactitg W gpiact affordances that become apparent when the tool is
household objects on a table surface using a robotic arm, afjdaq to manipulate different types of objects. An archifest
observing the result using a camera system. The experimenig action (mimicking) and program (gesture) level visual
environment is shown in Fig. 2 and Fig. 3. These devices a|gitation in a robotic platform is presented in [5], where

) object affordance contexts are used to focus the attention
This research has been supported by: Research program 1B2-02

(Republic of Slovenia), EU FP6-004250-IP project CoSy attMRTN-  Of @ gesture recognition system and reduce ambiguities.
CT-2004-005439 project VISIONTRAIN. Gesture recognition in the motor space is performed using

Fig. 1. System architecture.
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a Bayesian framework that relies on prior knowledge frona hugely important aspect of such an experimental architec-
object affordance contexts, which are provided. Thougture is that the actions performed by the effector and the
we do not perform recognition in this work, rather therfeatures garnered from the sensors be reasonably consisten
providing affordances as a prior, we present a framewoik nature; otherwise it would be impossible to learn such
in which object affordances may Hearned dynamically. target functions. We discuss how this is achieved later in
This knowledge could be subsequently used to aid in varioi&ection II.

recognition tasks or, indeed, knowledge obtained from an In principle, many different learning algorithms could be
object recognition process could be used as input to oused in the system described above to solve the problem
affordance learning system. of predicting the resulting feature vectors for particubar
tion/object combinations. We chose to usesdé&organizing

map (SOM) or Kohenen map [7] for three main reasons.

Firstly, during training, SOMs form clusters that not only
group similar exemplars, but are also related to each other
topologically. A SOM is made up of nodes that are linked
to other nodes by a map topology and a neighbourhood
function. If the node at the center of a data cluster is
topologically close to another cluster node then concepts
captured by those respective clusters can be said to be
similar, whereas clusters that are topologically distaamf
each other are more likely to represent concepts that are
dissimilar.

The second reason why SOMs were chosen is because
they can be randomly initialized and trained incrementally
without a batch training procedure; the maps self-organize
and form clusters as data arrives sample-by-sample. This is
Fig. 2. Side view of the workspace. The robotic arm holds akofglastic ~ an essential requirement for any cognitive system thatsieed
tool that is used to push objects on the work surface. to learn in a continuous, life-long manner.

Thirdly, SOMs have been previously shown to work well
for learning affordances, albeit in a simulated robotidsys
[6]. The authors of [6] used a SOM with a Hebbian mecha-
nism called a&Growing When Required (GWR) network to aid
a simulated Khepera robot in learning affordances of object
with survival values such as nutrition and stamina so that it
could prosper over time in its environment.

The paper is organized as follows. In the next section, we
outline the system architecture and implementation detail
This will aid the discussion in Section 11l where we highligh
how a SOM was used as the learning mechanism for our
system. In Section IV we describe an experiment devised to
evaluate the system, and finally in Section V we conclude
and state our goals for future work.

Il. SYSTEM ARCHITECTURE& | MPLEMENTATION
A. Robotic Arm

Fig. 3. Workspace as seen by the tripod-mounted cameransyste In our system, we use a Neuronics Katana 6M robotic arm
which features 5 DC motors for main arm movement, as well

For the particular experiments presented here, we provi@ds a 6th motor to power a 2 fingered gripper that houses both
the system with information on what object is present ifinfrared and haptic sensors (note: these sensors are rbt use
the scene, as well as with a fixed repertoire of possiblie the experiment presented here). The base of the arm is
arm 'push’ actions. Recognition and/or classification af thmounted on a flat table with a wooden laminate surface, and
particular objects involved was not the primary focus o§thithe arm is allowed to move freely in the area above the table
work, but could be dealt with in a seperate module andurface, avoiding collisions with the table through the oke
integrated into the system. Thus, the task in the experisnergpecialized control software.
is framed as a regression problem where the system received) Interface; The system is designed to be controlled from
a feature vector when a particular action is performed othe Matlab software environment. Matlab was chosen as it
a given object, and tries to both estimate and adjust alows for rapid prototyping of high-level control program
target function for that action/object combination. Natly;, and provides extensive functionality for computer vision
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manipulations as well as other procedures. In order for Ill. L EARNING WITH A SELF-ORGANIZING MAP
experiments involving the robot arm to be performed vig, gym Description

