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Abstract

In this dissertation we aim to perform a detailed study ohitegues for the analysis of
the exacts-dimensional Hausdorff measure of fractal sets and try twide a reason-
ably comprehensive review of the required background. Apheasis is placed on results
pertaining to local density of sets and we show how theseigeo® link to the more
global concept of Hausdorff measure. A new result is praviddich states that if<

is a self-similar set satisfying the open set conditionnthé&(K N U) < |U|® for all
Borel U, also implying thatD. (K, z) < 1 for all z, whereH*(E) and D, (E, z) refer to
the s-dimensional Hausdorff measure of some Beand the local convex density &f

at a pointz respectively. Based on the work of Zuoling Zhou and Min Wu, wevze
new calculations for the exact Hausdorff measure of botlegpBiski carpet ilR? and a
Sierpinski sponge ifR3. In the final chapter we take a look at how the Hausdorff mea-
sure behaves when measuring the invariant sets associdkeslpecial types of iterated
function systems known as iterated function systems witideasation and also provide

a brief discussion on the calculation of the packing meastiaeself-similar set.
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Introduction

0.1 Notational Conventions

Some points regarding notational conventions used in theeie

We will refer to a ball with its centre at a poimtand a radius as eitherB,.(z) or B(z,r)

interchangeably.

Also, lim andlim will refer to upper and lower limits respectively.

0.2 Summary

Calculating the Hausdorff measure of fractal sets is an atbr difficult problem
owing to the very definition of Hausdorff measure: the sumhef diameters of all the
sets of various sizes and shapes that make up the most dftoesr of a given set to
be measured. The fact that covering sets are allowed to ganyush means that there is
an extremely wide class of covers to consider when findingrbst efficient one. This
stands in contrast to the class of covers used when calogllatix-counting dimension,

where only covering sets of a fixed size and shape are corslider

The first two chapters of this dissertation provide a histdrdiscussion of the neces-
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sary concepts from measure theory and fractal geometrya eedew of iterated function
systems and self-similar sets respectively. The first @rdpgins with a brief discussion
of the first basic efforts to define a measure that assignsgthévalue to arbitrary sets in
R, and attempts to track the progression to the more robugtmot Hausdorff measure.
This path of development traverses a number of importardtijoms, including sigma-
algebras, metric outer measures and Methods | and Il forghstruction of metric outer
measures. Toward the end of the chapter, we arrive at a dafimt Hausdorff measure
H?#(E) for a given sef? € R? and discuss how its namesake, Felix Hausdorff, discovered
that for any value ok other than a certain critical value that pertains to thefséeing
measured}® (£) will always be eithef or +oco. This critical value fors is the Hausdorff
dimension of the seF. It is capable of taking on non-integral values and is frexye
used to gauge the ‘complexity’ of the set. We discuss howutating the Hausdorff di-
mension directly can be tricky, but is made easier throughue of the more accessible

box-counting dimension and its calculation.

In the second chapter we talk about iterated function systmiFSs and self-similar
sets. Iterated function systems are quite important as fé@ltate the definition of a
broad class of fractal sets; indeed, most of the fractalthatsmay be found in today’s
books and papers on fractals are generated using iteratetidn systems. For example,
the classic middle-third Cantor set may be generated usent-th

{fl(a:) = %x,fg(:v) = %x + %} )

IFSs are constructed using contraction mappings with &golccontraction ratios or
Lipschitz constants. In the above example, btland f; are contraction mappings with
contraction ratios%. An IFS always has a unique invariant set associated witbftin
referred to as the attractor or fixed point of the IFS, whicgaserated by iterating the
collection of mappings contained in the IFS over any givenirsi@nitely many times.

Given an IFS{.S;, S, S3, S, }, the invariant set associated with that IFS is given by
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F = OSZ-(E)
where Ezlzs} a given set in the space that we are working in. Weppgicular attention to
a certain type of IFS in Chapter 2, namely iterated functicstesys with condensation.
These are regular IFSs, but some fixed set called a ‘condenssdt’ is merged with
the output of the IFS at each iteration when constructinginiiariant set. There is a
classical result associated with IFSs which shows thaF&8Ihave a unique invariant set
associated with them. In Chapter 2, we prove this result f8slwith condensation; the
proof is not much different to the proof for the regular cds4,is not seen as often in the

literature so we decided to prove this version here.

As was mentioned in the abstract, a number of results can inemgal for the local
density of a set at a given point which can form the basis ferctilculation of the exact
Hausdorff measure of the set at the critical dimension. Bé&attempts at calculating the
Hausdorff measure in such a way have been made by variousradibin various different
fractal sets. We provide a brief review of some of these giterat the end of Chapter 3,
after analysing many of the key results for local densityoTypes of local density that
are of particular interest to us are local spherical deresity local convex density. The
upper spherical density with respect to the Hausdorff nreastia setF, with positive

finite Hausdorff dimension, at a pointz is

s _EHS(EOBT(x))
D (E,x) = 7la_)0 o)

The upper convex density fdt atzx is

s — S(E
Di(E,2) = Tim {sup W}

where the supremum is over all convex sétsvith € U and0 < |U| < r. As we
point out in the chapter, local spherical density is not €@is useful as local convex

density with respect to the Hausdorff measure. In particidae of the main results
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obtainable for spherical density states that < D°(E,z) < 1 for H*-almost allz,
but the equivalent result for convex density statesi_hfe(tE, x) = 1 for H*-almost allx
which is a much more useful result in practice. After takingak at the proofs of these
two results, we provide a new result for local convex dernisityection 3.3.3, namely that

given a self-similar sek satisfying the open set condition
H(KNU) <|U|?

for all Borel U, thusEZ(K, x) < 1 for all x. This proves quite useful for attaining
upper bounds in the proofs of some further results laterenctiapter. These culminate
in Theorem 3.3.13, which states that given a self-similar/Sesatisfying the open set
condition and a suitable self-similar measursupported o<, then

W) =

wherec_lz(A, x) refers to the upper convex density at a paintith respect to\.

In Chapter 4, based on the work of Zhou and Wu in [ZW99], we presealculation
for the exack-dimensional Hausdorff measure of a Sierpinski carp&?ZinThe particular
Sierpinski carpet analysed is the invariant set associaitthdan iterated function system
consisting of four similarity mappings, each of which rdesaets by a factor G}ff When
acting on the unit square iR?, each of the mappings maps to one of the corners of the
unit square. We make a number of modifications to the methed log Zhouet alwhich
simplify the calculation considerably. Referring to therfieski carpet in question &s,
we prove thatlim,, C' = 1 and thati'(C) = /2. The upper bound for the Hausdorff
measure calculation is found by using a theorem due to Huwgohni [Hut81] which states
that if C' is a self-similar set generated by an IFS with mappifgs, ..., R,} with
associated contraction ratids,, ..., c,}, letting s be a unique real number such that
zn: ¢; =1, then we havé{*(C) < diam(K)*. We use the mass distribution principle to

=1
ascertain the lower bound. Using an appropriate masshiisish ;. supported on the set
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C, if we can show that(V') < |V| for all measurable sefs, then*(C) > u(C) and
we are done. Central to the proof is the idea of projecting &é€’'onto one of its main
diagonals and defining a mass distributiersupported on the projection which is based
on the original mass distribution supported @n Zhou et al use a number of lemmas
to show thatm([0,z]) > 3z for all 2 € [0,v/2]. We condense this into a single lemma
and improve upon the result slightly, showing that[0,z]) > 2z for all z € [0, V2]

Developing the proof for this result was aided by the graph ef m([0, z|) andy = ‘—;x

shown in Figure 4.5.1.

We extend the Hausdorff measure calculation from Chapteratiwee-dimensional
case in Chapter 5, analysing a Sierpinski Spong&fimwhich may be generated by an
IFS consisting of 8 contraction mappings of Lipschitz r%tiwhich map the unit cube to
%-scaled copies of itself in each of its 8 corners. Lettinglenote the Sierpinski carpet
in R? this time, we prove thadim;, C' = 1 and thati'(C) = v/3. The method used is
largely the same as that of Chapter 4 and the calculationscaromplicated too much

further by the addition of a third dimension to the space vesvesrking in.

In the final chapter we take a look at how the Hausdorff medsehaves when mea-
suring the invariant sets associated with iterated fundistems with condensation. We
make an interesting observation which shows that the Hafisdeasure changes from
being a positive finite value to beingoo when measuring the invariant sets associated
with two different IFSs with condensation which differ ontgry slightly. We also take
a look at the packing measure, a notion of measure which bas ih status next to
the Hausdorff measure in recent years and is now regardediag équally important.
Packing measure is defined in a similar way to the Hausdoréfsmes, but uses efficient
packings of sets as opposed to efficient covers in its defimitin the final section of the
chapter, we discuss the work done byélialin [JZZL03] on the calculation of the pack-

ing measure of the Cartesian product of the middle third Cas#bwith itself inR? and
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show how they make use of some results that link local sphledensity to the packing

measure in order to achieve their result.



Chapter 1

Measure and Dimension

1.1 Introduction

The journey to a notion of sets of infinite complexity, withmimtegral dimensions
and self-similar properties began in a setting that, to anmathematician, might seem
slightly strange. Toward the end of the 19th century, theldvof pure mathematics had
encountered a problem. Riemann integration, although guiteessful in dealing with
many functions such as continuous functions and functiondased bounded intervals,
failed to deal with more irregular functions such as lingtjprocesses. The French math-
ematician Henri Lebesgue saw that there was work to be dotiesimrea and in 1901,
he formulated a theory of measure which extended Riemane&yhof integration to
allow for the possibility of more irregular functions. Ledgpie’s nuance was centred on
the concept of length. How does one define the ‘length’ of ditrary set inR? The
following definition illustrates what we might think of as artuitive description of an
idealised length function:

Definition 1.1.1. A function? : {A|A C R} — [0, oo is called dength functionf
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1. 0(0) =0
2. AC B = ((A) < U(B)

3. If A;, Ay, ... C Rare sets such that; N A; = 0 for i # j (pairwise disjoint), then
((UrZ, Ag) = > p2, U(Ay) (countable additive).

4. If A C Bandz € R, thenl(A) = ((A + x) (translation invariance).

5. ¢(]0,1]) = 1

Unfortunately, as was shown by Vitali, such a length funttioes not exist. A possi-
ble solution arises by replacing the 3rd countable adtjtiondition with a finite addi-
tivity condition: ¢(J;_, Ax) = > r_, {(Ax). However, a counter-example known as the
Banach-Tarski paradox was found in the 1920’s which disg®ueh a modified length
function for dimensiong> 2. Lebesgue, instead, introduced a concept knowmeasure
which involved countable subadditivy instead of countadalditivity. This allowed him
to formulate a general concept of ‘length’ for 1-dimensiosets which facilitated the
introduction of Lebesgue integration. Subsequently Conist&Carati@odory, a German
mathematician of Greek descent, became interested indRtemeasure theory to n-
dimensional cases. His efforts were successful and fortreetdsis for the discovery of
another German mathematician, Felix Hausdorff, of thetemte of non-integral dimen-

sions. In order to track how Caratbdory did this we will need a number of definitions.

Lebesgue’s original concept of measure involved notionsutér measurend in-
ner measure A set was said to beebesgue-measurabikits outer measure and inner
measure coincided. Car&bdory’s measure theory dispensed with inner measure and
provided an alternative, non-intuitive definition of messhility which proved to be the

key underpinning of Hausdorff’'s subsequent work.
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1.1.1 Outer Measure

Definition 1.1.2. A function iz : {A|A C R?} — [0, oc] is called arouter measuréf

1. u(@) =0
2. AC B= pu(A) < pu(B)

3. If Ay, Ay, ... CRY thenu(Ur, Ar) < Y oo, 1(Ag) (countable subadditive).

Caratteodory devised the following-approximative outer measure to deal with n-

dimensional set& C R%:

C5(E) = inf { i diam(E,)

EC EOJEi, diam(E;) < 5} (1.1.1)

=1

As ¢ decreases, the number of ways in which we can cover E withldaifs; sets is
reduced. As that class of potential covers gets smallerjnfimraum (smallest sum of
covering sets) either remains the same or gets bigger aptlmne for efficient covers
run out. So, a® approaches zero, the infimum approaches a limit, leading ulset
following definition:

C(E) = lim Cs(E)

6—0

- (151_1% inf { ; diam(E;)

— sup Cs(E)
6>0

EC|JE, diamE;) < 5}
=1

Using his novel definition of measurability, Caratdory went on to show that his outer
measure actually fulfills the criteria for a ‘length functiavhen applied to a certain class
of sets known aBorel sets Defining this class of sets requires the following defimgto

and results:
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1.1.2 o-Algebras

Definition 1.1.3. A family A of subsets of a set C R s called aralgebraif:

(i) X e A,
(i) Ac A= A e A,
(i) ABe A= AUDBEeA,
whereA’ is the complement oAl.
Lemma 1.1.4.1f A is an algebra of subsets of some &et R¢, then
(1) Ve A,
(2) Ay,..., A, e A= UL A€ A,
8) ABe A= ANBe A,
(4) Ay,..., A, e A= N, A € A,
(5) ABe A= A\Bec A
Proof. (1) follows from (i) and (ii) of Definition 1.1.3. (2) followby repeated application

of (iii). SinceAnB = (A’UB’Y, (3) follows from (ii) and (iii). (4) comes from repeated
application of (3). For (5), note that \ B = AN B’ € A by (ii) and (3). [

Definition 1.1.5. An algebraA of subsets of a seX C R? is called ar-algebraif, in
addition to the conditions for an algebra in Definition 1,18 following condition is

also satisified:

A Ay, e A=A e A

n=1
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Theo-algebra of an algebrd may be denoted(A).
Definition 1.1.6. We will call ac-algebraA in R¢ “good” if A contains all open rectan-

gles(ay,by) x ... x (an,b,). E.g.A = {A|A C R} is good.
Note: "Good” is not a standard term for this definition, but will gerour purposes here.

Using the above definitions, we my now define the Borel sets|ksv&:
Definition 1.1.7. The intersectior3 = ()~ A of all good setsA is called theBorel

o-algebra

The Borelo-algebra describes an extremely wide class of sets. Anyhaetan be
constructed using a sequence of countable unions or icterss starting with the open
sets or closed sets will be Borel. This is more than adequateuopurposes, as the

fractal sets we will be working with may be described in suetes.

Now that we know what the Borel sets look like, we can proceeatlsdrow thaiC,
acting on those sets, behaves like a ‘length’ function. Betlwing that, we shall refine
our notion of what a ‘length’ function should be. The defimitiof ameasurepresented
in the next subsection is quite similar to the definition olemgth’ function, but uses @
algebra as its domain. We would like to show taatisfies the criteria for this modified

notion of measure when acting on the Borel sets.

1.1.3 Metric Outer Measure

The definition of measure that follows helps us reclaim thealale countable-additive
property which was sacrificed for countable-subadditiintgur definition of outer mea-
sure. This new type of measure usually operates on a slighm#fler class of sets, namely
the Borel sets, as opposed to the entire family of subsék¢ ér outer measure.

Definition 1.1.8. Let A be ac-algebra. A function. : A — [0, co] is ameasuref:
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1. 1(0)=0
2. ABE€AACB = u(A) < u(B)

3. A, Ay, ... € A, A, N A, = 0 for n # m (pairwise disjoint), themu(J;—, Ax) =
S o2, 1(Ax) (countable additive).

We follow this with a key theorem for measurability first intluced as a concept in
Caratleodory’s seminal 1914 paper [Car14] entittddber das lineare MaR von Punktmengen-
eine Verallgemeinerung desihgenbegriffs’or “On the Linear Measure of Point Sets- a
Generalization of the Concept of LengthThis theorem asserts the existence of a cer-
tain o-algebra associated with any outer measusnd says that is a measure on that
o-algebra. As was noted by Hewitt and Stromberg in [HS65]ctyxdnow Caratodory
came up with this is quite mysterious as it is not at all imteit The important thing is
that it works.

Theorem 1.1.9. (Caratleodory Extension Theorem)Let ;. be an outer measure. Put

Ap) = A= {A|VE: u(E) = (AN E) + u(E\ A)}. Then,

1. Aisaoc-algebra.

2. 1n: A—|0,00] is @a measure.

A is called thes-algebra of-measurable sets

Proof. A proof for this can be found in [Bar66] pages 101-103. O

Lemma 1.1.10.Given an outer measurg and some sel C R", if u(A) = 0, then

Ae A(p).
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Proof. Consider a sei/ C R”. By the second property of outer measure (monotonicity),

WA E) + u(E\ A) < p(A) + u(E) = p(E).

The third property of outer measure (subadditivity) yielaks opposite inequality

WANE) + B\ A) > u(E),

SO

WANE) + u(E\ A) = pu(E)

andA € A(u) by the CaratBodory extension theorem.

Caratleodory’s Extension Theorem was the first step in showing@hata measure
on the Borel sets. The second step requires the notionmadtac outer measureAs the
definition below and the theorem that follows it show, if anesumeasureg: is a metric

outer measure, then the Borel sets form a subset of its atsdetalgebra.

Definition 1.1.11. When A, B C R? and distA, B) = inf,caep|a — b|, p is called a
metric outer measuri:
u(AUB) = u(A) + p(B) VA, Bsuch that distA, B) > 0
Theorem 1.1.12.If 1 is a metric outer measure, théhC A(u).
Proof. Omitted. A proof for this may be found in [Fal86] on Page 6. n

We require the following small lemma later on in Chapter 3.
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Lemma 1.1.13.Let x be a measure on a-algebra&. Given setA;,... A, € &, if
1(A; N Aj) = 0wheni # j, then

H (O Az’) = iM(Az‘)-

Proof. This proof is omitted as it is a well known result and is refelly straightforward

using basic set theory and the properties of measure. ]

Using the definitions and theorems that preceded, we care fihast Caratbodory’s
outer measuré is a a metric outer measure and thus a measure on the Boralrssiste
succinctly, aBorel Measure

Theorem 1.1.14.C is a metric outer measure.

Proof. ChooseA, B such that dist4, B) = § > 0. We want to show thats(A U B) =
Cs(A) + Cs(B).

“<” We haveCs < Cs(A) + Cs(B) from Property 3 of outer measures in Definition

1.1.2.

“>" Letd > 0 suchthat < dist(A, B).
Let D = |J;2, D; be any countable cover of U B such that diartD;) < 0.
diam(D;) < dist(A, B) for all 4, thus eaclD; set intersects at most one of eithér
or B, so we can spliD into two disjoint collectionsP; andD, coveringA and B

respectively. Thus,

> diam(D;) = Y diam(D;) + > diam(D;) > C5(A) + Cs(B).

D;eD D;eDy D, D>
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Taking infimum over all covers, we have

inf{ > diam(D;)

D;eD

AUBQD} = Cs(AUB) > C5(A)+ Cs(B)

and taking the limitag — O we getC(AU B) > C(A) + C(B).

Later in this dissertation we will require the following tirem for uniqueness of a
measure on a-algebra.
Theorem 1.1.15. (Caratleodory Unigueness Theorem or Hahn Extension Theorem)
Let X C R? and letA be an algebra of subsets &f. Let; andv be finite measures on

o(A) and let
u(A) =v(A) forall A e A.
Then

u(B) =v(B) forall B € og(A).

Proof. A proof for this may be found in [Bar66] pages 103-104. ]
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1.2 Construction of Outer Measures and Metric Outer

Measures

There is a way of generalising the construction of outer messknown as Method
I. Method | can be extended to generalise the constructiomedfic outer measures. This
extension is known as Method II. Both of these methods willdefui to us when defining

measures such as the Hausdorff measure which shall be sistusthe sequel.

1.2.1 Method | Outer Measures

Definition 1.2.1. Let M be a family of subsets such that = ( J,,.,, M. LetT : M —

[0, oo] be any function. Define

u(4) = inf { S 70

AQGMHMZEM}

i=1

w is called theMethod | Outer Measurassociated wit M, 7).

Proposition 1.2.2. i is an outer measure.
Proof.
1. p(0) = 0.

This is obvious since the empty set is covered by the empigrgkthe empty sum

is zero.

2. AC B = u(A) < u(B).
Fix AC B. LetB C |J;2, M;, M; € M. Then,A C B C |J;2, M; implies that:

u(A) < ZT(Mi) which is true for all such covers @, hence
=1
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W(A) < inf {fjﬂM»

= u(B)

=1

3. If A17 AQ, ... C Rd, then,u(UZO:l) < ZZOZI ,U/(Ak)

Case 1:u(Ay) = oo for one or more of the,.
If one of the A;, has measure infinity, then the sum of the measures of all the

Ay, will have measure infinity, which is always bigger than thie-kend side.

Case 2:1(Ay) < oo for all k.

Let A;, Ay, ... C R% Lete > 0 and fixn € N. It suffices to show that

u(UAn) SZM(An)—i'E-

Sincee > 0 andu(A,) < oo, u(A,) < u(A) + 57. There exists a cover

U2, M,,; over A,,, whereM,, ; C M such that

Since we can find such covers for all of tHe, we have

n=1 n=11i=1
The measure on the union of thg, uses the most efficient cover, thus

n=1 i=1

< 3 o+ 5)

n=1
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= Z p(Ay,) + € Z 2%
n=1 n=1
= Z 1(An) + €
n=1
0

Unfortunately, as we shall now see, we can find a counter-pkawhich shows that
Method | outer measures are not always metric. The proofiregjthe Lebesgue outer
measure, which we shall now define using Method | and a smatlubeful theorem
which shows that the Lebesgue outer measure on an intereque to the length of the
interval.

Definition 1.2.3. Letd = 1. Let M = {[a,b] | a < b}. Let7 ([a,b]) = b — a. Then the
Lebesgue outer measui, is the Method | outer measure associated \itt, 7).

Theorem 1.2.4.1f Ais an interval, thenC(A) is equal to the length of A.

Proof. A proof for this may be found in [YehQO], pages 36-37. n
Proposition 1.2.5. Method | outer measures are not always metric.
Proof. Letd = 1. LetM = {[a,b) | a < b}. LetT ([a,b]) = Vb —a. Let u be the

Method | outer measure associated with(, 7). Let A = [-1,—1) and letB = [,1).

First we will show thapu(A) = ¥2:

2 Letf-1,~1) € U, fus b). Then

(Z V(b — az’)) = > Vbi—a)/ (b —ay)

4,j=1

= Z\/(bi—ai)\/(bz’—ai)+
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i V (bi — ai)\/(bj — a;)

i=1,i#j

> Z V(b — ai)\/ (b — a;)
= Z(bz a;)
> L(A) = 4] =z

Therefore, we havd_"° | /(b; — a;) > \/g = ¥3,

It can be shown that(B) = ‘/75 in a similar way. Note that digfl, B) = 1, thus
satisfying the preliminary requirement for the metric outeeasure test. Summing the

measures ofl and B, we getu(A) + u(B) = v/3. However, sinced U B C [-1,1), we

have
p(AUB) = p(A)+ u(B)
< u ([_L 1))
< T(-11)
= V1-(-1)=V2
Henceu(A U B) # u(A) + p(B), so the outer measure is not metric. O

1.2.2 Method Il Outer Measures

We will now extend the notion of Method | outer measures tohddtll outer mea-
sures, which can be shown to be metric and in particular, forasures on the Borel

sets.
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Definition 1.2.6. Let M be a family of subsets & such that J,,. ., M = R* and let
Ms ={M e M| diamM < 6} .

Let7 : M — [0,00] be any function and lef; = 7|\,. Let us be the Method |
outer measure associated With;, 75). Then theMethod Il outer measuris defined as

follows:

p(A) = lim ps(A) = sup ps(A).

6—0 §>0

Theorem 1.2.7.Method Il outer measures are metric outer measures.

Proof. Thisis almostidentical to the proof of Theorem 1.1.14 tosstitat Caratbodory’s
measure is a metric outer measure, so will be omitted, buayt be found in [Edg90] on

page 141 (Theorem 5.4.2). ]

1.3 Hausdorff Measure and Dimension

1.3.1 Hausdorff Measure

Recall CaratBodory’so-approximative outer measu€é from (1.1.1). Caratbodory
had noticed that his measure could be adjusted to give-g@imensional measure iR?

for anym € Z* with m < n as follows:

6—0

C™(E) = liminf { idiamn(Ei)

EC|JE:, diamE;) < 5}

=1



1.3 Hausdorff Measure and Dimension 21

Here diam), (E;) denotes the supremum of the dimensional volumes of all orthogonal

projections of the convex hull df; onto allm-dimensional subspacesRf.

Based on this, in 1918, almost thirty years after his gradadtiom Leipzig Univer-
sity which included a seven year hiatus from mathematicsaech proper, Felix Haus-
dorff produced a paper [Haul8] entitléDimension undaul3eres Mal3'or “Dimension
and Outer Measure”, which contained a brilliant insightubldorff himself played down
the importance of this insight by referring to it as a “klair@eitrag” or “small contribu-
tion” on top of CaratBodory’s measure theory, but as it turned out, his discovecame

the axle around which subsequent work in fractal geometsyréeolved.

Hausdorff extended Caratbdory’sm-dimensional measure so that it is based on
summing the diameters of thé sets to then-th power, i.e. using the following sum in

theC™ definition:
> " diam(E;)™.
=1

He then noticed that this not only worked well whenis an integer, but also when
Is any arbitrary real number. This small observation pavedway for the concept of

non-integral dimension.

As Hausdorff observed, using this more liberal notion of @sion, for every sef
there exists a unique critical value for where them-dimensional measure @ leaps
between zero and infinity. This critical value is the Hau$idimension of . Moreover,

the measure of th&' using this critical dimension value may be zero, finite ominé.

Itis worth noting here that Hausdorff dimension is sometmederred to as Hausdorff-
Besicovitch dimension, owing to the early work that Abrahaam8ovitch Besicovitch

contributed to the calculation of dimensions of fractalsseFor example, in [Bes35],
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[Bes34] and [BT54], Besicovitckt al compute the Hausdorff dimension of certain sub-
sets of the line.
Definition 1.3.1. Let s be a non-negative real number. Thapproximatives-dimensional

Hausdorff measuré(; of a setF C R? is defined as follows:

=1

H3(E) 1nf{Zd|am(E EC UE“ diam(E;) < 6}

In a similar way to the Caraélodory measure, @asdecreases, the class of permissible
covers ofFE gets smaller and theapproximative measure approaches a limit value which
we define as follows:

Definition 1.3.2. The s-dimensional Hausdorff measure

H(E) = lime;(E)
= hmlnf{Zdlaﬁ‘(E

Theorem 1.3.3.H® is a measure on the Borelalgebra.

ECUE“ dlam(E)<5}

Proof. Taking M; to be the family of Borel sets ilR? with diameter less than and
definingZs(M;) as diami(M;) whereM; € M;, then using Definitions 1.2.1 and 1.2.6,
H; is clearly the Method | outer measure associated Wwithy, 7;) andH* is its subse-
guent Method Il outer measure. Theorem 1.2.7 states thitethiod Il outer measures
are metric and hence, by Theorem 1.1.12, are measures on thlesBaigebra, sd+® is

such a measure. ]

A key property of Hausdorff measure, and indeed a propediie shall be making
use of later on, is the scaling property.

Proposition 1.3.4. (Scaling Property of Hausdorff Measure)
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If ¥ c R?and) > 0 then
HY(AF) = AH(F)
whereAF' = {\z : x € F'}, i.e. the set F scaled by a factar

Proof. This proof can be found in [Fal90]. O

Definition 1.3.5. We call a Borel set with finites-dimensional Hausdorff measure an

s-set.

1.3.2 Hausdorff Dimension

Given a setr’ and somé < 1, and looking at the definition df{; where we take the
smallest sum of the diameters of covering sets tostiiepower, it is clear that{*(F') is
non-increasing as increases. A more precise claim can be made when we analyse th

situation a little more closely. Letting> s and( ", U; be aj-cover of F, we have

i Uil < nd" = nd"%0° < 6° i |U;|°.
i=1 =1

Therefore by taking infima on both sidgs(F) < 6" *Hi(F). If we letd — 0, H'(F)
must be zero wheth*(F') < co. We can see that as the valuesohcreasesH?®(F') tends
closer to a critical value where it jumps froma to 0. This critical value is the Hausdorff
dimension ofF'. A formal definition follows.

Definition 1.3.6. The Hausdorff dimensiodimy of a non-empty sef’ is defined as

follows:

dimg F' = inf{s | H*(F) =0} = sup{s|H*(F) = oo}
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so that
oo If s <dimyg F
H(F) =
0 if s>dimgF.

Some properties of Hausdorff dimension follow. Justifisafior these properties may
be found in [Fal90].
(i) If F c R%is open and non-empty, thelim I = d.

(i) If Fis acontinuously differentiable:.-dimensional submanifold d@&¢, for instance

a curve inR? or a surface iR?, thendimy F = m.
(i) If £ C F,thendimy E < dimy F.

(iv) If F, F5,...is a countable sequence of sets, then

dimHUE = sup {dimy F;}.

i1 1<i<oo
(v) If F'is countable, thedimy F' = 0.

One serious disadvantage of the Hausdorff measure is et ibe difficult to calcu-

late. We discuss techniques for accomplishing this in 8eciib.

1.4 Box-Counting Dimension

Although we will not be making too much use of the Box-Countingnehsion in
the sequel, it is certainly helpful when computing the Hawdlimension and given its
more practical usage relative to the Hausdorff dimensioregaly, it is certainly worth
discussing here. While the Hausdorff dimension focissasminghe diameters of cov-

ering sets with diameter less thanthe box-counting dimension involvesuntingthe
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smallest number of sets of diameter less thémat form a cover of the set being analysed.
Computationally, the box-counting dimension is convengamte, as we shall see, it can
be determined by coverings of sets of equal size and in masgscd can be estimated as

the gradient of a log-log graph plotted over a suitable rarige

On the other hand, it is not nearly as mathematically robsish@ Hausdorff dimen-
sion, namely because it equates the dimension of a giveR setthe dimension of its
closureF, the smallest closed subset®f which containsF. This means that it is pos-
sible for countable sets to have non-zero box counting démen For example, if we let

F={peQn]0,1]}, thenF = [0, 1] and thereforedim, F' = dimpF = 1.

1.4.1 Description

Definition 1.4.1. Let F' be any non-empty bounded subseffsfand letNs(F) be the
smallest number of sets of diameter at mbsthich can cover”. Thelower andupper

box-counting dimensioref F' are

log Ns(F
dim  F = lim —>~2 s(F)
§—0 —10g5
and
— — log Ns(F
dimpF = lim 08 o(F)
5—0 —logd

respectively. When these are equal, we refer to

log Ns(F
dimy F — Tim 128N F)
s—0 —logd
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as thebox-counting dimensioaf F. As noted in [Fal90], in practice we may substitute
the above definition ofVs(F') for alternative definitions depending on the application

environment, including but not limited to, any of the follmg:

(i) the smallest number of closed balls of radiuhat coverrF’,
(i) the smallest number of cubes of sidi¢hat coverF’;
(i) the number ofs-mesh cubes that intersefct

(iv) the smallest number of sets of diameter at niastat coverrF';

(v) the largest number of disjoint balls of raditisvith centres inF'.

The box counting dimension has been calculated for manyeofrttal sets we see
in the literature today. The calculation usually involvesig definitions (i), (ii) or (iv) of
N5(F) to determinelim ', then using definition (v) to findim , F, and checking to see

whether these upper and lower boundslofiz F' coincide.

1.4.2 Sample Calculation

We will demonstrate the box-counting dimension calculafior a classical simple
fractal called the middle-third Cantor set. The middledh@antor set” is constructed
by taking the unitinterval’y, C R?, removing the middle-third interv@%, %) and labeling
the remainde€’;, then removing the middle-third interve(§, 2) and(, §) from the two
remaining intervals irC; and labelling the subsequent remaining &gt and so on ad

infinitum until we haveC' = (1, . Ch-

Proposition 1.4.2.Let C' be the middle-third Cantor set constructed as described @abov
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Then

log 2
log3

d1mBC = dl_mBC = dl_mBC =

Proof.

We start with the upper boundimzC:

“<” Given(C, and0 < § < 1 suchthat3=* < § < 37%*1 we may covelC}, with
intervals of lengtl8=* so thatN;(C) < 2*.

Sinced > 37, more3~*-covers are required to covérthanj-covers, so

log N5(C') < log N3—«(C).
Also, sinced < 371, —logd < log 37**1, so we get

log N5(C) < log N3« (C)
—logd — —log3—Ftl
B log 2F
 log 3k-1
log 2%

3k—1"

 log 3 + log o

Taking limits we get

—log N5(C) < Tm log 2%

1

500 —logd — P log 3%
~ log2
~ log3’

“>" Any interval of lengthd < 3~ intersects at most one of the basic intervals at the

kth level of the construction af'. There are* such intervals at thith level, so at
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least2* intervals of length are needed to coveér. Therefore

N;(C) > 2Fif 6 < 37F

SO
k
dimgC Zhﬁw > lim g2 _ log2
5o —logd oo log 3k log 3
follows in a similar way to the upper bound. n

1.4.3 Comparison with Hausdorff Dimension

Box-counting dimension is very useful when studying the Hau$ dimension be-
cause it provides quite a useful upper bounddiari ; 7. We shall discuss this usefulness
further in the next section, but for now we give the followirggult.

Proposition 1.4.3.Let I’ be a subset dR?. If H*(F) > 1 ands = dimg F, then

dimy F < dimgF < dimgF.

Proof. We can covef” with N;(F') sets of diametes. Thus,

H3(F) < Ns(F)o°.

As o — 0, Ns(F)o® > 1if § is small enough. Taking logarithms of both sides we have

log Ns(F') + slogo > 0.
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Adjusting the inequality we get

- log N5(F)
- —logd

and taking the lower limit aé — 0,

s> lim 228 Vo)
6—0 _10g5

Therefore,

dimy F < dimzF < dimgF.

With a little more work, it is possible to prove a strongersien of the above theorem
which says thatlimy F < dimz F < dimpF for all F C R? regardless of the Hausdorff

measure of-.

1.5 Techniques for Calculating Hausdorff Dimension

The main agenda of this dissertation is to discuss the @loal of the Hausdorff
measure for certain popular fractal sets. To accomplis) the will need to know the
Hausdorff dimension of these sets and in this section, wstithte how this can be calcu-
lated. As it happens, there is a convenient method for caticgl the Hausdorff dimension
of the particular types of fractals we will be looking at, relynself-similar sets, and we
shall be examining this in the next chapter. For now we dseusiore general approach

for calculating the upper and lower boundsiaf; ' for someF C Re.
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1.5.1 Upper Bounds

As was previously illustrated, the box counting dimensidéra get usually forms a
good upper bound for its Hausdorff dimension. In the case afiynfractal sets, it co-
incides conveniently with the lower bound when a good loweurd is found. Un-
fortunately, it is usually quite difficult to directly caliate a good lower bound for the

Hausdorff dimension of most fractals, even in the simplases.

1.5.2 Lower Bounds and the Mass Distribution Principle

Finding a lower bound for the Hausdorff dimension withow #id of some helpful
mathematical machinery is a troublesome task and one tteat tfquires much rigorous
work. Thankfully, such mathematical machinery is avaialn the guise of thenass
distribution principlewhich we shall discuss momentarily.

Definition 1.5.1. Given a measurg on R¢, we refer to the smallest closed s€tsuch
thatu(R?\ X) = 0 as thesupportof . We may also say that is a measursupported
onthe setA if A contains the support of.

Definition 1.5.2. We refer to a measugeon a bounded subsetBf' as amass distribution

when0 < p(R?) < co. u(A) may be thought of as theassof a setA.

A mass distribution is usually constructed by spreadingitefimass in some obvious
way over a sefX. The way in which the mass is spread across the set usualgndsep
on the construction ok itself. As an example of how a mass distribution might be used
consider the middle-third Cantor s€tdescribed in Section 1.4.2. If we assign a mass of
sayv/2 to C,, we then divide that mass evenly between the sef§ iso that each set gets
mass\/g. Each set irC; is given% the mass of its parent set, i. g and so on for each

level of the construction of'. The total mass being distributed is the same at each level
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of the construction.

The mass distribution principle helps us by allowing us t&triet the various com-
ponent setdU;} of a covering set of' so that noU; covers too much of" relative to
its own size, measured &5;|°. This allows us to get an accurate estimate of the most
efficient covering set fof.
Theorem 1.5.3. (mass distribution principle)Let ' C R?. Let us assume that we have

a measurg, and two numbers; > 0 andé§ > 0, such that

1. u(F) > 0.

2. )(U) < c|U)* forall U € R with |U] < 6.

Then

In particular,
s <dimy F < dimzF < dimpgF.

Proof. This proof can be found in [Fal90], but it is quite straightfard so we repeat it

here for completeness. {{/;} is anyj-cover of F' then

0<p(F)<p <UU1) < ZM(Uz‘) < CZ Ui,

Taking infima,H;(F) > “2 and soH*(F) > “2 as§ — 0. O

C C



Chapter 2

Iterated Function Systems and

Self-Similar Sets

2.1 Introduction

Many of the fractal sets discussed in the literature, andeddhe sets that we analyse
in the research component of this dissertation,s@lésimilar setsthat is sets that are
composed of smaller sets which are similar to the whole Isetated Function Systems
or IFSsare families of mappings which may be used to generate sacteafrsets based
on their self-similar properties. Iterated Function Sgsteare extremely useful to us, not
only because they provide a simple way to describe manyafraets, but also because

they are often instrumental in the calculation of both tihegasure and dimension.

In this chapter we provide a formal definition for IFSs andestane of the key results
for them which will be used later when we calculate the Had$doeasure of some
Sierpinski fractals. We then prove the analogue of thisltésiua special breed of iterated

function systems known as iterated function systems witideasation. We begin by

32
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discussing metric spaces.

2.2 Background Definitions and Theorems

2.2.1 Metric Spaces

Definition 2.2.1. A metric spaceas a pair(M, d) where M is a set andl is a mapd :

M x M — R, such that

(i) d(x,y) >0
(i) d(z,y) =0 z=yforalz,yc M
(i) d(z,y) =d(y,z)forallz,y € M
(iv) d(z,z) < d(z,y) + d(y, z) forall z,y, = € M (triangle inequality)

Definition 2.2.2. A sequencéz, ), in M is called aCauchy sequendéfor all ¢ > 0,
there exists some numbar such that for alk, m > N, d(z,,, z,,,) < €.
Theorem 2.2.3.(Cauchy criterion for convergence). A necessary and sufiiciendition

for convergence of a sequenge, } is that it be a Cauchy sequence.
Proof. A proof may be found in [Sut75] on pages 9-10. O

As is clear from the above theorem, we may prove that a sequariR” converges
simply by proving that it is a Cauchy sequence, however, ibismgeneral true that all
Cauchy sequences in a metric space converge. For instaagegtfic space is composed
of all rational numbers with the metri€(a,b) = |a — b|, then a Cauchy sequence in

that metric space may converge to an irrational number. Souahyasequence in this
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metric space of irrational numbers may not converge to & imihat space. Since the
convergence of Cauchy sequences is important to us, we meggady defining a notion
of completenesas follows.