Matlab and to aid swift cross-platform integration of the . ; des th d h
arm in future projects, a CORBA interface was developed A SO,M [7] IS a set ofn no est.at are connectg t cac
to sit between the low-level arm control software and highc-)ther via a ne!ghbourhood relation on a Iow-glmen_smnal
level Java control client which can easily be called fron{us_u";‘]"y 2D) gnd._Eachth node con:]ams Z_d-d|m_en5|_onal
Matlab. This allows for swift arm/work-space calibration'V®'9 L vectorm; = [mq, ..., M| whose dimensionl is
from within Matlab and provides simplenoveTo(x, v, =) equal to the dimension of the data vectors that are provided

style functionality for moving the end-effector to a lozald as ir_1put to the SOM during training. The neighbourhood
position (z, y, =) in the workspace relation may be configured in any number of ways. In the

2) Arm Control Software: At the heart of the arm control Map used for the experiment detailed in Section IV, we
architecture lies Golef control and planning software de- US€d @ hexagonal neighbourhood function where each node
veloped specifically for the Katana arm. The software work connected to six neighbouring nodes, as shown in Fig. 5.
by transforming desired positions expressed in workspad@/ious topologies, e.g., sheet-shaped, cylindricabitt,

(z,y,7) coordinate trajectories, to jointspace trajectoried@ also be used to connect map nodes to each other.

i.e. suitable control signals for each of the 6 arm motoré.beloending on the type of neighbourhood relation and the

Golem was originally developed for experiments that ineolv {0P0l0gy imposed, as the SOM is trained weight vectors
navigating the arm around workspace obstacles in order {82t aré similar with respect to a distance metric, usually
reach objects for grasping. Since our intended use of tfgclidean, will move closer to each other topologically.

armnvol\;]ec(jjcolliﬁon wi'ijhfpbcj;e_cts rather than avoidanc;, tr:eB. Incremental Training Algorithm

software had to be modified in two important ways. Firstly, _ .

planned movement trajectories had to be constrained to be asThe weight vect_or_s_ n each of theno_d(_es of the_ SOM are
linear as possible and secondly, the orientation of theafone usually randomly initialized before training begins. Atcha
and end-effector had to be made as consistent as possig
over repeated movements.

B. Camera System

d

A Point Gray Research Flea monocular camera (640x480 l|x — my||* = ij (2 — mij)Q, (1)

@ 60FPS or 1024x768 @ 30FPS) was used to gather images =1

and video for the experiment listed in Section IV. .
1) Interface: The camera system is operated using gvherewj is an element of mask vectar = [wy, ..., ]

similar interface to that of the robotic arm. A Java cIien%’Vh'tCh cag Ige utsegl _to ZIOCK ggt or d|scou_nt |nd|tv|duTa;:
is called from Matlab to interface with a CORBA server caUrés aurng training depending on requirements. €

that implements the low-level camera functionality. Dgrin node that is closest to the input data vector based on this

experiments, after an action command is issued to the |t:)boﬂ]etrIC is called thebest matching unit (BMU) and both it

arm, the camera system starts recording images and contﬂp—d its neighbouring nodes are updated using the following