Definition 2.2.4. A metric space isompletdf all Cauchy sequences in the metric space

converge.

2.2.2 Dynamical Systems and Banach’s Contraction Principle

The basic notion of a contraction mapping in a metric spadefised next, forms the
basis for Banach’s contraction mapping theorem, an impbtti@orem which is required
in the next section on iterated function systems.

Definition 2.2.5. Let D be a metric space iR". A mappingS : D — D is called a

contraction mappingf there is a real number < ¢ < 1 such that

d(S(x),5(y)) < cd(z,y)

forall z,y in D.

A contraction mapping is a specific type of a more general imgpfnown as d.ip-
schitz mappingvhere the contraction ratiomay be greater than In the general case,
¢ > 0isreferred to as theipschitz constantf a given Lipschitz mapping or Lip(.S). In
the above definition) < ¢ < 1 may be referred to as tle®ntraction ratioof contraction
mappings.

Definition 2.2.6. We call the mapping : D — D in the above definition aimilarity

mappingif we have

d(5(x),5(y)) = cd(z,y)
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forall z,y in D.
The constant may be referred to assaamilarity ratio in the above definition.

The development of Banach’s contraction theorem requiregsmncepts from dy-
namical systems theory. A dynamical system is a sequencsenteoms are defined by
repeatedly applying a mapping to some initial point. If teewence converges to some
pointw, thenw is called a fixed point of the system. The formal definitionstf@se two
concepts are as follows:

Definition 2.2.7. Let D be a subset dR™ and letf : D — D be a continuous mapping,
where f* denotes théith iterate off, i.e. f'(z) = z, fi(x) = f(x), f2(x) = f(f(2))
and so on.{f’“} is called adiscrete dynamical system

Definition 2.2.8. Given a dynamical syster{mf"’} in D C R", if f*(x) converges to a

pointw € D wheref(w) = w, thenw is known as dixed pointof the dynamical system.

Now we may present Banach’s contraction mapping theorens t€hs us that if we
have a contraction mapping in a complete metric space, tiee ts a unique fixed point
associated with this mapping and a dynamical system catsttwsing this mapping will
converge to the fixed point no matter what initial poinive choose.

Theorem 2.2.9.(Banach’s contraction mapping theorem) L&t d) be a complete met-

ric space. LetS : M — M be a contraction mapping. Then

1. S has a unique fixed point € M, such thatS(p) = p.

2. S¥(z) — pask — ocoforall z € M.

Proof. Letz; € M andxy, = S(xi), k € Z,. Soxpy1 = S¥(x). We would like to

show that{x, } is a Cauchy sequence. It is clear that

d(xe,x3) = d(S(22), S(23)) < cd(x, x3)
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for some constarit < ¢ < 1 by definition of a contraction. This implies that

d(xs, 24) = d(S(13), S(x3)) < cd(xy,73) < Pd(zy, 1)

Thus,d(zy, 2py1) < 7 td(zy, 20) for k € Z,.

Letm, n be any positive integers witth > n. By property (iii) of a metric space,

d(Z‘n, 'rm) S d((l]n, xn—l—l) + d<xn+17 xn+2) + -+ d<xm—l7 xm)

By the previous inequality,

AT, T) < (M "R (2, 20)

= TNk BT d (2, )

We have a geometric series on the right hand side, so

1
1—-c

d(xy, T) < "1 ( ) d(xq,x2).

Fix e > 0. Since0 < ¢ < 1, the right hand side of the above equation convergésa®

n — 0o, SO there must exist a numbatlarge enough such that for all> v,

1
At ( ) d(zy,m2) < €.

1—c¢

This implies that there also exists ahlarge enough where for all, m > N we have

1
1—c¢

d(xp, Tp) < 1 ( ) d(x1,29) <,

thus showing thafz, } is a Cauchy sequence. We know ti$ais continuous because for
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allz,y € M, d(S(z),S(y)) < cd(z,y). So if we takep to be the limit of{x} , S(zx) —

S(p) ask — oo. Sincexy1 — p andxy,, = S(zx), S(zx) — p, SOS(p) = p.

To prove the uniqueness of the fixed point, deb € M both be fixed points of
S. Thus,d(S(a),S(b)) < cd(a,b). Sinced < ¢ < 1 andd(S(a),S(b)) = d(a,b),
d(a,b) =0, thusa = b.

2.3 lterated Function Systems

2.3.1 Basic Definition

As was discussed at the beginning of this chapter, iteratectibn systems are very
important to us as they are indelibly linked to techniquesdufer calculating the Haus-
dorff measure of fractals which we will be discussing in sdagent chapters. They were
dissected in John E. Hutchinson’s seminal 1981 paper [Hat8d further explored in the
book “Fractals Everywhere” by Michael F. Barnsley [Bar88] #88. Many of the results
contained in Hutchinson’s paper were also derived in anezaslork by P.A.P. Moran
entitledAdditive functions of intervals and Hausdorff meaqivier46]. Here we provide
the basic definition of an iterated function systemrs:

Definition 2.3.1. Let D be a closed subset &*. Let (51, ..., S,,) be contractions o

such that
1Si(w) = Si(y)| < rilz — y

forall z, y in D where the-; are contraction ratios such thtak r; < 1. The collection

of mappings{ Sy, ..., S, } is called arterated function systeir IFS.
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There is a key result for iterated function systems that shibvat IFSs have a unique
attractor or invariant set associated with them. Moreothes, result also shows that if
an IFS is applied to any non-empty compact subset of the gpaté is acting on (usu-
ally D c R"™ or R" itself), then applied to the resulting set and this procesgpeated
infinitely many times, the resultant set will be the invatiaat associated with the IFS.
This remarkable result due to Hutchinson [Hut81], is a sgdesase of Banach'’s contrac-
tion mapping theorem, except that instead of having infniteany iterations of &ingle
contraction mapping acting on a point and converging to alfpa@nt, we have infinitely
many iterations of d&amily of contractions acting on a set and converging to an invarian
set. The result is formalised as follows:

Theorem 2.3.2.Let D be a closed non-empty subsetfand let the family of contrac-
tions {Si,...,S,} be an IFS acting orD. LetS denote the family of all non-empty,

compact subsets @J.

(i) There exists a non-empty compact invariant8et D, such that

(i) If we defineS : S — StobeS(E) =", Si(E) for E € S and write S* for the
kth iterate ofS so thatS°(E) = F and S*(E) = S(S*1(E)) for k > 1, then

F=()S"E)
k=0
for every setr’ € S such thatS;(£) C E for all 4.

There are two different well-known techniques for provihgtresult, one of which is
a set theoretical method, the the other of which relies on 8@sa&ontraction mapping

theorem and is perhaps a bit more elegant. Discussions miayibe in [Fal90]. Neither
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method is explored here for regular IFSs, but there exispeaial type of IFS which we
will be discussing next and for which we will prove the analegf the above theorem

using the Banach contraction mapping theorem technique.

2.3.2 lterated Function Systems with Condensation

During the course of his studies, the author took a partigotarest in iterated func-
tion systems with condensation. These special types ofWh&h were introduced by
Barnsley in his book [Bar88], work by adding a non-empty, cocts&t called a “con-
densation set” to each level of the construction of a giveh IR practice, this allows for
the invariant sets of two different IFSs to be mixed togetheaome way, thus expanding
the class of sets which may be produced using IFS technichiregxample of the con-
struction of an IFS with condensation may be seen in Figutel 6.Further discussion
on different constructions of IFSs with condensation andalgorithms used to gener-
ate figures of their respective invariant sets may be fouralbook by Mario Peruggia,
“Discrete Iterated Function Systems” [Per93]. We provideranal definition next:
Definition 2.3.3. Let D be a closed non-empty subsetRif. LetS denote the family of

all non-empty, compact subsetsiof Let (S, ..., S,,) be contractions o such that
|Si(z) = Si(y)| < rilz —y|

for all z,y in D where ther; are contraction ratios such that< r; < 1. Choose a
fixed, non-empty compact sét € S and a mapping, : S — S, such thatSy(B) = C
for any B € S. The collection of mapping$Sy, .. ., S,.} is called anterated function
system with condensatiam IFS with condensatiowhereC' is the associated condensa-

tion set.

In the following section we will prove the IFS with condensatanalogue of Theorem
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2.3.2, a result we will be making use of in Chapter 6. As it tuong there is only a

minimal difference between this proof and the proof of Tleeo2.3.2.

2.3.3 Existence and Uniqueness of Invariant Sets for IFSs with Con-

densation

Theorem 2.3.4.Let D be a closed non-empty subsetfsf and letS denote the family
of all non-empty, compact subsets/of Let the family of mapping§S, ..., S,.} be an
IFS with condensation acting o, whereC' € S is the associated condensation set with
So(B) =Cforall B € S. Let{r,...,r,} be the contraction ratios for the contractions

(S, 5}

(i) There exists a non-empty compact invariant8et D, such that

F:GSi(F):CU <m SAF)).

1=0

1=

(i) If we defineS : S — StobeS(E) = U, Si(E) for E € S and write S* for the
kth iterate ofS so thatS°(E) = E and S*(E) = S(S*1(E)) for k > 1, then

F=()5"E)
k=0
for every sett? € S such thatS;(E) C E for all 7.

We require the following definition and subsequent lemmderbegproceeding with
the proof of Theorem 2.3.4:

Definition 2.3.5. We define thedausdorff metricor Hausdorff distancéetween two sets
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A andB as follows:

d(A,B) = max {sup inf |a — b|, sup inf |a — b|}

acA beB beB a€A

= max{inf{d: AC Bs}, inf{d: B C As}}

= inf{é:AgB(;, B§A5}

where
As ={x € D :|xr — a| < § for some se!d wherea € A}
and

Bs ={x € D : |x — a| < § for some setd wherea € B}

l.e. As and Bs ared-neighbourhoods off and B respectively.
Lemma 2.3.6.Let{S;,..., S} be an IFS on some metric spateof R". Let A and B

be two non-empty compact subset$ofThen

d (U Si(A>7USi<B)> < max d(S;(A), Si(B)).

1<i<m
=1

Proof. It is sufficient to show that

i=1 =1 -

where{ A;}; and{B;}; are collections of non-empty compact subset®of

d (UA“UBZ) = max{ sup inf |a—10|, sup inf |a—b|}
i=1 =1

acJm, A; beUiL, Bi beUr™, B; a€Uits Ai

< maX{ sup sup inf |a —b|, sup sup inf |a—b|}

0<i<m acA; bEB: 0<i<m beB; @€ Ai
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= sup max{sup inf |a — b|, sup inf |a—b|}

0<i<m acA; bEB; beB; a€A:
= sup d(4;, B;).
0<i<m

]

Lemma 2.3.7.Let A and B be two non-empty compact subsets of a metric spaoe

R™ and letf be a contraction mapping. Then

d(f(A), f(B)) < Lip(f)d (A, B).

Proof.

4G JE) = max {sup i [7@) — O, sup i 11(0) — 10

acA bEB

< max {sup inf Lip(f)|a — b|, sup inf Lip(f)|a — b|}
beB a€A

ac A bEB

= Lip(f) max {Sup inf |a — b|, sup inf |a — b|}

acA bEB beB a€A

= Lip(f)d(A, B).

]

Lemma 2.3.8.Let S : R” — R" be a continuous function. ThenhAf C R" is compact,

its image undelS, is also compact.

Proof. SinceE is compact, given any sequenfg}., € E, there exists a convergent

subsequencgy; } -, such that

limy; =y € E.
Jj—0
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Using the Heine definition of continuity, sinc¢gis continuous,

lim S(y;) = S(y) € S(E).
Of course{S(y;)};2, € S(E) and contains the subsequedcy;)} >~ ,, so S(E) is com-

pact. [
We may now prove Theorem 2.3.4.

Proof. First we define a suitable metric space d) for non-empty compact subsets of
D using the Hausdorff metrié between two such subsetisand B which is defined as

follows:

It is easily seen thad satisfies the three requirements of a metric and one can show
that (S, d) is a complete metric space, a proof of which may be found ing{H$pages

77-78). LetA, B € S. Then using Lemmas 2.3.6 and 2.3.7, we have

dwmmﬂB»:=d<UsmeﬁMBO

< max d(S;(A),S;(B))

1<i<m

< (jmw ) da. ).

1<i<m

sinced(Sy(A), So(B)) = d(C,C) = 0forall A, B € S. Thus,S is a contraction on the
complete metric spades, d). By Banach’s contraction mapping theorem, there exists a

unique fixed point’ € S for S, i.e.

F=S(F)= Osi(m —Cu (Lmj Si(F)> .

=0 i=1

This proves (i).
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SinceS is a contraction and;(£) C F for all i, we have a decreasing sequence as

follows
£25(E)2 ()22 [ 54E) (2.3.1)
k=0

forall E € S. The second part of Banach’s contraction mapping theordmuslthat
Sk(E) — F ask — oo. SinceS*(K) is a decreasing sequence of sets and the sequence

converges, then it must converge at the intersection ofialsets in the sequence, so

F= ﬁ SH(E).

This proves (ii).

In the sequel, sometimes it will be necessary for us to refseguences of mappings
from an IFS acting over other mappings from the IFS, so wegedavith the following
small definition to ease the notational burden.

Definition 2.3.9. Let{S;, ..., S,,} be an IFSirR™. ThensS;, ; = S; 0 --- 0 S; where

i; € {1,...,m} forall j.

2.4 Self-Similar Sets

2.4.1 Definition

We will now discuss a special type of invariant set calleseHd-similarset. As was
mentioned, many common fractals in the literature are Sgiflar sets. The Cantor set,

the Von Koch curve and the Sierpinski triangle are all exaaspff self-similar sets. These
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sets are constructed using mappings which do not alter thgieical shape of sets they
are acting on. The mappings simply re-scale sets by sommgdattor0 < A\ < 1. A
more general class of such sets cabetf-affinesets are based on affine transformations
which contract with differing ratios in different directis. The fractals we analyse later
in this dissertation are self-similar, so we will not be dissing the self-affine class of

fractals here.

Hutchinson provides us with a formal definition for self-g8ansets in [Hut81]:
Definition 2.4.1. Let D be a closed subset & and let{S;,...,S,,} be an IFS orD.

Then we call a sek’ self-similarwith respect to{Sy, ..., S, } if

(i) K isinvariant with respect t§Sy, ..., S,,} and

(i) H*(K) > 0, H*(S;(K)NS;(K)) =0fori# j, wheres = dimy K.

2.4.2 Dimensions of Self-Similar Sets

Calculating both the box-counting and the Hausdorff dimemsiof self-similar sets
Is made relatively easy thanks to a very useful theorem. Wt@srem tells us that if
we have a self-similar sét with similarity mappingsSs, ..., S,, and contraction ratios
r,...,Tm, and if theS;(F) ‘do not overlap too much’, the@’ has equal box-counting
and Hausdorff dimensions. As well as that the theorem gigesnueasy way to compute
this dimension value and will have positive and finite Hausdorff measure, Eewill be
ans-set. We will not prove this theorem here, though we will bekimg use of it later on
S0 it is certainly worth noting. The proof requires a morearete version of the ‘do not
overlap too much’ requirement, known as th@en set condition
Definition 2.4.2. Given a self-similar sef’ based on similaritie$;, . . ., S,, and respec-

tive contraction ratioss, . . ., r,,,, we say that the; satisfy theopen set conditioif there



2.4 Self-Similar Sets 46

exists a non-empty bounded open Besuch that

whereS;(V) N S;(V) = 0 wheni # j.
Theorem 2.4.3.Let F' be the self-similar set that results from the IFS. .., S,, and let

the open set condition hold for th#g. Thendimg F' = dimy F' = s, wheres is given by

Moreover,0 < H*(F) < oo.

Proof. This proof may be found in [Fal90]. n



Chapter 3

Techniques for Calculating Hausdorff

Measure

3.1 Introduction

As outlined in [Fal86] and [ZF04], the Hausdorff measure @k at the critical di-
mension is notoriously difficult to calculate. While the motiof Hausdorff measure is
convenient mathematically due to the fact that it is basecheasure theory, finding gen-
eral methods for its calculation for a wide class of sets naggm to be elusive. In [ZF04],
on the problem of calculating the Hausdorff measure, ZhalFang reason that the dif-
ficulty is not one of “computational trickiness nor compidagl capacity, but a lack of
full understanding of the essence of the Hausdorff measuxaeifumber of authors have
attempted to calculate both the Hausdorff dimension andHtnesdorff measure of var-
ious popular fractal sets. In the following two sectionstogtchapter, Sections 3.2 and
3.3, we discuss the important relationship between thd easity of fractal sets and

Hausdorff measure, and in the last section, Section 3.4 veeggshort review of attempts

a7
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by various authors to calculate the Hausdorff dimensionraedsure of various sets.

3.2 Local Spherical Density and Hausdorff Measure

3.2.1 Discussion and Definitions

As is suggested in both [ZF04] and [AS99], the local density celf-similar set
which satisfies the open set condition is closely relatetstblausdorff measure and the
main focus of this chapter is to mount a detailed investigainto this relationship. We
require the following definition for our discussion of dewgsi
Definition 3.2.1. A property is said to holdlmost everywherer for almost allx € E

with respect to a measuyeif it holds for all z € E except for a set ofi-measure zero.

The local density of a sef’ at a pointxz can be thought of as an estimate of the
level of concentration of points frorf' in the neighbourhood of. One such estimate is
Lebesgue’s density. In order to formulate it, we need to kabaut Lebesgue measure:
Definition 3.2.2. If A = {(z1,...,2,) € R" : a; < x; < b;} is a ‘coordinate paral-

lelpiped’ and the n-dimensional volume dfis given by
VO]n<A) = (b1 — a1>(b2 — CLQ) s (bn — (ln),
we may define tha-dimensional Lebesgue measureto be

L"(A) = inf {ivol”(Ai) tAC GAZ}

where the infimum is taken over all coverings4fby coordinate parallelpipeds;. £

may be shown to be a measurerin.
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Now that we know what a Lebesgue measure looks like, we mayfiate Lebesgue’s
density as follows:

Definition 3.2.3. We refer to

i £MF 0 By ()
D(F,z) = lim L(B,(z))

as theLebesgue densityf a Borel setf” in R™ if the limit exists.

A classical result known as Lebesgue’s Density Theoremsgigesome insight into

when the limit does exist, as follows:
D(F,z) = 1for £"-almost allx € F.

Unfortunately, this theorem is not so useful for fractabsahcel” (F') = 0 if dim(F') <

n, SO the obvious approach in this situation is to reformutiasity so that it uses a
measure which can cope with non-integral dimensions,heeHausdorff measure. For-
tunately, it is possible to reformulate density in such a wag achieve positive results.
In the following definition recall that as-setis a Borel set of Hausdorff dimensiarwith
positive finites-dimensional Hausdorff measure:

Definition 3.2.4. The lower and upper densitie®f an s-set /' at a pointz € R" are

defined as

s . H(FNB.(z)) —s _ — H(FNB(z))
D*(F,z) = 11ﬂ1jn(1) o)y and D (F,z) = 712% o)

respectively.

Note: Hereafter, we may refer to the lower densityi@ser spherical densityand upper

density asipper spherical densitynterchangeably.
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Work on the local density of sets was championed by Besidowitdhe 1920's and
30’s, resulting in the three seminal papers [Bes28], [BesB8]Bes39]. He formulated a
density boundedness theorem which directly relates Hafisdeasure to upper density
for sets with finites-dimensional Hausdorff measure, a result which we preser as
Theorem 3.2.6 in Section 3.2.3. The theorem says that gimensat [’ in R?, 27° <

D*(F,z) < 1for H*-almost allz € F.

A key observation is that the uppedimensional density is not as useful with respect
to the s-dimensional Hausdorff measure as it could be. This is dubddact that the
uppers-dimensional density, as we have defined it above, basestitsate of the den-
sity of a set at a point on strictly spherical sets, whereas the Hausdorff measses u
a more liberal policy with its covering sets. For this regsee introduce the uppes-
dimensional convex density in Section 3.3 which uses opemeosets instead of balls
for its estimates of local density and allows us to garnereseary useful results with
respect to the Hausdorff measure. There is a variation ongbal Hausdorff measure
called thes-dimensional spherical Hausdorff measure which forms aensoitable ac-
companiment to the-dimensional density. Some of the results involving condersity
and the usual Hausdorff measure have analogues for theicgh@ensity and spheri-
cal Hausdorff measure definitions. For example, when upp#imensional spherical
density is reformulated to use spherical Hausdorff measheeresultD’(F, z) = 1 for

Hz-almost allz in ans-setF” C RY may be acquired, where

H3(E) = lim inf { > " diam(E;)*
=1

EC|JE:, damE;) <4, Ejisa ball} .

i=1

Discussions may be found in [Mat95] and [OIs05].
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3.2.2 A Background Result

We require the following result in Section 3.2.3 for our dission of Besicovitch’s
density boundedness result, Theorem 3.2.6.
Proposition 3.2.5.Let x be a mass distribution oR™, let ¥ C R™ be a Borel set and let
0 < ¢ < oo be a constant.

(i) If HM

1 . < c forall z € F, then
r— 7’

(i) If mm > ¢ forall z € F, then

2’ (R")

Proof.
(i) Let
Fs={zx € F:uB(x)) <criforall0 <r <é}

for all § > 0 and observe that’ = (J;co, Fs. Let {U;} be ad-cover of . Then
Fs C U, U;. Also, for all U; where there exists an € U; such thate € Fj, then

U; C Byy,(x). By definition of F5 1(U;) < pu(Bjy,(x)) < c|Us|* so

p(Fs)

IN

M ( J{U::UinFs # @}) (3.2.1)

[e.9]

IN

S {uU) - Ui Fs # 0} (3.2.2)
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< > Ul (3.2.3)
=1

Since{U,} is anyé-cover of F', we haveu(Fs) < ¢H3(F). As Falconer points out
in [Fal90] (page 11), wheti > 0 and we have Borel set$; that are increasing as

decreases, théim;_o 11(As) = p (Uss As), SO

w(F) = p 5% Fy | = lim p(Fy) < lim cH3(F) = cH*(F).
€Q+

(i) The proof of this is omitted but may be found in [Fal90].

3.2.3 Local Density Bounds

We now turn to the important theorem due to Besicovitch whitates the Hausdorff
measure o&-sets to their local spherical density at certain pointse Mésult states that
the spherical density of a givenset lies within a certain rangk?-almost everywhere.
In [Fal90], Falconer gives a shortened proof for the lowarrizband states that the upper
bound “follows in essentially the same way”. We expand th@opfor the lower bound
here and show that the upper bound does not in fact follonecgot easily. It is not
immediately obvious exactly how this result might be apgplrecalculating the Hausdorff
measure of fractal sets; this is a problem we look at in Se@&i8.4.

Theorem 3.2.6.Let F' be ans-set inR”. Then2~* < D°(F,z) < 1 for H*-almost all

rzekF.
Proof.

<27 < D'(Fa)"



3.2 Local Spherical Density and Hausdorff Measure 53

Letn € N. Putc, =1 — 2. Letu(A) = H*(F N A). If

F,=3zcF:D(Fuz)= fim (F0 B, (x)) <27%,
r—0 (2r)s

. — u(B,
then we would like to show thain% M <c,forallz € F,. Forallxz € F,, we
r— rs

have

i AB@) s PN B ()

lim ———%* = lim
r—0 re r—0 rs
i H(FNB @)
r—0 (2’[")5
< (27%y,).2°

= ¢,

This is true for allz € F;,, so by Proposition 3.2.5 (i) we have

p(F) _ H(F)

Cn Cn

H(F,) >

Since F' is ans-set, and thereforé;, is also ans-set, we know that{*(F,,) is positive
and finite, sa, H*(F,,) > H*(F,,) implies thatH*(F},) = 0. We would like to show that
27° < D’(F,z) for H*-almost allz € F, in other words, we would like to show that
H* ({z € F:27°>D"(F,z)}) = 0. Clearly

{reF:2°>D(Fa)} = U {reF:27%,>D(F )} = D F,

n=1 n=1
and obviously since these sets are equal, their Hausdog$unes coincide, so we have

H ({reF:27°>D(Fx)}) = H (O Fn)

n=1

< iHS(Fn)
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ThusD’(F, z) > 27* holds for all points inF’ except for the sefz € F: 27° > D°(F,z)}

of Hausdorff measure zero, i.B(F,z) > 2° holds forH*-almost allz € F.
“ bS<F7£C) S 111

We will set about proving this inequality in a similar way tetabove using Proposi-

tion 3.2.5 (ii) as described in [Fal90], but as we shall ske proof breaks down.
Again, letn € N and letu(A) = H*(F U A). Putc, = 2°(1 + 1).

We would like to show thaD’(F,z) < 1 for all points in F except for a set of

H*-measure zero, that & = {x € F : D’ (F,z) > 1} andH*(E) = 0. Put

F, = {xeF;ES(F,x) A0 B(@) 1+l}.
r—0 (2r)s n

It suffices to show thak,, has zero-mass. For alle F,, we have

—H(B) o HFNB )
r—0 rs r—0 rs
= (PN B @)
r—0 (27“)5
_ (1 n l)
n
= ¢y

Hence by Proposition 3.2.5 (ii),

2°p(R")

Cn
2°H*(R* N E)
25(1+ 1)

H*(E)

n+1
n

H>(Fn)
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The proof breaks down at this point. Had we Had(F;,) < 25H*(F,), instead of
the above inequality, we could have shown thé&t{( F,,) = 0, thus finishing the proof.
Unfortunately a more complicated method of proviBg( F, z) < 1 must be resorted to.

This method is explored in [Fal86] and we will not be examgnithere.

3.3 Local Convex Density and Hausdorff Measure

3.3.1 Discussion and Definitions

The type of density we present here is much more useful wigarceto the Hausdorff
measure than regular spherical density. In Section 3.3.Beakeat a Theorem which is
analogous to Besicovitch’s Theorem 3.2.6 for spherical itien#t is however, a more
precise result which helps gives rise to some more powegBults which we analyse is

Section 3.3.4.

First, we present the relevant definition:
Definition 3.3.1. Theupper convex densityf ans-setF at a pointr € R? is defined as

—s — S(F
D0 - e 200

where the supremum is over all open convex setgith € U and0 < |U| < r.

Later on in Section 3.3.3 we provide a new result, one of thaigations of which is
that given some-setE in R%, D (E, z) < 1 for all z. The key theorem in Section 3.3.2,
Theorem 3.3.11, says that,(F,z) = 1 for H*-almost allz € E. As is pointed out in

[ZF04] by Zhou and Feng, an obvious consequence of this ighbaset
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Ey={x € E| D.(E,z) = 1} is measurable and tha*(E,) = H*(E). One question
that emerges is, under what conditiongis = E? In the same paper, Zhou and Feng,
provide an interesting discussion on upper convex densdypase some more interesting

guestions. Two of these questions are:

(i) Given ans-setF, under what conditions is there a $éwith € VV such that
_H(ENYV)
Ve

D.(E, ) ?

C

(ii) If such a setV exists, how does one determine its geometric shape or form?

Such questions have been tackled in the literature by vagathors, e.g. [Mar86, Mar87,
AS99], for a number of different fractal sets. We discuss #nd related matters further

in Sections 3.3.4 and 3.4.

We require the notion of a Vitali class and Vitali’s coveritiggorem to prove a result
in Section 3.3.2:
Definition 3.3.2. A collection of sets) is called aVitali classfor F' if for eachx € F
ando > 0 there existd/ € V with xz € U and0 < |U| <.

Theorem 3.3.3. (Vitali's covering theorem)

(a) LetF be anH*-measurable subset &’ and let) be a Vitali class of closed sets for
F. Then we may select a (finite or countable) disjoint sequéhdem V' such that

either

Z|Ui|3:oo or H? <E\UUi) = 0.

(b) If H*(F) < oo, then, givere > 0, we may also require that

HS(F) S Z |UZ|$ + €.
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Proof. Vitali's covering theorem is a well known result and its pfooay be found in

[Falg6]. 0

3.3.2 Key Results for Local Convex Density

Theorem 3.3.5 below, the convex density analog to Theor@é,3ecomes particu-
larly important in Section 3.3.4 where we use it to prove Tbe03.3.11.
Theorem 3.3.4.If F'is ans-set inR”, thenD_(F,z) = 0 for H*-almost allz ¢ F.

Proof. The proof of this is omitted, but may be found in [Fal86]. O

Theorem 3.3.5.If F'is ans-set inR?, thenD. (F, z) = 1 at H*-almost allz € F.

Proof.

“>" Fixa < 1landp > 0. Let

H(FNU)

EFE=<xeckl:
{ Ul

< «a for all convexU with z € U and|U| < p}

For anye > 0 we may find ap-cover of E' by convex seté/; such thady . |U;|* <

H*(FE) + €. Hence, assuming eaéh contains some point of,

H*(E)

IA

S H(ENU)
< ZHS(F NU;)

1
< a) |
i

< a(HYE) +e)

Sincea < 1 and this holds for alt > 0, H*(E) = 0. We can choosé for any
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p >0, so

D) > T 2

for H*-almost allz € F. This is true for allv < 1, soD.(F,z) > 1 for H*-almost

allz € F.

This inequality is a bit more difficult and requires Vitaltevering theorem (The-

orem 3.3.3).
We want to prove thab’ (F, z) < 1 almost everywhere.

Let By = {z € F : D.(F,z) > 1}. If we can show that this set has Hausdorff
measure zero, then we will have shown thE(F, z) < 1 holds for#*-almost all
x € F. To do this, first we letv > 1 be given and define another set as follows:
E, = {z € F: D,(F,z) > a}. Itis sufficient to show that{*(E,) = 0 for all

«a > 1. To see why this is so we let
s 1
E1+; = {{L’EFDC(F,I) > 1-{—5}

SinceD,(F,z) > 1+ 2 > 1+ 2 E . sits insidef,, 1 . Therefore we have

an increasing sequence of sets as follows; . C EH% C ... C F. Clearly

the union of all these sets is equalAp, so we have

H(Ey) <) HY (B, 1),
n=1

If H*(E,,.1) = 0foralln, thenH*(E;) = 0. Thus if we can show th&{*(E,) = 0

for all « > 1, we will have shown thak{*(E;) = 0 as required.
Let E, be a subset oF, as follows: Ey = {z € E, : D,(F \ E,,z) =0}.

According to Theorem 3.3.4H° ({z € E, : D,(R*\ E,,x) # 0}) =0.
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But sinceF' \ £, C R?\ E,,

E,\Ey = {2€E,:D,(F\ E,x)#0}

N

{r € E,:D,(RI\ E,,z) #0}.
This implies that

H* (Eo \ Ey) < H*({x € E,: D,(R*\ E,,x) #0})

= 0. (3.3.1)

Let U be some convex set. Sin€&€, NU)U ((F\ E,) NU) = FNU, by the

countable additivity property of the Hausdorff measure haree

H(FNU) H (E,NU) H((F\ Ey)NU)

= -
19k 19 19

H(E.NV) H((F\ Ey) N W)
< sup————= + su
R TT W W

where the suprema are taken over all convex §ei$. This holds for all such
convex set$/ F, so taking supremum over such sets, we get
HH(FNU) H(E,NV) H((F\ Ea) NW)

sup ——————= < sup + sup
v |UP v 145 w (W

Then if we restrict the diameter of the sets such that |U|, |V, |W| < r. and

take upper limits as — 0, we get

D.(F,x) < D)(Eq, ) + Do(F \ E,, )
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forall x € F. SinceE, C I, if we restrict our attention to the € £, the above
equation also holds. But sinde.(F \ E,,z) = 0 and D,(F,z) > a for all
x € By, we haveD.(E,,z) > D.(F,z) > .

We define a family of set¥ as

Y = {U - U is closed and convex a (Ea 0 U) > a}

Ul®

Lety € Eyandé > 0. Then

a < D (Ea,y)
{ H(E,NU)

= lim

r—0

sup

L ‘ U is open convex witl) < |U| < r andy € U} ,
U

which means that there must exist/aa: § such that

H(E,NU) ‘

P U is open convex witl) < |U| < r andy € U} > .

sup {Sup
U
Therefore, for ally € E, andd > 0, there exists some sét such thaty € V and

0 < |V| < 4, whose closuré” is a member o, making)’ a Vitali class forEj.

SinceE, C E, C F andF is ans-set, by part (b) of Theorem 3.3.3 (Vitali’s
covering theorem) we may, giverr 0, find a disjoint sequence of seft§; }; in V

with H*(Eg) < > Vil + .

Equation (3.3.1) tells us th&t*(E,, \ Ey) = 0, SOH*(E,) = H*(Ey). Thus, using

the definition of), we have

H(Eo) = H(Eo)

Z|Vi\s+e

IA
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1
- SEamV;
< a;H( )+ €

_ é H? (U(Ea N w)) (3.3.2)
< é H(E,) + e. (3.3.3)

We get Equation (3.3.2) using the countable additive pitypef the Hausdorff
measure by noting that thi€ sets are disjoint. The union of the disjoivit sets
intersected withE, is clearly a subset oF,, so Equation (3.3.3) holds by the
second property of measure. This holds for any 0, soH*(E,) = 0if « > 1 as

required.

3.3.3 A New Upper Convex Density Result for Self-Similar Sets

Here we give a proof for a new result which gives an upper bdendhe upper
convex density of a self-similar set over all pointsZhou gave a proof for a version of
this theorem which worked under certain conditions in hi88Lpaper on the calculation
of the Hausdorff measure of the Koch curve [Zho98]. The teisuproved in a more
general setting here. A number of lemmas are required anpravéed after the proof.
Once again, we use this result later on in the proof of The@&11 in Section 3.3.4.
Theorem 3.3.6. (new result)f K is a self-similar set satisfying the open set condition
with similarity mappingq Sy, . . . S,,} and associated contraction ratids;, . .., r, }, and

s = dimy(K), then

H(KNU) < |UJ
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for all Borel U. This also implies thaD_ (K, z) < 1 for all z.

Proof. We will prove by contradiction. Let us assume that theretexd®Borel setV such

that
HI(KNU)>|U°.
Choose; > 0 such that
(I=—n)H(KNU)>|U].

Fix 6 > 0 and choosé such thatS;(U)| < ¢ for all |j| = k. Let
A= (U S5(U) mK) andB = (K\ U sj(U)) :
lil=F lil=F
Clearly K C AU B.

Let A = 1 n’H*(A). Choose a-cover(V;); of B so that

STVl < H3(B) + A

7

Then(S;) =« U (V;); forms ad-cover of K. So, using the scaling property of Hausdorff
measure (Proposition 1.3.4) and the definition of a sintjigbefinition 2.2.6) in a similar

way to Lemma 3.3.8, we derive the following:

H3(K)

IN

SISO+ Y IViE

lil=F

> r U+ Hy(B) + A

lil=F

IN
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< Y (=) H(KENU) +H;(B)+ A

lil=k
= (L—n) Y _rH(KNU)+H;B)+ A
=k
= ) Y H(S(K NU))+H;(B) + A
lil=F

Below we combine Lemma 3.3.9 and 1.1.13 to get Equation (8.3 then employ
Proposition 3.3.7 for Inequality (3.3.5) and Lemma 3.3:@fequality (3.3.6), to achieve

our result.

HI(K) < n) > H(S;(KNU))+ H3(B) + A

lil=k

lil=k

—n) H (U S5(U) mK) + H(B) + A (3.3.5)
lil=Fk
)H(A) + Hi(B) + A

= 1—-n)H° (U S;(K N U)) + H(B) + A (3.3.4)
(

= ) HB) - HA) + ()

— H(A)+ H3(B) — = nH(A)

2
1 jup
HS(A)+H§(B)—§171|_|U.

IN

(3.3.6)

Finally, lettingd — 0 gives

which is a contradiction.
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The next proposition and the three lemmas that follow areired for the proof of
Theorem 3.3.6 above.
Proposition 3.3.7.1f K is a self-similar set satisfying the open set condition apd d

scribed by similarity mapping§S, . .. S, }, then given some sétwe have

Si(K N U) C K NS;U).

Proof. Because is self-similar,S;(KNU) C K. ObviouslyKNU C U, so applyingS;
to both sides, we have th&f(K N U) C S;(U). ThereforeS;(KNU) € KN S;(U). O

Lemma 3.3.8.Let K be a self-similar set satisfying the open set condition withlarity
mappings{Ss, . . ., S, } and associated ratio§r;, ..., r,}. LetU be a Borel set. Choose
n > 0 such that(l1 — n) H*(K NU) > |U|°. Leté > 0 and choosé: such that|S;| < ¢
for all |j| = k. Then

H (U Sj(UﬂK)) > 1|(i|n

lil=k

Proof. We have

lil=F lil=k

G (U Sj(UﬂK) > H(S(UNK)).

Letting A C R?andaAd = {ax : x € A} for a > 0, by the scaling property for the
Hausdorff measure (Proposition 1.3.4) and the definiticasimilarity (Definition 2.2.6),

we haver*(S;(A)) = H*(rA) = riH? (A).

This works for any seti, so it will work for S;, (A), S;,(A), S:,(A) and so on. So for

some string, applying this repeatedly and making use of the binomiabtée, we have

YN H(SWUNK) = > ryH(UNK)

lil=F lil=F



3.3 Local Convex Density and Hausdorff Measure 65

(AV4
——
[
o3
N———
[l
S
3 w

]

Lemma 3.3.9.Let K be a self-similar set satisfying the open set condition witfilarity

mappings{ i, . .., S,} and associated ratior;, . .., r,}. LetU be a Borel set. Then
H (Si(KNU)NS;(KNU)) =0 fori#jand[i| = [j|.
Proof. First of all we note the following: clearlx N U C K which implies that

Si(K NU) C S;(K) for any stringi. By the second property of measure we know that

H(Si(K NU)) < H(Si(K)), soitis sufficient to prove that
H® (Si(K) N S;(K)) =0 fori# jand|i] = |j],
sinceH® (Si(K NU)NS;(KNU)) <H*(Si(K)NS;(K)) .

Leti = 4;...4, andj = j;...j, be two strings of lengthi| = |j| = n and let
i1...05_1 = Jj1-..Jr_1 Suchthat thé&th termin each string is the first term whége# j,.