ues recording until movement in the scene has ceased. Thé'ggate rule
images are then used to create a video, which is passed to @ m,(¢t + 1) = m;(t) + a(t)he; (8)[x(t) — m; ()],  (2)
compression module, after which it may be gathered from a
web server. operating over alli € [1,n], where a(t) is the learning
2) Tracking System: After video processing, objects are'ate at timet and h.;(t) is the neighbourhood kernel around
tracked using a probabilistic tracker [8]. This tracker ighe BMU c. The neighbourhood kernel is a non-increasing
in essence a color-based particle filter, which makes udénction of time and of the grid-wise distance (distance
of background subtraction using a pre-learned backgrouf§tween nodes on the grid, as opposed to Euclidean distance
image. Object shapes are approximated by elliptical regiorPetween their constituent weight-vectors) of nadeom the
while their colour is encoded using colour histograms. Th&inning nodec.
dynamics of objects are modeled using a dynamic model [9&_ SOM Usage in Experiments
which allows for tracking with a smaller number of particles ] i ) ) )
and consequently, near real-time tracking performance. For the experiment optlmed in the following section, we
3) Feature Extraction: The following 11 features are made use of the publicly available SOM Toolbox Z0
extracted from the video data: total distance traveled-in for Matlab. Feature vectors were collected, each of which
axis, total distance traveled jnaxis, total Euclidean distance had unique text labels associated with them detailing the
traveled, mean velocity in-axis, mean velocity iny-axis, action/object pairing that produced the feature vectoe Th
velocity variance inz-axis, velocity variance in-axis, final text labels that were used in the experiment are shown in

x position, final y position, final orientation, orientation Table I. During training, when the BMU for the input data
difference between start orientation and final orientation Vector is found, the label or labels that are associated with

%ining step, a data vector = [z1,...,24] IS fed to the
M and is measured against each node in the SOM using
the Euclidean distance metric, as follows:

http:/iwww.cs.bham.ac.uk/ msk/ http:/Avww.cis.hut.fi/projects/somtoolbox/
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TABLE |
ACTION/OBJECTPAIRINGS.

SOM Labeling using All Features

Push top / blue cubgPush middle / blue cubePush bottom / blue cube Push Hottom of pepsican(s)
Push top / ladybird | Push middle / ladybird | Push bottom / ladybird
Push top / Pepsi cadrPush middle / Pepsi cgrPush bottom / Pepsi cg
Push top / phone [Push middle / phone [Push bottom / phone

(9) Push bottom of ladypird(5)

=}

that data vector are attached to the weight vector of the
BMU. The labels do not affect the weighting of the nodes
or the structure of the map, but are useful for classifying
the clusters that are formed in the map during training. For
our experiments, we use the labels to identify action/dbjec
pairings, e.g., "Push top of pepsican” or "Push bottom of
phone”. As the SOM is being trained, more and more labels
get attached to BMU'’s in the map. In order to predict what
feature outcomes are afforded by a particular action/ebjec
pairing, the system may search for the node in the SOM that

Push middle of pepsfcan(6)

Push top of pepsican(7) Pushitop of bluecube(7) Push bottom of bluecube(15)

has had the label for that action/object pairing attached to Pushimiddie of phare(7)
it most frequently. The weight vector at that node forms the
affordance prediction for that action/object pairing. Push top of ladybid(7) Push bottom of phohe(10)

The true power of the SOM in affordance learning lies
with its capacity for topological self-organization. If dw
action/object pairings are sufficiently dissimilar withspect
to the feature vectors they produce, the text labels that are
associated with them should cluster on nodes in the map that
are topologically distant. This allows for different afflance
concepts t.O be nez_;ltly captured in an unSUperV'Se_d _Wa_y' Fr% 5.  Example of SOM labeling after 180 training steps gsthe
example, if a ball is pushed on a table surface, it is likelyull dataset. As data vectors with associated text labedsirzrementally
to roll across the table and produce quite a different featufiedd t::] éhfe X??a'\l’)'élt?si;(;3;:(;'%aiﬁgpgozzdeowertht‘fmf:aggz Iéogl{ﬂfﬁqﬂ;modﬁ
vec.tor to a box-shaped object that is pUShed on the table éﬁecific points in the map and labels thét represent’ ach@eub pairings
a similar way. These feature vectors would likely cluster atith similar properties will be found close to each other.\Othe most
topologically distant locations in the SOM, thus Capturingrequent occurences of each label are shown in this visializ
the concept of rolling versus non-rolling objects. In thetne
section we describe an experiment to demonstrate this idea
and we evaluate its performance. A set of 3 pushing actions was provided to the system,
each of which involved keeping the forearm part of the arm
orthogonal to the work surface and pushing from the right
side of the workspace to the left side, through a fixed object
start position. One of the actions pushed through the middle
of the fixed start position, a second pushed through a point
above the start position (“above” with respect to the start
location in the image space, not in the arm space) and a third
action pushed through a point below the start position. We
selected 4 household objects to be used in the experiments