Then

H? (Si(K) N S;(K))

— H (S Sy S Sis S (K) N Sy e+ 851858500 -+ S5 (K)

— H(Siy - Sip s (S Siner -+ S (K) N 83,y -+ 8, (K)))

— s HE (S, S, - Sin (K) N85S - S5 (K)) (3.3.7)
<rsrs-ers M, (K) N S (K)) (3.3.8)
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= 0. (3.3.9)

We get Equation (3.3.7) using the scaling property of Hatfsdoeasure (Proposition
1.3.4). Equation (3.3.8) is clear singg ,, - -- S;, (K) C 5;, (K) andS;

T+l

-85, (K) €
S;, (K). Finally, Equation (3.3.9) is due to a result by HutchinsofHut81] which says
that if the open set condition hold&,*(.S;(K) N S;(K)) = 0 for i # j. O

3.3.4 Further Convex Density Theorems for Self-Similar Sets

In this section we prove three important results relatedhéocbnvex density of self-
similar sets. The most important of these, Theorem 3.3.d413ng a link between the
Hausdorff measure and a density formulation which is based self-similar measure.
Self-similar measures are the measure analogue of salasisets and hence are quite
convenient to work with. Such a result brings us a step claseising density results
to help calculate the Hausdorff measure of certain setsstlfiwe define the density
formulation as follows:

Definition 3.3.10. Let 1 be a measure on some set. We defineupper convexs-

dimensional density with respectcat a pointz as follows:

T o) = Ty { s 520

where the supremum is taken over all open convexiSetdere) < |U| < randz € U.

Theorem 3.3.13 says that if we have a self-similar/§ethich satisfies the open set

condition and a self-similar measukeon K, then

1

H(K)= ————.
(K) sup, d.(\, x)

In Section 3.4, we review a case in the literature, [AS99Jekelthe supremum in the
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above equation has been estimated for Cantor-like sets.

Expanding this notion further, in [ZF00] Zhaat al prove that given ag-setE C R?,

there exists a sequen¥,, },, of Borel sets ifRk¢ such that

— HY(ENU,
H(E) = ak HSEE) yUn|1'
In order for this limit process to be useful, one needs tofipduch that, H*(ENU,,) =
H*(F), wherec, is a constant. As Zhou et al remark, though this result pes/@a way
to calculate the upper bounds of the Hausdorff measure Béseilar sets satisfying the
open set condition, in general it is difficult to construatissuitablel/,,. Though we will
not be discussing this particular result further, we wilngroceed and explore the other
results we have mentioned above in more detalil.
Theorem 3.3.11.I1f K is a self-similar set satisfying the open set condition ane

dimy K, then

sup, D.(K,z) = 1.
Proof. We start with the upper bound:

“ <" This follows directly from Theorem 3.3.6.

“>" We know from Theorem 3.3.5 tha® (K, z) = 1 for H*-almost allz. There-
fore lettingA = {z € K : D,(K,z) # 1}, H*(A) = 0. Owing to a result by

Hutchinson, we then have the following:
HY(K\A)=H(K)>0.

Of course ifK\ A has non-zer@{*-measure, then it is non-empty. Therefore, there
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must exist some € K \ A such that
sup D, (K,x) > D (K,y) = 1.

]

Theorem 3.3.12.1f K is a self-similar set satisfying the open set condition ane

dimg (K), then

HY(KNU)
sup — =1
U open, convex |U|s
UNK#)

Proof.

“ <" This follows directly from Theorem 3.3.6.

“ >" We know from the proof of Theorem 3.3.11 that there must esastey € {z €

K : D.(K,z) = 1} such that

—s — H(KNU)
D, (K,y) = lim su —_—
C( Z/) ™0 | U open,I?:onvex ’U|S
yelU
o<|U|<r

Therefore giver > 0, there must also exist some> 0 so that

HI(KNU
Sup ¥ Z
U open,covex  |U|*
UNK#D
HI(KNU
sup ( ) 1—e€
U open, convex ’U’S
yelU

o<|U|<r
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This is true for alle > 0, so we have

H(KNU
Sup (—) > 1.
U is open and convex |U|S

UNK#£0

O
Theorem 3.3.13.Let K be a self-similar set satisfying the open set condition( det. . . , S,)
be its associated similarity mappings and#ebe the Lipschitz ratio of;. Let A be the

self-similar measure satisfying

AA) = 3 rIA(S (4)

for any measurable set. Then

1

H(K) = —— .

Proof. Note that by Hutchinson [Hut81]

A =R,

hence using Theorem 3.3.11 we have the following inequtditall x:

7

s — AU
supd, (A, x) = sup lim sup (o)
z z ™0 | U open, convex‘U|s
zelU
o<|U|<r
(
R N AL aal’
= Sup l1im u ey er——
xp =0 |y open,I?:onvexHS(K) |U|S

zelU
L O<|UI<r
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1 _ HI(KNU)
- HS(K) Slip 71"1_1’% Uopselriﬁc):onvex |U|S
010 <
1 —s
- () sngc(K, x)
_ 1
- H(K)
Hence
H(K) = —

3.4 Calculating Hausdorff Measure of Fractal Sets: A

History of the Problem

3.4.1 Hausdorff Measure of Cantor-like Sets

In [Bae94] and [Bae98], Soo Baek analysed the Hausdorff diroardicertain gen-
eralised Cantor sets. Sandra Meinershagen subsequenkgdwam finding the Hausdorff
measure of these same sets in [Mei02]. To describe the ty@ator set discussed in
[Bae94] we letly = [0, 1], then obtain the left subintervdl,; and the right subinter-
val I,, by deleting a middle open subinterval ff inductively for eachv € {1,2}",
wheren =0,1,2,---. The setF’ = ﬁ U 1, is called aperturbed Cantor setvhen
the lengths of each interval at thezﬁolg\e/{ell%; the construction may differ from level to

level, but thel, ; sets share the same length wheg {1,2}" andi = 1,2. In [Bae98],

this construction is generalised so that the length offthentervals, and consequently
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the contraction ratios used to generate those intervalg viany arbitrarily. This type of

construction is referred to asd@ranged Cantor set

Baek makes use of a notion of dimension particular to such €ante when achiev-

ing the results in [Bae94]. Using the perturbed Cantor settoactson described in the

previous paragraph,, .1 = "I}’j" is the contraction ratio used to get thg, intervals at

|Ic7,2|

the n-th level wheno € {1,2}" andb,1 = T

is the contraction ratio for thé, ,

intervals. Given a perturbed Cantor g&twe let

ne(F) = tim ][ (a} + b))

¢*(F) = Tim [ [(a} + ).
We then define thliower and upper Cantor dimension$ F' to be

dimgF = sup{s > 0 | h*(F) = oo} and

dimsF = sup{s > 0 | ¢°(F) = oo}

respectively. Baek proves that divtA = dimgF' for all perturbed Cantor set8' in
[Bae94]. In [Mei02], Meinershagen shows that the Hausdodtsure ofF’ is actually
equal to the covering measurgon F’ at the critical dimension. [Bae98] sees Baek inves-
tigate the Hausdorff measure of a certain weakly converderdnged Cantor set which
satisfies a condition that all the sequences of the solubbssme power equations re-
lated to the contraction ratios in its construction coneax@some number. Baek shows

that this number is in fact the Hausdorff measure of the set.

Elizabeth Ayer and Robert Strichartz discuss the exact Hatfsdeasure and inter-
vals of maximum density for certain types of Cantor sets iir tt@99 paper [AS99]. The

type of Cantor sets they work with are the attractors (inverszts) of IFSs made up of
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contractions ono0, 1] of the formS;(z) = p;x + b; wherej = 1,...,m. They assume a
slight variation of the open set condition for their cal¢idas: there exists an open inter-
val I such thatS;(I) C I and the images;(I) are disjoint. Given an IF$S;,...,5,,)
with invariant setK of the type described, given a self-similar measuren K which

satisfiesu = ij Lo S and assuming the modified version of the open set condition,

Ayer and Strlchartz work with the variation on the result imebrem 3.3.13:

1 :Sup{&fa)‘ Jg[o,1]}. (3.4.1)

They say that an IFS satisfies tfieiteness propertyf the above supremum is attained
for some intervalS;, S;, ... .S;, ([0, 1]) for somen. They then go on to show that the
finiteness property holds in many cases under certain gondijtin particular ifp; =

pm Or more generally, itog p; andlog p,,, are commensurable numbers, i.e.ll—;’gﬁzf—; is
rational. When the finiteness property holds, they also pean estimate of the size of
nin S;S;, ..., ([0,1]). When the finiteness property does not hold, they demonstrate
how to obtain a sequence of intervals with lengths approgchero whose densities

approximate the supremum in Equation (3.4.1) from below.

A couple of the results provided in [AS99] had already beav@n by Jacques Mar-
ion in [Mar86].

Further studies of the Hausdorff measure of Cantor sets, eridtiding Soon-Mo
Jung’s 1999 paper, [Jun99]. Using a combinatorial methaaly &stimates the Hausdorff

measures of various self-similar sets, including uniformtGasets.
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3.4.2 Hausdorff Measure of Non-Trivial Fractals

Numerous papers have been written on the calculation ofdtafisneasure for more
complicated sets. One of the first of these papers, [Mar8Wlasion, gave an estimate
of the upper bound of the Hausdorff measure @iarpinski gasket To construct this
Sierpinski gasket, we start with an equilateral trianfld BC' with sides of length 1 and
callit Sy. Joining the midpoints of the sides &f, we remove the open inverted equilateral
triangle that is formed and call the remaining Set We join the midpoints of each of the
three triangles irb; in a similar way, remove the three open inverted equilateigigles
that are formed as a result and call the remainingSset Repeating this process, we

obtainSy, D S D S, D -+ DS, D ---. The non-empty sef = ﬂ S,, is called the
n>0

Sierpinski gasket. Marion estimated tht(S) < (¢)3° ~ 0.90508 whens = dimy.S
and speculated that this was the actual Hausdorff measuteajasket at the critical
dimension. In his 1997 paper [Zho97b], a Chinese scientistenbZuoling Zhou, some
of whose work we will be analysing in detail in the sequel,rfdwa better upper bound
for H*(S) that disproved Marion’s conjecture. In a subsequent pggbn97a], Zhou
improved this estimate further so tHat(S) < (32)(2)* ~ 0.8900 and in [ZF00] Zhou
and Feng improved the estimate still further until theywedli at*(S) < 0.83078799.
Following that, in 2002, Zhowt al [JZZ02] derived a lower bound for the Hausdorff

measure of, H*(S) > 0.5.

Work has also been done on calculating the Hausdorff meaduadoch curveat
the critical dimension. To construct a general Koch curve,take a line segment in
R?, divide it into 3 segments, then draw a triangle which usesntiddle segment as a
base. We then draw smaller triangles on each side of the namgaset in a similar way.
Repeating this process infinitely many times, we derive a Kaete, K. Marion [Mar87]

conjectured that whetk is constructed in a particular way, = dimy K, H*(K) =
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252 ~ (.5995. Further progress on Koch curves was made in [Zho98] and 1ZZ0

Later on in Chapter 4 we analyse and improve upon the work ofiAma Wu [ZW99]

on the calculation of the Hausdorff measure of a Sierpinakpet inRR?.



Chapter 4

The Hausdorff Measure of a Sierpinski

Carpet in R?

4.1 Introduction

In this chapter, we develop a method for calculating the HarfEmeasure of a Sier-
pinski carpet based on a Zhou and Wu’s calculation in [ZW9@{,Using an alternative
geometrical technique. As shall be seen in the succeediagteh the method can be
extended naturally to a three-dimensional setting wherdidwsdorff measure of a Sier-
pinski sponge can be calculated. The Sierpinski carpetiwivie deal with here is the
same set as the one described in [ZW99], for which the auttadcsilated a Hausdorff
measure of/2. Using the alternative method of calculation we preseng hee arrive
at the same conclusion. We compute the Hausdorff measutaso$ét by calculating
the Hausdorff measure of its one-dimensional projectido arine and relating this to a
mass distribution over the original set. While the skeletbthe proof remains the same

as that of Zhou and Wu, we have reduced the number of lemmathaacems required

75
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from six to three and have replaced much of the numerical machused to get one of

the key results with a more intuitive geometrical concept.

It should be noted that although the set described here miaghaoe the aesthetic
gualities of our intuitive notion of a ‘carpet’ and there aertainly more worthy candi-
dates, the construction of the set is consistent with thesadal definition of a Sierpinski
carpet, so we retain the title here for consistency. For #mesreasons, the Sierpin-
ski ‘sponge’ we deal with in the subsequent chapter retagneame, even though it is

probably best described as a rather sparse sandbox.

4.2 Notation and Set-up

We proceed by describing the Sierpinski carpet whose Hafisdeasure we wish
to calculate. The reader should refer to Figure 4.2.1 whadeling the following, as it
illustrates the structure and labelling of the first two levef the construction of the

carpet.

Take a unit square ifk? that shares a vertex with the origin and that has two of its
sides lying on the positive-axis and positivej-axis respectively. Label this squarg.
We may divide each side @fj into four identical segments of sidelen@ho obtain4?
non-intersecting squares of equal size&’in Removing those squares that do not share
a vertex withCjy, we are left with four remaining squares which we labg| Cs, , Cs,
and(Cj. Specifically,C; is the square that has the origin as one of its vertiCgss the
square that had, 1) as one of its vertices and,, andC, are the two remaining squares,
named arbitrarily. This is the first level of the construntad the Sierpinski carpet. It shall
become clear later on why we are using the strange subscFptsthe second level of

the construction, we subdivide each of the squargs’s,, Cs, andC’s into 16 smaller
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Figure 4.2.1: In this illustration, we show the unit squarg superimposed upon the
first and second levels of the construction of the Sierpinakpet C' whose Hausdorff

measure we are computing. The projection of the second |étkeaonstruction onto

one of the main diagonals of the carpet is also shown. Thiseptmn is required for our

calculations.

squares of sidelengtﬁ or }l the sidelength of their parent squares, then remove those
squares that do not share a vertex with the parent sdujaire each case. To illustrate
the labelling of these remaining squares, we take the sdewabisquares contained in an
arbitrary square from the first level; say, and label ther@';, C15,, C12, andCys in the
obvious way withC}; closest to the origing'; closest to(1, 1) and of the remaining two
squares(,, closest ta’y, andC',, closest ta’s,. If we repeat this procedure infinitely
many times we derive a Sierpinski carpet which we labelt is clear that at theth level

of the construction we hav& squares of sidelengtfk and we refer to these squares as

the basic squaresf thenth level. To refer to a specific basic square at#ltielevel, we
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use the notatiod’;, ..;,. We use the following notation to refer to all of the basicags

at thenth level:

c.=J o

ljl=n

Thus, clearly
C=(Cn
n=1

We select the diagonal betweéh 0) and(1, 1) to act as a main diagonal and label it
Fy. This diagonal will become the focal point for much of thegirtater on, specifically
in Lemmas 4.5.2 and 4.5.3, but it should be noted that theilzdions would work just as
well for any of the other diagonals. We shall identify the mdiagonal with the interval
[0,4/2] in the obvious way for the purposes of our calculations. Westralso define a
mappingr : Cy — Fj to be the orthogonal projection froR? onto £}. Let the mappings

Sy, 89,85 : Fy — Fy be as follows:

Si(x) = ix
Sola) = Jo + (}ﬁ%) V2
S3(x) = ix + z\/i

Let Iy = Si(Fp), Fy = So(Fp) and F3 = S3(Fy). We extend this notation so that

F; = Si,i, (Fp), €.9.Fi i, = Siyi,(Fy) = Si,(Si,(Fp)). Itis easily seen that at the

1in

first level of the construction of’, C; maps tofFy, Cy, maps toF;, Cs, maps toF;, and
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(s maps toF3 underr-projection. E.g.

V2

T(Ch) = [O’T _ ([0\/5}) — Si(Fy) = .

Extending this idea, it is clear by inspection that give@'a..;, , F; is equivalent to

1l
7(Cj,...;,), the projection ot”}, ..;, onto the main diagonal, wheig= 1if j, = 1,4, =2
if ji. = 2, orjp = 2, andi, = 3if j, = 3. Given anfF;,..;,, we use the following notation
to refer to the collection of basic squares at ttle level that intersect ' (F,..;,), the

pre-image off;, .., :

PRy

U Gy = U Cirgn | Jr=21,22 iy =2,

lil=n .
CiN = (Fyy .5 ) 70 Jr =3 if 7, = 3.

It can be shown that there exists a meaguoa C which acts as a mass distribution,

distributing the mass/2 overC as follows:

We have clearly defined for all of the C; which are Borel subsets @&?, however,

1+n
proving thaty is indeed a measure @il Borel sets inR? is a much more involved task,
one which we shall not be tackling here. Similarly, it can bewen that there exists a

measuren supported orF’ such that

m(F’il'“in+l) = Diy - pln\/§
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wherep;, = ; wheni;, = 1,3 andp;, = 3 wheni, = 2. In particular,

1

m(Fil...inH) = Zm(F“Zn) Whenin+1 = 173
1
M(Eiy i) = 51U Fiyei,) WheNi,y = 2.

We illustrate how the measure may be constructed by dividing a massgf over
Fi, F5 andF3 so that they get mas\g, %5 andVT5 respectively. Then the mass of each of
the F}, is divided in a similar way amongst tife,;, such that, given a#;,, F;,; andFi,3
get}t of its mass and;,» gets% of its mass. We repeat this procedure for eaégh,; and

its given mass, so that eaéh. receives eithei‘-l or % of that mass as appropriate.

i1

Let v be a vertex of”y. A triangle is formed when we interse€t with a line which
Is a distancer from v along the diagonal of’ that runs throughy and perpendicular to

that diagonal. We refer to this triangle As:.

4.3 Main Result

Theorem 4.3.1.H'(C) = V2.

This result shall be proved in Section 4.6, but we require ralver of other results

first.

4.4 The Hausdorff Dimension of the Carpet

Proposition 4.4.1.dimy C' = 1.

Proof. C' is clearly a self-similar set under the four similaritie®,, Ry, R3, R4} with
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contraction ratios; which mapCj onto the four basic squares of the first level of the

construction. Taking’; as the interior of”y, the open set condition holds since
4
UJR(CH) <G

=1

Then by Theorem 2.4.3,
s =dimy C =dimp C =1,

the solution ofy"(1)* = 1. O

4.5 Supportive Theorem and Lemmas

Theorem 4.5.1.Let K be a self-similar set constructed using an IFS with simijaniap-
pings (R, ..., R,) and associated contraction ratids;,...,c,). Lets be the unique

real number such that

n

S __
gci—

i=1

Then
H*(K) < diam(K)*.
In particular, dimy (K) < s.
Proof. Let K,,...,, = R;,...,,(K) and letr;,..;, = ¢; ¢, - - - ¢;,. Note that

dlam(K“zn) = dlan(RZlZn (K)) < Ciy " Cindian'(K) = ’I"lend|arr(K)
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We know that

and applying this repeatedly we have

K= U K;.
li|=n

Clearly this union provides a cover éf.

enough such that

dlan’(Klen)

IN

nlzndlam(K)

hediam( )
0.

IN

IN

Ujij=, K forms ad-cover of K, hence

HyK) < 3 diam(K)”

li|=n

= > rdiam(K)*

lil=n

= (Zcfl)...

i1 in

= (D) --- (1)diam(K)*

= diam(K)*.

HenceH*(K) < diam(K)*.

Fixing 6 > 0, we may then choose large

(3 ¢ )diam( )

Lemma 4.5.2.m(B) = u(r*(B)) for all B C F}, B are Borel sets.
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Proof. We prove this using the Cardtbdory Unigqueness Theorem (Theorem 1.1.15).

Firstly, let
In:{ﬂ1zn |TL€N, Uy lpy = 1,,3}
and let

Ay ={LU--UL,|meN, I, e T,}.
[Z-ez}.

m(A) = p(r 1 (A)) forall A € A, (4.5.1)

Also letZ = U 7, and A = {0 I;
n =1

Firstly we show that

To prove this, it is sufficient to show that
m(Il) = p(z~1(I)) for I € T,. (4.5.2)

This is true since both: andy o 7! are measures with the countable additivity property.
For example, itA = I,UL,Uls, wherel; € T, thenm(A) = 32 m(1;) andu(r~(A)) =
Z‘Z’ wu(m=(I;)) by countable additivity. To prove the result, we use an itigagrocess.

First, we can easily see that statement (4.5.2) is true whero:

m(Fp) = V2
= p(m~ 1 (Fp) N Cy)

= u(r"H(Fp)) ... becaus&’y has the only mass that liesin ' (Fp).

Next we assume that the statement is true for semxe 0 and prove it forn + 1. Thus
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we want to show that(F;,...;, . ,) = p(r ' (F;,...s,,,)) for alln € N wherei;, = 1,2, 3.

This naturally breaks down into two distinct cases wheiteeeit,. ; = 1,3 0ri,, . ; = 2.

Case 17,1 =1,3

Wheni,,; = 1 ori,.; = 3 we have the following:

p(m H(Fiyoiy)) = p U C; (4.5.3)
ljl=n+1
CJﬂﬂ 1(Fi1"'in+1)7é®
= > p(C5) (4.5.4)
lil=n+1
ijﬂ_l(Fi1-~in+1)7é®
1
= 3 > p(C5) (4.5.5)

lil=n
Cj f-\lﬂ'il(Fil,..in) #0

_ 411 " U (4.5.6)

We get (4.5.3) by using the fact that thg, ...; ., squares that intersect the pre-image of

F;,..;,,, are the only objects with any-mass that lie the pre-image &t The

141"

countable additivity property of the measure allows us to sum the masses of the indi-
vidual squares in (4.5.4). There is only ofig...; ., square in eacly’;,...;, square and it
has% of the mass of its parent square so we get (4.5.5). We use theatne additivity
property of theu-measure once again to derive (4.5.6). Next we look ahth@easure

of F;

15t in41”

m(Fy i) = = m(Fi. ) (4.5.7)
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1 _
= 7l (Fipsn) (4.5.8)
1
= qH U Cj (4.5.9)
Cjﬂfl‘%‘;:wn)#@
= w(m (Fiping) (4.5.10)

Wheni, ., = 1,4, (4.5.7) follows by definition. (4.5.8) comes from our intiue as-
sumption. Since th€’;,...;, that intersect the pre-image éf,...;, squares are the only
objects that carry any mass in the pre-imagéf.; , we get (4.5.9). (4.5.10) follows
directly from (4.5.6).

Case 2:1,,1 = 2

Wheni, ., = 2, we have:

p(r (i) = B U C; (4.5.11)
ljl=n+1
ijﬂ_l(Fil~-~in+1)5£®
= > 1(C5) (4.5.12)
il=n+1
leﬁlﬂ'_l(Filmin+1)§é®
2
= > 1(C5) (4.5.13)
il=n

Cjﬁﬂil(Fil‘..in)#@

L1 U 0 (4.5.14)

lil=n
Cj ﬂTrfl(Fir.‘in) #@

We get (4.5.11) because thg, ...;, ., squares are the only objects with gnynass that lie

the pre-image of; ..., ,. The countable additivity property of themeasure allows us
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to sum the masses of the individual squares in (4.5.12).€Téwer twaoC; squaresin

1 Jn+l

eachC},...;, square, each with equal mass whicli ief the mass of their parent square,
so we get (4.5.13). Once again, countable additivity get&4Us14). Looking at the

m-measure of; wheni, ., = 2 we have:

1 int1

1
m(Fyvin) = 5 m(Fii,) (4.5.15)
1 _
= Gl HFyi) (4.5.16)
1
= 5n U C; (4.5.17)
i=n
ijn—lﬁFilA.Ain#@
= /’L(ﬂ-_l(ﬂl'”in+l>) (4.5.18)

Wheni,;; = 2, (4.5.15) comes from our definition of. (4.5.16) follows from the
inductive assumption. Since tkig, ...;, squares are the only objects that carry any mass

in the pre-image of;,...; , we get (4.5.17). (4.5.18) follows directly from (4.5.14).

This proves (4.5.1). Thus, we also have
m(A) = p(z 1 (A)) forall A c A
which, according to Caraélodory’s Uniqueness Theorem (Theorem 1.1.15), shows that

m(B) = u(r*(B)) forall B € o(A). (4.5.19)

Lemma 4.5.3. f(z) = m([0,z]) > 2z forall z € [0, v2].

Proof. A graph of f(x) = m([0, z]) can be seen in Figure 4.5.1. We prove this result by



4.5 Supportive Theorem and Lemmas 87

dividing into four distinct cases. The last case is sligintigre difficult to prove than the

first three cases:

V2

y==
V2 V2l Ve V2
T T TS T V2
T

Figure 4.5.1: A graph off () = m([0, z]) and the liney = 22 whenz € [0,v2]. The
intervals used in each of the cases in the proof of Lemma 4r6.8lso shown.

Case 1l:x € |:\/T§+ *§+\/T§,\/§]
We have:
flz) > f (g + Q + £> (4.5.20)
8 4
3vV2 V2
A
— f(ﬁ)
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3v2

vV
I
8

We get (4.5.20) by noting thgtis a monotonic increasing function.

Case 2:z € [‘/T§+%§+\1/—65,\/T§+\§+\/T5]
We have:
V2 V2 V2
> T tT<5 1t 4.5.21
f<:c>_f<4+8+16 (45.21)
W2 Ve
- - 4.5.22
16 8 ( )
4(vV2 V2 V2| 4 2 2V2
S (R ) L () 5 (4.5.23)
7T\ 4 8 4 7\ 8 8
- 4
= 7!13
As in the previous case, we get (4.5.21) becaimemonotonic increasing.
Case 3.z € [\/Ti, V24 V2 \1/_65]
We have:
2
flx) > f (%) (4.5.24)
V2
4
4 7
Pt 2 —_.—
v2 (7 16>
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4 (V2 V2 V2
%(T*?*E)

x.

vV
A

As in the previous two cases, we get (4.5.24) becgusemonotonic increasing.

Case 4.z € [O, ‘/Ti]

Note that[o, \/Tﬂ =U, St ([\/Ti, \/§D We would like to show that
f(z) > ix whenz € S} ([‘/Ti, \/§D foralln > 1.

We do this forn = 1, then prove by induction. First we show thain the intervall0, */Ti]
is anS; re-scaling off in the interval[0, v/2]. Recall thatS; (z) = 1z andS;'(z) = 4z
and note thatf(%) = \/Ti We want to show thaf(xz) = S(f(4z)) or that f(z) =

L f(4x) forall z € [0, ¥2]. Lettingz € [0, ¥2] we have:

f) = mio,2)
= S (s (0.4))
— (70, 2]) (4.5.25)
= {m(0,42)

1
= 1f(495)-

Equation (4.5.25) comes as a direct resultSefbeing the only map that maps to the

interval [0, ‘/Ti]. Clearly the linelz in the interval[0, v/2] rescales tctz in [0, ‘/Ti] under
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S, because for alt € [0, %3],

114
So f(z) > 4z holds for allz € S,([%2,v2]) = [¥2,¥2]. We can now show that the

)74
inequality f(z) > 2z is also valid in the intervalo, \1/—65] by starting the induction. We
assume thaf(z) > 3z forall z € S?([‘/Ti, \v/2]) for somen > 1 and prove it fom + 1.

So we assume that

flz) > %x forallz e 57 ([42,v2])
and aim to prove that

fla) > éx for all 2 € S ([% \/5]) .

Letz € S/H([42, v/2]). We have

- Zpim(S;l([O,x]))

= p1m(Sy((0,2]))

f(STH)). (4.5.26)
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SincesS; (x) € SI"([‘/TE, v'2]) and our inductive assumption states tfiit) > 2z for all

x € SP([¥2,V/2)), using (4.5.26) we conclude:

1
fle) = A7)
1 4
> Z-;Sfl(l‘)
= i%élx
B 4

We have shown that

f(z) > 2z forallz e -0, \/Tﬂ U

thus completing the proof. m

Proposition 4.5.4. (Az) > 2

Proof. We can easily prove this using Lemma 4.5.2 and Lemma 4.5\&nGAx,

p(Ax) = p(r ([0, 2]))

where0, z] C F. Using the two lemmas, we have

pr([0,2])) = m([0,a]) > —=

e
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4.6 Proof of Main Result; Calculation of the Hausdorff

Measure

Recall our main result, Theorem 4.3A2(C) = v/2. The proof is as follows:
Proof. We start the proof with the upper bouftt (C) < v/2:

“ <" This follows from Theorem 4.5.1.
* > According to the mass distribution principleifV’) < |V| for all measurable sets
V, thenH'(C) > u(C).

Given a measurable sét, we proceed to show that(1") < |V| by dividing the

problem into three distinct cases:

Case 1:V intersects exactly 2; basic squares at the first level.

Case 1.1:The 2} lie on one of the diagonals @fj.

Let C, and(C, be the two basic squares ©f lying on the diagonal. We have:

n(V) < u(Ca) + 1(Cy) (4.6.1)
_ V2 (4.6.2)
2
= d(C,,Cy) (4.6.3)
< |V (4.6.4)

We get Equation (4.6.1) becauske andC), are the only basic squares tHatin-

tersects, thus the sum of their masses is the maximum ass attain. To get
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Figure 4.6.1: A sel/ intersects 2°; squares on one of the diagonals@f at the first
level of the construction of Sierpinski carget This is Case 1.1
of the proof of Theorem 4.3.1.

Equation (4.6.2), we divide the total mass®@fby two, since we have summed
the masses of two of the fod¥; basic squares at the first level. This is of course
equivalent to the distance betweél) and C, using the Hausdorff metric, since
d(C,,Cy) =2 — 2(‘/75), and so we have Equation (4.6.3). Finally, this distance is
smaller than the diameter &f, sinceC, andC} intersectl.

Case 1.2:The two(; basic squares lie on one of the side<pf

Let C, andC, be the two basic squares which lie on that sid€'pf Without

loss of generality, we assume that this sid€’pis parallel to ther-axis. Let

a=inf{x: (x,y) e VN (C,UCy)}

B=sup{z:(x,y) e VN(C,UCy)}

Let R, denote the rectangle formed by the lines- o, z = }1 y=0andy =

1
L
Let R denote the rectangle formed by the lines- 2, z = 3,y = 0 andy = 1.



4.6 Proof of Main Result: Calculation of the Hausdorff Measure 94

Ca G

Figure 4.6.2: Case 1.2V intersects 2U; squares on one of the sides@f at the first
level of the construction af'. Also shown are rectangle?, and 123.

When0 < « < 1, we have

M(Ra) < M(Ca) = (465)

sinceR,, C C,.

Whenl—l6 < a < 1, we have

C, 2
u(Ry) < MG _ V2 (4.6.6)
2 8
sinceR,, can intersect at most two basic square€’'pf
When? < g < 3 + L we have
1(Cy) V2
u(y) < HEW_ V2 (4.6.7)

sinceRj can intersect at most two basic square§’nf
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When? + L < 5 <1 we have

1(Rg) < u(Cy) = \/g- (4.6.8)

Clearlyu(V) < u(R,) + u(Rg). Therefore, by the above results, we can show that
w(V) < |V]in the following cases:
When0 < o < &, 3 < 8 < 3 + -, using Equations (4.6.5) and (4.6.7) to get

Equation (4.6.9), we have

2 2 2 2
MSN(Ra)"‘U(Rﬁ)g\/T—"’%—:z%‘F% (4.6.9)
_WV2_v2 3 L
8 16 — 4 16
<pB—-a
<|V].

When0 < a < 1, 1= + 2 < 3 < 1, using Equations (4.6.5) and (4.6.8) to get

Equation (4.6.10), we have

V2 V2
pV) < p(Ba) + p(Bp) < ==+ == (4.6.10)
82 _ 13 1
16 —16 4 16
<fB-a«a
<|V].

Wheni < o < 13 <3 <34 .1 using Equations (4.6.6) and (4.6.7) to get

(4.6.11)
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When < o <

1, £+ 3 < B <1, using Equations (4.6.6) and (4.6.8) to get

Equation (4.6.12) we have
V2 V2
u(V) < p(Ra) + p(Rg) < 3 + T (4.6.12)
V2 _1 3 1
6 —16 4 4
<P -«
< |VI.

This proves that, (1) < |V| for all possible cases wheiéintersects”, andC,.
Case 2:V intersects 3 or 4 of th€’; basic squares at the first level.

Case 2.1:V intersects exactly 4'; basic squares at the first level.

We draw lines;, G, G3 andG, through the vertex of each basic squar€pf
that lies in the interior of’y, i.e. C;. Without loss of generality, we will assume that
(G is drawn through the inner vertex of of the basic square tisatlzas a vertex at
the origin.G2, G3 andG, are drawn through the inner vertices of the basic squares
that have vertices dtl, 0), (1,1) and (0, 1) respectively in a similar wayG; and
(G5 should both be perpendicular to bath andG,.

We also draw linesA;, Ay, A3 and A, parallel respectively ta7;, G5, Gs and Gy,
and obtain a rectangle that contaiisn C;; and of which, each side intersects
V N Cy. This construction is illustrated in Figure 4.6.3.

Let

g = d(Gl,Al), a; = d((0,0),Al),
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Figure 4.6.3: Case 2.1:V intersects 4C; squares at the first level of the construc-
tion of C. It is possible for some oV to lie outside ofCy as is illustrated. The
proof for this case requires the line$;, A,, A;, Ay, G1, G2, G3, G4 and the distances

ai, ag, as, aq, 4gi, 42, 43, J4.
g2 = d(G2, Az), g = d((l, 0)7 Az),
g5 =d(G3,As), az=d((1,1), A3),
gs = d(G4, A4), ay = d(((), 1), A4)

We have

V2
a1+91=a2+92=a3+93=a4+g4=T
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and
V2
‘V‘27+91+937
V2
|V|27+92+94-
Hence
V2 V2
2!V127+7+91+gz+gs+g4
V2 o1
|V|27+§(91+92+93+94)
2 1
= g + 5 (\/5 - (CL1 + as + as + CL4>> (4613)
1
:\/5—5( 1—|—CLQ—|—Q3+CL4). (4614)

We get Equation (4.6.13) by noting that

V2
(91+92+93+94)+(a1+a2+a3+a4) :4(T) :\/5

By Proposition 4.5.4 and using Equation (4.6.14), we have

u(V) < V2 — (u(Lar) + p(Daz) + p(Das) + p(Lay))
< \/5—%(@14‘@2—'—&34‘&4)

< V.

Case 2.2:V intersects exactly 8'; basic squares at the first level.

Without loss of generality we can assume thaintersects the thre€’; basic
squares that have vertices(at0), (0, 1) and(1, 1) respectively. Similarly to Case
2.1, we draw lines+;, G5 andG3 through the vertex of each of these basic squares

that lies in the interior o€;. Without loss of generality, we will assume th@ is
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Figure 4.6.4: Case 2.2V intersects 3C; squares at the first level of the construction
of C. The proof for this case requires the linds, A,, A3, G1, G2, G3 and the distances
ai, @z, a3, g1, g2, gs-
drawn through the inner vertex of the basic square that asaahvertex atl, 0),
and is perpendicular to both; andGs.
We draw linesA;, A, and A3 parallel respectively td-;, G, andG3, and obtain a
rectangle that containis N Cy and of which, each side intersedtsn Cj. This is
illustrated in Figure 4.6.4.

Letting
g1 = d(Gb Al), a1 = d((07 0)> Al)v
g2 = d(G27 A2), Qg = d((17 0)7 A2)7

gs = d(G37 A3)7 a3 = d((17 1)7 A3)7
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we get

V2
G1+91:a2+92=a3+93=T

and
V2
V] 274'914-93:\/5—@1—@&

By Proposition 4.5.4, we have

3
wlV) = V2= (ubar) + p(Daz) + p(Das))
3 4
< Z\/§— ?(al + as + as)
3 1
S Z\/§— 5(@1 + a9 +CL3>,

SO

3 1
VI=n(V) 2 V2 —ar— a5 = V2 + S(a1 + a2 + a)

V2 o1 1
:T—ﬁ(al—l—ag)—l—éag
1 (V2 1
25 7-&1-@3 +§CL2
>1
—a
_22
> 0.

Case 3:V intersects exactly L; basic square at the first level.

This breaks down into 2 distinct subcases:

Case 3.1:V intersects 2, 3 or 4'; ;, basic squares at the second level.

Case 3.2:V intersects exactly L}, ;, basic square at the second level.

1J2
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Figure 4.6.5: Case 3V intersects 1C; square at the first level of the construction(of
To prove thatu(V) < |V] in this case requires that we look beyond the first level of the
construction.

Proving Case 3.1 simply requires a repeat of the proofs in Casd Case 2 oveT
instead ofCj. Proving Case 3.2 requires that we divide it into a furtherliasges
whereV” intersects either 2, 3 ord,, ;,;, squares or exactly or@;, ;,;, square.

Cj

/N

1Cj1j2 2,3,4,5,6,701"80]'

N

1Cjjyis 2,3,4,5,6,Tor 8 Cj i
17273 19,40, 0, J1J2J3
/o\

LGy

172

2,3,4,5,6,7 or 8 le--~jn

Figure 4.6.6: A tree representation of the proof of Case 3.

It is clear from Figure 4.6.6 that there are countably manyspa subcases where
eitherV intersects 2, 3 or 4, ;, orV intersects X0, , . u(V) < |V| whenV

intersects 2, 3 or 4;,...;, squares can be proven for allby repeating the proofs
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for case 1 and case 2. When foralV intersects exactly on€;, ...;, we have

Vel Gy, = {=}

which is a singleton, and since the measure of a singletoers z(V') = 0 < |V/|

and we are done.



Chapter 5

The Hausdorff Measure of a Sierpinski

Sponge inR>

This chapter forms the main body of the research componehismissertation. The
technique for calculating the Hausdorff measure of a twoedtisional Sierpinski carpet,
outlined in the previous chapter, is extended for a simigdcwdation of the measure of a
Sierpinski sponge, the three-dimensional analog of theeta¥Ve compute the Hausdorff
measure of a sponge whose first level is constructed by usipig< of the unit cube that

have a sidelength (@‘th of the unit cube.

5.1 Notation and Set-Up

The Sierpinski sponge that we choose to compute the Hadisdedsure of here, is
constructed as follows. L&ty be the closed unit cube iR? that shares a vertex with
the origin and that has three of its edges lying on the peasitiaxis, the positive/-axis

and the positivez-axis respectively. We divid€, into 82 cubes of equal size whose

103
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Cs,
g
—————————— g
,,,,,,,, =
Sl s - C
\‘I&:—‘?: 0224 @::N 4
Chy | C e
‘\""’\ T 33 4 T :@—/—:kﬂ
B e
‘ C ‘@\“:/&
2231 = 2 P
Ca,9, ® P '\
7
F22 \ F34
F21 \ P 31
- g
\/ - ?g\ o ,GE C
B e
,,,,,, See_
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Ol /"/, ——————— - P:\;f:“’
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- BN e
3 ‘:uf”421 ,,,,,,,,,, 031
B T
Y
Cy,

Figure 5.1.1: This figure shows unit cubbg superimposed on the first and second levels
of the construction of the Sierpinski sponge whose Hausa@ésure we are computing.
The projection of the second level of the construction omi® af the main diagonals of
the sponge is also shown.

interiors do not intersect, each with sidelenéth of Cyy, and remove those cubes that
do not share a vertex with;, leaving8 cubes remaining. To obtain the second level
of the construction, we subdivide each of the 8 remainingesuibto8?® equally sized
smaller cubes which do not intersect, with sidelen@ﬂnthat of their parent cubes, and
remove those cubes that do not share a vertex with their pandes, leaving? cubes
remaining in total. Repeating this procedure at the secorel t& the construction and
at each subsequent level of the construction yields a Sgkpsponge which we label
C. Clearly at thenth level of the construction there ag& cubes, each of sidelength™,
which we shall refer to as thieasic cube®f the nth level. We choose the diagonal of
Cp that shares a vertex with the origin to act as a main diagamaidr calculations and
call it Fj. It should be noted that the results proved in Lemma 5.4.1l&mima 5.4.2

hold using any of the diagonals 6f;. For the purposes of our calculations, we shall



5.1 Notation and Set-Up 105

identify the main diagonal with the interval = [0,+/3] in the obvious way. Also, let

7 : Cy — F, refer to the orthogonal projection froR? onto F.