@ (b)
Fig. 4. Test Objects: (a) Blue cube (b) Ladybird rattle (cpstecan (d)

Mobile phone. . ) )
as shown in Fig. 4; a blue toy cube, a toy ladybird rattle
that is capable of rolling, a Pepsi can, and a mobile phone.
IV. EXPERIMENTAL RESULTS During trials, each of these objects was placed centred at
o ) the start position with a consistent orientation, as in Big.
A. Description of Experiment and the Katana arm pushed the object at a fixed speed using

To test the efficacy of the system for learning basic obje&ne of the 3 actions. See Table | for the full range of twelve
affordance properties, the experimental environment weas fction/object pairings that were tested.
up as shown in Fig. 2 and Fig. 3, where the Flea camera wasAfter an action was performed on an object, the images
positioned roughly one metre above the work surface onwaere gathered from the Flea camera, converted to video,
tripod, giving it a top-down viewpoint of the scene. To helpcompressed, and passed to the tracking system, as well as the
avoid arm/object occlusions, which would have posed sonwher feature extractors. The 11 extracted features disdus
difficulties for the tracking system, an black plastic pughi in Section 11-B.3 along with the action/object label wererth
tool was placed in the Katana arm’s gripper as shown. used as input for the SOM during training.
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Example of SOM self-organization after 180 trainstgps using

each test object. Results are shown in Fig. 7. It is clear from
the Figure that the SOM quickly captures the difference
between rolling and non-rolling object affordances and is
able to generalize this knowledge for novel objects. Tragni
objects that generate the smallest map distances to the test
objects in this evaluation are considered to be best-madchi
object types for the respective test objects.

A second test was used to measure the classification
ability of the system based on the results of the previous
test. The experiment was set up as before, but this time,
at each training step the BMU for each test sample was
found in the map and the closest labeled map node with the
corresponding action label was used to classify the object o
the test sample. At each step and for each trial, the number of
times this object matched the relevant best-matchingitrgin
object selected in the previous test was counted and avirage
across all 20 trials for each test object. This meant that ove
time, 9 possible classes emerged in the maps based on the
action/object pairings of the training sets. Results amwsh
in Fig. 8.

V. CONCLUSION AND FUTURE WORK

In this paper we discussed the development of a cognitive
system equipped with a robotic arm and a camera system
that is capable of learning basic object affordance progsert
We demonstrated how a self-organizing map may be used
as an unsupervised mechanism for classifying action/objec
pairings with similar affordance properties and we present
experimental results proving the efficacy of this approach.

the full dataset. Cross-sections of the map are shown ietdtie learned
feature weight values and topological organization forheat the 11
features. A unified distance matrix is shown in the top-leftl as useful

In future, we hope to replace the text-labeling of objects

for visualizing the overall Euclidean distance betweeraeelit map nodes
when considering all features together.

with a system module that gathers visual features of the
objects and uses them as input to the affordance learning
system. We would also like to explore the idea of dynam-
ically constructing more complex affordance concepts from

basic ones in a developmental learning framework.
B. Results
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Fig. 7. Generalization results for the first test detailedséecttion 1V-B. The best-matching object type in each of the tases (a), (b), (c) and (d) was
used as the basis for the second test listed in Section IVeBFéay 8, e.g., “phone” is the best-matching object for thkiébcube” test object in (a).
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Fig. 8. Classification results. This evaluation was set upexribed in Section IV-B. The y-axes show the percentageoogct classifications for all
45 test samples in each case based on the best-matchingsalgeived from the the first test evaluation described intiGedV-B and Fig. 7.