Define contraction mappindgs, Ss, Ss, S, : Fy — Fjy as follows:

Si(x) = éaz

Sy(z) = ém (é + %) V3
Sy(x) = éw (g 4 %) V3
Su(x) = éw <§ 4 g) V3

Let Fy = S1(EFp), Fo = Sa(EFp), F5 = S3(Fpy) and Fy = S4(Fp). At the first level of the
construction, it is easy to see the basic cube that sharedex weth the origin maps to
Fi1 underr-projection. We call this basic culd@;. It is also easy to see that the three
basic cubes neare&t all map toF; underr-projection, so we call these cub€s, , Cs,
andCs, respectively. The next three closest basic cubés teach map td;, so we label
theseCs, , Cs, andCs,. The remaining basic cube at this first level of the consimuact

maps toF; underr-projection, so we call iC’.

Taking an arbitrary basic cube at the first lewg}, we refer to the second level ba-
sic cubes contained therein &5, Cj,,, Cj2,, Cjo,, Cjs,, Cjs,, Cj3, and Cj, which are
positioned in a similar way relative to the main diagonal fzes first level basic cubes.
Extending this notation, we may refer to any arbitrary basilge at any level of the con-
struction as(;,...;, wherej, = 1,2,29, 23,34, 32, 33,4. We label the union of all basic

cubes at theth level as follows:

c.=J ¢

lil=n
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and clearly
C=(Cn
n=1

Given aCj,..;,, F; refers tor(C},..;,), the projection ofCj,...;, onto the main

1o in
diagonal, where, = 11if j, = 1,4, = 21if ji. = 21,249,235, 7, = 31f j, = 31,39,33, i, = 4
if jr = 4. Given anF},...; , we can see that the union of all basic cubes atthdevel

which intersectr—'(F}, ...;, ), the pre-image of; is given by:

Lo

( 3\

gk =1 if i, = 1,

Jk = 21,229,253 if i =2,
U Ci=JJ G| ~ o
jl=n Jk = 31,32,33  if i =3,

Cjﬂﬂ'_l(Filmin)#m

o =4 if iy = 4. |

The construction and notation described above is illustiat Figure 5.1.1. It is easily

seen that there exists a measurgupported o’ such that

1

= —V3.
8"\/_

1(Cj-j)
Similarly, it is easily seen that there exists a measuripported orf’ such that
M(Fyiniy) = Diy - Pin V3

wherep;, = ¢ wheni;, = 1,4 andp;, = 2 wheni, = 2,3. In particular,

1
m(F’il..-iﬂ,+1) = gm(F“Zn) Whenin_,’_l — 1’4
3
m(ﬂ1~--in+1) = gm(Elzn) Whenln—i—l g 27 3

We can construct the: measure as follows. We divide a mass\d3 over F, Fy, F;
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and F}, such that they get masg, %g, %3 and\/?g respectively. The mass of ea¢h

is divided amongst thé},;, such that both¥;,; and F; 4 get% of its mass, and-;,» and

192
Fi3 getg of its mass. This process is repeated for eBgch;, in a similar way, such that

F sty Fiyoin2, Fiyis @ndFy ;4 receive masses gf 2, 2 and: of the mass of, ...,

respectively.

Choose a vertex of Cj. If we intersectC with a plane perpendicular to the diagonal
that passes through at a distancer from v, a pyramid is formed between and the

points of intersection. This pyramid is denotedAy:.

5.2 Main Result

Theorem 5.2.1.H*(C) = V/3.

This resultis proved in Section 5.5 after a number of supmieémmas are presented.

5.3 The Hausdorff Dimension of the Sponge

Proposition 5.3.1.dimy C' = 1.

Proof. C'is clearly a self-similar set under the eight similaritieghweontraction ratio%
which mapC); onto the eight basic cubes of the first level of the constoactUsingCy,

the interior ofCy, to fulfill the open set condition, by Theorem 2.4.3 we have
s =dimy C =dimp C =1,

the solution ofy_}(1)* = 1. O
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5.4 Supportive Lemmas

Lemma 5.4.1.m(B) = pu(x'(B)) for all B C F}, B are Borel sets.

Proof. Let Z,={F,..;, |n€N, iy,...,i,=1,...,4}
andlet A,={LHU---UL,|meN, I, €Z,}.

Also let

Firstly we show that

m(A) = u(r~'(A)) forall A € A, (5.4.1)

To prove this, it is sufficient to show that

m(I) = p(x~(I)) for I € T,

since bothm andy o 7—! are measures with the countable additivity property. To do

this, we use an inductive process. First, we can easily s¢¢hl statement is true when

(w1 (Fy)) ... becaus&y has the only mass that lies#*(Fy).

Next we assume that the statement is true for serme0 and prove it fom + 1. Thus we

want to show thain(F;,...;,.,) = u(r*(F},...4,,,)) forall n € Nwherei, = 1,2,3, 4.
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This naturally breaks down into two distinct cases whetteegit, ., = 1,4 0ri,,, = 2,3.

Case 1:i,,1 = 1,4

Wheni, ., = 1 ori,.; = 4 we have the following:

M(ﬂ-_l(El'“in-o-J) = U C(j (542)
ljl=n+1
ijﬂ_l(Fil"‘in+1)7éw
_ Z 1(C5) (5.4.3)
=t 1
Cjﬂﬂil(Fil...inJrl)?é@
1
! S (5.4.4)
lil=n

Cj ﬂﬂ'fl(Fil‘.‘in) 75(2)

- Zu U C; (5.4.5)
ljl=n
ijﬂ'_l‘gFilmin)7é®

We get (5.4.2) by using the fact that tlag, ...; ., cubes are the only objects with any
p-mass that lie the pre-image éf,...;,.,. The countable additivity property of the
measure allows us to sum the masses of the individual cul{gsir8). There is only one
Cj.jus, Cube in eachC;,..;, cube and it hag of the mass of its parent cube so we get
(5.4.4). We use the countable additivity property of theneasure once again to derive
(5.4.5). Next we look at the:-measure of;

IR

m(F; m(F,...,) (5.4.6)

1"~in+1)

0| — o]

(= (Fieei,)) (5.4.7)
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1
= U C; (5.4.8)
Cjﬂﬂil“g;:{l”in)#@
= M(Tr_l(E1'~'in+1>) (549)

Wheni,,; = 1,4, (5.4.6) follows by definition. (5.4.7) comes from our intive as-
sumption. Since th€’},...;, cubes are the only objects that carry any mass in the preemag

of F;,..;,, we get (5.4.8). (5.4.9) follows directly from (5.4.5).

Case 2,41 = 2,3

Wheni,,; =2 ori,.; = 3, we have:

P (Fypinn)) = p U C; (5.4.10)
jl=n-+1
CJﬂﬂ (Fil---in+1)7é®
- > 1(Cy) (5.4.11)
jl=n-+1
Cjﬂﬂil(Filmin_'_l)?ﬁ@
3
= 3 |Z 1(C) (5.4.12)
J|l=n

Cjﬂﬂ'fl(Fil...in)f(D

U C; (5.4.13)

lil=n
Cj ﬂﬂ'il(Fil...in) 75(2)

ool w
=

We get (5.4.10) because thg, ...; ., cubes are the only objects with apymass that lie
the pre-image of’, ...; .,. The countable additivity property of themeasure allows us

to sum the masses of the individual cubes in (5.4.11). Ther¢haeeC cubes in

1 Jn+1

eachC;,..;, cube, each with equal mass whichisf the mass of their parent cube, so we
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get (5.4.12). Once again, countable additivity gets us18)4 Looking at then-measure

of F; wheni,, .1 = 2,3 we have:

1 Il

3
M(Eyyinen) = g m(Fiei,) (5.4.14)
3,
= Sl (Fies)) (5.4.15)
3
= U C; (5.4.16)
Cjﬂﬂ_l‘g‘f;:“in)#@
= M(ﬂ-il(Fil-"inH» (5417)

Wheni, .1 = 2,3, (5.4.14) comes from our definition of. (5.4.15) follows from the
inductive assumption. Since tldg, ..., cubes are the only objects that carry any mass in

the pre-image of;,...; , we get (5.4.16). (5.4.17) follows directly from (5.4.13).

This proves (5.4.1). Thus, we also have
m(A) = u(r ' (A)) forall Ae A
which, according to Cara#tlodory’s Uniqueness Theorem (Theorem 1.1.15), shows that

m(B) = pu(r~'(B)) forall B € o(A). (5.4.18)

Lemma5.4.2. f(z) = m([0,z]) > Lz forall « € [0,V3].

Proof. A graph of f(x) = m([0, z]) can be seen in Figure 5.4.1. We prove this result by

dividing into three distinct cases. The last case is shgmibre difficult to prove than the
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first two cases:

V3

<
I
N

o
s
_|_
o
_I_
o

V3

Figure 5.4.1: A graph off (z) = m([0, z]) and the liney = 1z whenz € [0,v/3]. The
intervals used in each of the cases in the proof of Lemma &ré.also shown.

[

&

Case l:ix € [83+73+‘/?§,

)

We have:

f(z)

+

>[5
»|%

vV
kﬁ
Y

»|%
w

=<

n ) (5.4.19)

_|_

vV
I
8

TGS
: w w
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We get (5.4.19) by noting thgtis a monotonic increasing function.

Case 2:z € [%”,%ﬁr%ﬁr%ﬁ]
We have:
fo) = f<§> (5.4.20)

_ V3

-8
1(V3 V3 V3

> | =4 =4 =

= 4(8 Tt 8)

s> 1

As in the previous case, we get (5.4.20) becausemonotonic increasing.

Case 3.z € [O, %5]

Note that[o, %ﬂ -, Sp ([‘/g, \/3} > We would like to show that

fla) > ix whenz € ST ([Vg \/§D foralln > 1.

We do this forn = 1, then prove by induction. First we show thain the intervall0, \/?5]
is an S, re-scaling off in the interval[0, v/3]. Recall thatS; (z) = trandSy ! (z) = 8
and note thap‘"(‘/?g) = \/?g We want to show thaf(z) = S;(f(8z)) or that f(z) =

1f(8x) forall z € [0, *2]. Letting € [0, %] we have:
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= S pm(s(0,4])
= p1m(S;'([0,2])) (5.4.21)
= < m((0.84)

1
Equation (5.4.21) comes as a direct resultSpfbeing the only map that maps to the
interval [0, %5]. Clearly the linelz in the interval(0, v/3] rescales tdz in [0, %5] under

S, because for alt € [0, @],

|
]
I

N

P

87)

8.

00| —
RS

So f(z) > 1 holds for allz € SI([%E,\/?}) = [\6/75,%5]. We can now show that the

inequality f(z) > 1z is also valid in the intervalo, \6./7?] by starting the induction. We
assume thaf(z) > 1z forall z € S?([%g, \V/3]) for somen > 1 and prove it fom + 1.

So we assume that

f(z) > ix forallz e 57 ([, v3])
and aim to prove that

flz) > ix forallz e 57 (|42, v3]).

Letz € S/, v/3]). We have
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— Zp,-m(si_l([oﬁ]))

= pm(S;H([0,2]))
F(ST (). (5.4.22)

Sinces; !(x) € S{l([%g, V/3]) and our inductive assumption states tfiat) > 1 for all

x € SP([%,V/3]), using (5.4.22) we conclude:

=
N

|
S

flx) =

NN
(0] »—lC?
S _

—
53
N—

| = 00| —=0Co| 0ol
&

We have shown that

f(z) > ix forall z €

—

Gl B B v, 8] [BLvEL
0,—]u[?,?+7+ﬂu[?+7+?,\/§]

thus completing the proof. n

Proposition 5.4.3. y(Az) > 1z

Proof. We can easily prove this using Lemma 5.4.1 and Lemma 5.4\ &G Az,

p(Dx) = p(n=([0,2]))
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where0, z] C F. Using the two lemmas, we have

5.5 Proof of Main Result
Recall Theorem 5.2.1 which says thigt(C) = /3. We now prove this result.

Proof. We start with the upper bound:

“ <" This follows from Theorem 4.5.1.

“ >" According to the mass distribution principle,ifV’) < |V| for all measurable sets

V, thenH'(C) > p(C).

(a) Case 1.1 (b) Case 1.2

Figure 5.5.1: A sel/ is shown intersecting exactly @; cubes at the first level of the
construction of a Sierpinski sponge in (a), and in (B)intersects exactly 8'; cubes.
While there are other possible configurations, the two shovavalssist our calculations
becausé/ intersects particular cubes that provide the lowest possitthmeter for/.
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Case 1:V intersect<, 3,4, 5 or 6 of the C; cubes.

The method for verifying that(17) < |V] in each of these situations is similar,

so we group them all under one main case here.

Case 1.1V intersects exactly 2 of th€; cubes.

6 23
’V|Z§ >T > u(V).

Case 1.2:V intersects exactly 3 of th€; cubes.

6  3V3
’V|Z§ >T > u(V).

Figure 5.5.2: Case 1.3V intersects exactly 4 of th€; cubes.

Case 1.3V intersects exactly 4 of th€; cubes.

Vi s vio2vi Oys - VEVZ_ VBVBYVE
> - . k 8
V3vaVZ _ 4v3
8 -8

= (V).
Case 1.4V intersects exactly 5 of th€; cubes.

V| 2\/§—§\/§ = g\/ﬁ > 2\/5 > (V).
Case 1.5:V intersects exactly 6 of th€; cubes.

VIZ VB 2V3 = VB > u(V)

Case 2:V intersects or 8 of the C'; cubes.
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(@) Case 1.4 (b) Case 1.5

Figure 5.5.3: Cases 1.4 and 1.% intersects exactly 5 of th€; cubes on the left of this
figure andV" intersects exactly 6; cubes on the right.

This main case breaks down into two subcases which are, rikectink ones in
the preceding main case, dealt with in a similar way. For tmpgse of laying out
some notational details, we will assume momentarily thattersects exactly 8 of
the C;.

Given aCj, letu; be the vertexC; shares withCy and letw; be the vertex of
C; that is not a member afCy. Let G, denote the plane that is perpendicular
to the line that passes through andw,;, and that passes through;,. Let A;
denote the plane that is perpendicular to the line that gahseughu; andw;, that
intersects the boundarg)/, of I and that is parallel t¢:;. Leta; = d(u;, A;) and

g; = d(G;, A)). It's clear thata; + g; = ‘/?g for all j and that

v > gﬁ+gl+g4, (5.5.1)
vl = gﬁ+gm+ggz, (5.5.2)
Vi > g\/§+922+9317 (5.5.3)
v > g\/§+g23+933- (5.5.4)

Having established the necessary notation, we now procebe two subcases.
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Figure 5.5.4: Case 2.1V intersects exactly 8 of th€; cubes.

Case 2.1:V intersects exactly 8 of th€; cubes.
By adding Equations (5.5.1), (5.5.2), (5.5.3) and (5.5.4) get
vl = 4.gx/§+ g1+ g2, + G2, + G2y + g3 F g3, + g3, + G
Vi = g¢§+%m+ga+gb+g%+ga+g@+%3+m)
= g\/g—i— i(\/g— (a1 + az, + ag, + ag, + as, + ag, + as, + ay)
= V3-— }l(al + ag, + ag, + as, + as, + as, +as, +a4) (5.5.5)
By Lemma 5.4.3 and Equation (5.5.5), we have:
(V) < VB = (u(bar) + p(Dag,) + p(Dag,) + p(Das,) +

w(Dasz,) + p(Das,) + p(Aas,) + p(Aay))

IA

1
\/g— 1(&1 + (121 —|— CL22 +6L23 —|— (131 —|— CL32 + CL33 —|— a4)

< [VI.
Case 2.2:V intersects exactly 7 of th€; cubes.
Without loss of generality, we can assume that V does notsetC,. Using

the same notation, but disregarding Equation (5.5.1), we mosv add Equations
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Figure 5.5.5: Case 2.2V intersects exactly 7 of th€; cubes.

(5.5.2), (5.5.3) and (5.5.4) to get:
Vi = 3-%\/5 + 92, + G2, + G2, + g3, + g3, + g3,
vl = g\/§+ %(921 + g2, + g25 + 93, + 93, + G3,)
= g\/§+ %(\/5 — (a9, + ag, + agy + as, + as, + as,)

1
= \/g — g(agl + ag, + A4 + as, + as, + CL33) (556)

By Lemma 5.4.3 and Equation (5.5.6) above, we have:

7

p(V) < gVi- (n(Dar) + p(Dag,) + p(Dag,) + p(ADag,) +

M(Aa?)l) + M(AOJ?Q) + M(Aa?»s))

7 1
S g 3 — Z(al + a9, + as, + A2, + as, + as, + a33). (557)

But subtracting (5.5.7) from (5.5.6) we get:

1
‘V‘ - M(V> > \/g_ g(&gl + Az, + ag, + as, —|—(132 + a33)

7 1
_g\/g‘f‘ Zl(al + a9, + ag, + A4 + as, + as, + a33)

NG 1( + ag, + ag, + as, +az, + )+1
= 8 12 a21 a22 a23 agl CL32 (133 1 aq
S 1 3 16 5
- 8 12°8

4 2
= — ——V3 > 0.

32\/_ 32\/_ -
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Figure 5.5.6: Case 3V intersects exactly L; cube.

Case 3:V intersects exactly L; cube.

We divide this into 2 distinct subcases:

Case 3.1:Vintersects 2, 3, 4, 5, 6, 7 or@;, ;, cubes.

Case 3.2.V intersects exactly T; ;, cube.

Proving Case 3.1 simply requires a repeat of the proofs in tasel case 2 over
C; instead ofCjy. Case 3.2 requires that we divide it into a further 2 subcasesav
V intersects either 2, 3, 4, 5, 6, 7 08, ;,,, cubes or exactly on€, ,,;, cube.

Cj

1 Cj1j2 2,3,4,5,6,701"86’]-

N

1C5 5 2,3,4,5,6,70r 8 C;
1J273 P E D J
'/O\

VAN

1Cj, 2,3,4,5,6,7 or 8 C;

172

17273

1---Jn

Figure 5.5.7: A tree representation of the proof of Case 3.
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The cases wher¥ intersects 2, 3, 4, 5, 6, 7 or@,, ...;, cubes can be proven for
all n by repeating the proofs for Case 1 and Case 2. Whantersects exactly one

Cj,...;, for all n, we have
V| JCjrug, = {a}
Sou(V) =0 < |V] and we are done. A tree structure of these subcases is shown

in Figure 5.5.7.



Chapter 6

Further Directions

In this chapter we take a brief look at some further direiom which the work
discussed up until now could taken. As was mentioned in Ch&pteuring the course
of his studies, the author became particularly interestetbrated function systems with
condensation. In the next section, we take a look at how theséhaff measure behaves
when measuring such sets. In the subsequent section, vevreeime of the work of
Zhou, Zhu and Luo on packing measure and discuss how thengpokeasure of the

Sierpinski carpet and Sierpinski sponge might be calcdlate

6.1 Iterated Function Systems with Condensation and the

Hausdorff Measure

Let us consider the set shown in Figure 6.1.1 which is in a detepnetric space
(X,d) in R%, This set is generated by the IFS used to generate the Sikigiarpet in
Chapter 4, as well as a condensation set which is similar t&ibminski carpet from

Chapter 4 an(% of its size. The condensation set is located in the centreeobét and

123
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o o [m]
o o o O
o o o o
[m| [m]

Figure 6.1.1: This diagram shows the first two levels of the tanton of a Sierpinski
carpet with a condensation set which ﬁsthe size of a regular Sierpinski carpet (as
described in Chapter 4). Note that only the first two levels ofdbestruction of the
condensation set are shown.

smaller copies of it are transformed into the four cornerthefimage under the action of
the IFS. In the following, we will label the original carpgt Assuming that the IFS used
to generate the original carpet{i§;, 5>, S5, S4} with contraction ratiog1, 1, 1, 1}, then

if we label the condensation sét the invariant set for the IFS mixed witli is given by

K.=CU (U SZ-(KC)) .
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Looking at thekK, set in the figure, the following heuristic calculation of Kswusdorff

measure seems reasonable:

H(K)

HY(K) + HY(C) +4H? (i C) +16H! (i c) 4.

16

ﬂ+H1(iK)+H1(iK>+H1<iK +oe

1 1 1
V2 JHUK) 4 S H(K) 4 HE) +

1 1 1
\/54—1\/5—’—1\/54‘1\/5—1-"'

11 1
\/§<1+Z+Z+Z+”')
+00.

We can generalise the calculation as follows. {8f},, be some IFS in a complete

metric spacé X, d) in R™ and let{c;},, be its associated contraction ratios. We will label

the invariant set generated by the IKS We will assume that the open set condition holds

so thatK” has positive finite Hausdorff measure at the critical dinemsGiven some non-

empty compact sef’ in the metric space, the invariant set generated by the IE®dni

with C'in the usual way is labelleft... We will also assume that < H4m#¢(C) < oo.

We may derive the following using the standard propertiageshted function systems:
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({0 ).
- Kucu (QW) > (Us (QS“”)) '

As is highlighted by Falconer in [Fal90], the Hausdorff dms®n is stable under

countable unions, so since tl¥¢ mappings transfornd’ to similar copies of itself, it is

safe to say that
s = dimy K. = max {dimy K, dimy C'} .

Assuming thes;(C') are disjoint, taking the Hausdorff measure of both sidesusinth

both the countable additivity and scaling properties of $thuff measure we get:
HY(K.) = H(K)+H(C ZHS C)+ D HA(S;(S:(C))) + -

= H(K)+H(C +ZSH5 +ZZC§C§H8(0)+

Owing to the definition of Hausdorff dimension (Definitior8¥6), we now have two

distinct cases:
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Case 1:s = dimy K > dimy C"

H(K.) = H(K)+H(C) 1+<icf> +<ic§> I

Case 2:s = dimy C' > dimy K:

m 1 m 2
M (Ke) = H(K) + H(C) [ 1+ (Z@) + (Z@) +oe
=1 i
Looking at the second case, which is the more interestind@ftivo, clearly the
infinite sum in brackets is a geometric series, 901", ¢f) < 1, the sum converges and

m

we have a positive finite value fét°(K.). If however(> " ¢7) > 1, the sum diverges

i=1"1

and we are left with{*(K.) = +oo.

This leaves us in a rather puzzling situation. If we take #tegenerated by the IFS
with condensation from Figure 6.1.1 where- dimy K = dimy C' = 1 and construct a
similar set using the same condensation set, but an IFS ligtitlg smaller contraction
ratios (0.249999995 say, as opposed I}J) then while the former set retains its Hausdorff
measure oftoo, the latter set will have positive finite Hausdorff measusamilarly, if
we were to take the original IFS with condensation and renooeeof the four similarity
mappings from the IFS so that we have three similaritiesen &g, each with a contrac-
tion ratio ofi, the invariant set generated by this new IFS with condemsatould have
positive finite Hausdorff measure. The original set gemerdty the IFS with conden-

sation is not hugely different to the sets generated by tlwenhodified examples. Each
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of the three sets is clearly a fractal. This begs some intageguestions. Should the
Hausdorff measure differ so markedly between such siméts?s Based on the above
calculation, it is clear that there exists an extremelydasigiss of fractal sets which have
Hausdorff measure ofoco. Would it be possible to construct a modified version of the
Hausdorff measure which would assign a positive finite védugich sets? Perhaps these

guestions could form a good basis for some future work.

6.2 Packing Measure and Dimension

The packing measure and dimension are considered to be af iegportance to the
Hausdorff measure and dimension in the modern world ofdfaEometry. Making their
first appearance in the 1980's in papers by Tricot [Tri82)ylda& Tricot [TT85] and
Raymond & Tricot [RT88], they are similar to the Hausdorff ree@e and dimension,
but use efficienpackingsof small balls instead of efficierdoveringsof small balls in
their definition. As Falconer points out in [Fal90], giveratithe Hausdorff dimension
extends the basic premise of the lower box counting dimensia ;; by utilising efficient
coverings of balls of differing radii as opposed to balls @fial radii, it is natural to try to
extend the idea behind the upper box counting dimengiorn; in a similar way, so that
dense packings of disjoint balls of differing radii are ugestead of disjoint balls of equal
radii. This is precisely what is attempted with the packingehsion, which requires that

we derive a suitable notion of packing measure first.

6.2.1 Definitions

The following definition ofy-approximative pre-packing measure is structured in a

similar way to the definition of-approximative Hausdorff measure, but uses dense pack-
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ings of disjoint balls instead of economical coverings ob#imalls. Note that the term
centeredj-packingof some setF in a metric spaceX refers to a countable family of
closed balls inX with centres inF and radii at mos4.

Definition 6.2.1. We define thé-approximatives-dimensional pre-packing measure of a

setF C X, whereX is a metric space, as:

P3(E) = sup {Z diam(B;)® : { B;}; is a centered-packing of E} :
i=1

In a similar way as with the Hausdorff measure, we seek thi¢ &ifri°; asé tends to
zero and define the pre-packing measure as follows:
Definition 6.2.2. Letting E be defined as in the previous definition, the pre-packing mea-
sure of £ is:

P(E) = lim Py(E).
0—0

Unfortunately, as was illustrated by Taylor and Tricot iTBb], P¢ is not necessarily
countable subadditive and so, not necessarily a measureeudo, we can modify the
above definition to something that can be shown to be a BoresumeaWe call this the
packing measure and it is defined below.

Definition 6.2.3. Letting £ be defined as in the previous definitions, thdimensional

packing measure df is:
P*(E) = inf {Zfs(Ei) ' EC UE} .
7 =1

This conveniently leads us to a definition of packing dimensvhich, again, is simi-

lar to the Hausdorff definition of dimension:
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Definition 6.2.4. The packing dimension of the sEtas defined in the above is given by

dim, £ = sup{s : P*(E) = oo} = inf{s : P*(E) = 0}.

It is well known thatdimy F < dimp E < dimgE. A proof of this may be found in

[Faloo].

6.2.2 Packing measure of Sierpinski sets

In [JZZL03] and [JZ04], the authors Jia, Zhou, Zhu & Luo aral&iZhu respectively,
calculate the packing measure of Sierpinski sets in theepldnch are similar to the one
we analysed in Chapter 4. The authors of [JZZL03] develop lanigae for calculating
the packing measure of the Cartesian product of the middié-@antor set with itself,
but their method can be generalised for other similar Sisipicarpets under certain
conditions. A paper [ZZL04] due to Zhu, Zhou and Luo also exighich analyses the
packing measure of a class of generalised Sierpinski sgobgeunfortunately a suitable

translation could not be obtained at the time of writing.

In this section, we will take a look at the result garneredibyedalin [JZZL03] and
sketch its proof. The main result is as follows:
Theorem 6.2.5.The packing measure of the Cartesian product of the middie @antor

set with itself, labelled” x C is as follows:
Plogst(C x C) = 4oz4,

The full proof of this result, incorporating the proofs of amber of necessary lemmas,
is too lengthy to be fully dissected here, so we will try taatta broad overview of the

main problem and analyse the key lemmas in more detail. Wevath some notation:
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We refer to the middle-third Cantor set in the unit intervataand the Cartesian product
of two such Cantor sets &5x C. Establishing an orthogonal coordinate systefinwe
defineEy, = [0, 1] x [0, 1] which shares a vertex with the origin, and an {59, f2, f3, f1}
such that the IFS acting aff, yieldsC' x C which, naturally, is invariant under the action
of the IFS. The proof from [JZZL03] requires that the IFS Siads a stronger version of
the open set condition known as téigong separation conditiowhich we now define:
Definition 6.2.6. Given an IFS( S}, ..., S, } in some metric space, tls&rong separation

conditionis satisfied ifS;(E) N S;(E) = 0 for all i, j with i # j.

The specific IFS mappings are important to us in the proof,sdeifine them as follows:

filz) = g +b; where i = {1,2,3,4},z € R?,

whereb; = (0,0),b; = (2,0),b3 = (

37

win

,2),by = (0,2). So f; maps to the bottom-left
of Ey, fo maps to the bottom-rightz; maps to the top-right angl, maps to the top-left.

Clearly we have

4
CxC=]JfCxo).

n=1

The termbasic square of theth levelis used in a similar way as in previous chapters.
For instance f;(Ey) is a basic square of the first level of the constructiorCok C,
f2(f1(Eo)) is abasic square of the second level of the construction@ad.sincidentally,
the phrase&nth level of the construction @' x C” and* nth iteration of the IFS over

Ey” are interchangeable in the current context. For any integef, define

]k = {(ilaiQai37"'7ik):ij € {17273a4}7j:1a27"'7k}7

I = {(il,iQ,ig,...) Iij S {1,2,3,4},]:1,2,}
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For anyk > 1, let

ff:fhoflaoflso“'oflk-

The following notation is used to define the union of all basjoares from leveb + &
onwards that lie in the bottom-left-most basic square atthdevel of the construction

of C' x C (i.e. thekth iteration of the IFS oveF)).

For= U fiio fi,o---0fi, (ff(Eo)) (p>1). (6.2.1)

n=p (i1ig...in)EIln

We refer to the packing dimension of the ek C' as
s =dimp(C x C) = logs 4.

This is a well known result.

As always, we shall refer to a ball of radiusentered at a point as B,(x). However,

we may also use the notatid®(z, r) interchangeably to mean the same thing.

This firstlemma is the packing measure analogue of Propas3t2.5 introduced in Chap-
ter 3.

Lemma 6.2.7.Let £ C R™ be a Borel sety be a finite Borel measuré,< ¢ < co.

(@) If h_mm < cforall z € E, thenP*(E) > 25@_

r—0 r c
F
(b) If h_mM > cforall x € E, thenP?*(F) < 2SM( ).
—0 TS c
Proof. Omitted. O

Jiaet al proceed by defining a self-similar measwrevith supportC' x C for any
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Borel setly C R™. This measure acts by taking the packing measure of any garof
C x C'and normalising it by the total packing measuré&ok C. We define the measure
as follows:

P(EN(C x C))
ME) = —piex o)

(6.2.2)

The previous lemma (6.2.7) tells us that the packing measiue x C' is determined
by the lower spherical density of every point ©f x C', so we proceed by making the
following two definitions for lower spherical density. Thesfitakes the density of a point
x with respect to the measureand the second takes the densityzafith respect to the

packing measure:

D (1) = 1w 5D g

r—o  (2r)°

S S R PS(BT(‘T)) n
Q(P,:c)—rli_zlo @) ,x € R"

Jiaet al make use of the following lemma which is taken from [TT86] §Rd@88] and is
required in the proof of the subsequent lemma:

Lemma 6.2.8.Let D°(P?°, z) be defined as above. Then
D*(P%,z) =1 forP*-almostallz € C x C.

This next lemma is one of the key lemmas required for the pobdtheorem 6.2.5
and we actually proved a similar result for the Hausdorff suea in Chapter 3, namely
Theorem 3.3.13.

Lemma 6.2.9.Let and D* (i, x) be defined as above. Then

1
PS(C X C) = m for ,u-almost allz € ¢ x C.
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Proof. Using both the definition oD*(u, ) and Lemma 6.2.8, we have:

s _ (Br(2))
Q (/l,fE) - 12?) (27")5
_ lim P*(B,(x) N (C x C))
—o  P(CxC)(2r)*
B 1 lim Ps(B,.(x) N (C x ()
Ps(C' x C) =0 (2r)s
1 S S
= WQ (P?, )
1

P(C % C)

for Ps-almost allz € C' x C. p is simply a normalised version @, so this also holds

for y-almost allz € C x C. O]

Lemma6.2.10.Letk > 1. Lety and F, , be defined as i(6.2.2)and (6.2.1)respectively.

Then forany > 1, k£ > 1 we have:

(Fpr) =1, K (ﬂ Fp,k) =1, M (ﬂ (ﬂ Fp,k)) =1

Proof. We omit the proof for this lemma, but it may be found in [JZZ[.JZZL04] and
[Fen03]. n

Lemma 6.2.11.Forn > 0, let V,, denote the set of all vertices of all basic squares at the

nth level of the construction of” x C'. Then
1
Dé(p,x) = - foranyz € V,,.

Proof.

“<” xis a vertex of a basic square at thth level of the construction of’ x C, so
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this basic square must have sidelengith. Letr = 37 — 3-("*)_ ThenB,(x)
contains only one basic square from the- 1-th level of the construction. Recall

thats = log; 4, s03° = 4 and we have

,M(BT(JU)) 47(n+1) 47(n+1) 47(n+1) 1

@) @323 T 23 (1)) AR 4
Therefore

r<3=s  (2r)8 45

and hence
LCIGIDY
—o (2r)® 4s

We will not go into the detail of the proof of this inequalityt in [JZZL03], the
authors argue that sin€éx C'is self-similar, it suffices to consider ontye 1, and
‘/g <r< % They then prove the inequality for wheris the origin in three cases:
when*2 < r < 2, when? < r < ,/1+ 4 and\/1+ % < r < V2. The first
and last cases follow easily from the definitions, but thedi@c¢ase requires some

tricky numerical calculations involving inductive and syratrical arguments.

Lemma 6.2.12.Let;, and F), ;. be defined as i(6.2.2)& (6.2.1)respectively. Then

1
Dé(p,x) = e for u-almost allz € C' x C.

Proof.

“<T Letz e (CxO)N (ﬂle (ﬂ;‘;l Fpk>> Thenz € F,, forall p > 1 andk > 1.
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Taking an integek > 1, it is clear from the definition of), ; that there exists an
integern,, > p such that we may fing,, € V,, (whereV/, is defined as in Lemma

L V2
6.2.11) with distz, y,,,) < e

B(z,r,) C B (ynp, o 3np+1) . (6.2.3)

Note that due to the definition gfand the strong separation condition over the IFS

{f1, f2, f3, fa}, itis clear thatu(f;, o fi, 00 f; (Ep)) = 4%

Taking 1. of both sides of Equation (6.2.3) and dividing (&,)*, we have

p(Bw.rp) _ p(Blyn,, 37" =3 *Y))
(2rp)s N (2r)s
4~ (np+1)
25(3—mp — 3= (npt1) — 3f(np+k)\/§)s
1
4-25(1 —371 — 3—k\/§)s

Note thatr € (C' x C) N (ﬂpZI FM). Lettingp — oo, we have

1
D?(u, ) <
D) < i e — gy

for k > 1. Lettingk — oo,

forz € (C x C) N (m;;l (m;;l F,,k)>
By Lemma 6.2.10u (ﬂ;;l <ﬂ;;1 Fpk>> = 1, which means that the-measure

of any other set that interseefsx C must be zero. Therefor@®®(u, z) < + holds
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for p-almost allz € C' x C.

“>" Givenr > 0, it suffices to show that
1
> yP for u-almost allA € C' x C.

But sinceC' x C = (._, (fi(Eo) N (C x C)), andfi(Ey) N (C x O), fa(E,) N
(C xO), f3(Ey) N (C x C)andfi(Ey) N (C x C) are all geometrically similar

to one another, it is enough to prove that

p(B(A,r))

@) > 4% for y-almost allA € f1(Ey) N (C x C). (6.2.4)

As well as that, sinc&€’ x C' is self-similar, proving Equation (6.2.4) for when

w<r< V2 is equivalent to proving that

p(B(A,r))

1
> - k
o) 21 for p-almost allA € f(Ey) N (C x C),

when 2 < r < ¥2forall k > 0andi = 1,2,3,4. Lettingk — oo, this would

account for all possiblel € f;(Ey) N (C x ), thus giving us Equation (6.2.4) for

allr > 0.
So we simply need to show Equation (6.2.4) f§r< r < V2.

Of course we know from Lemma 6.2.11 that

i B (@) _ 1
—o  (2r)s 45

for any vertexr of a basic square at any given level of the constructio@' of C'.

Therefore, if we could show that

w(B(A, 7)) > n(B(O,r)) for u-almostallA € fi(FEy) N (C x C)
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When%i < r < /2 and whereO refers to the origin0,0), we would have our

result.

We draw a diagonal line i, between0,0) and(1, 1). Becausef;(Ey) N (C x C)
Is symmetric with respect to this diagonal, it is enough tosider A € S;, where
Sy is the triangle formed irf;(E,) between the diagonal and theaxis. Given

‘,/75 < r < v/2 we have two distinct cases:

Case 1:B(0,r) N (f2(Eo) U f3(Ep))
It is easily seen that
B(A,7) N (f2(Fo) U fa(Eo)) 2 B(O, 1) N (fa( Eo) U fo(Ey)),
since the origirO is the furthest point irb; from all points infs(Ey) U f3(Ep).
Therefore,
p(B(A, ) N0 (fa(Eo) U f3(Eo))) = u(B(O,7) N (f2(Eo) U f3(Eb)))-
Case 2:B(0,r) N fa(Eo)
To prove thaiu(B(A,r) N fi(Ey)) > uw(B(O,r) N f1(Ey)) is more difficult and
requires a good deal of geometrical manipulation. elial do this by analysing
progressively smaller triangles that sit insisle They show that there is a certain

subset of these triangles which does not satisfy the equatiat this subset has

zerop-measure, thus the equation holds fealmost allA € ;.

Thus, givenr > 0 we have

(B4, r) > HBO,r)) for p-almost allA € C x C
(2r)s (2r)s
and lettingr — 0,
lim B4, r) > h_mM = 1 for y-almost allA € C x C

o (2 Tamo (20)° 2
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by Lemma 6.2.11.

We may now prove Theorem 6.2.5:

Proof. The result follows easily from Lemmas 6.2.9 and 6.2.12. n

6.2.3 Remarks

As we have seen, it is possible to successfully use lowerrgthelensity and its
respective properties to find the packing measure of a set.p@hicular method shown
above extends to a more general class of fractal sef’jras claimed by Ji@t al in
[JZZL03]. Lettingd < A < 3 and supposing thaf (z) = Az, fo(z) = 1 — A+ Az where

z € [0,1] and thatC, is the invariant set associated with the IES, f,}, then the result
POy x C)) =4-2°M (1 = \)sW

can be achieved, whesg)\) = log, 4.

Interestingly, Jiaet alalso note that their method cannot be used to calculate the pa

ing measure of self-affine sets suclﬁaisx Ch.
3

In general, it seems to be easier to calculate results fdapgeneasure using local
properties than to do so for Hausdorff measure. This is laidee to results like Lemma
6.2.8 which can directly relate local spherical densityhe measure being used. The
more useful local density results for Hausdorff measuseariconvex density as opposed
to spherical density and obviously it is easier to work witlli®than with convex sets

when attempting calculations involving coverings or pags.
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