Author’s version — provided for personal and academic use. Do not redistribute.

Unsupervised Learning of Basic Object Affordances from Object Properties

Barry Ridge, Danijel Skocaj, and AleS Leonardis

Faculty of Computer and Information Science,
University of Ljubljana, Slovenia
{barry.ridge, danijel.skocaj, ales.leonardis}@fri.uni-17j.si

Abstract

Affordance learning has, in recent years, been generating
heightened interest in both the cognitive vision and develop-
mental robotics communities. In this paper we describe the
development of a system that uses a robotic arm to interact
with household objects on a table surface while observing
the interactions using camera systems. Various computer
vision methods are used to derive, firstly, object property
features from intensity images and range data gathered be-
fore interaction and, subsequently, result features derived
from video sequences gathered during and after interaction.
We propose a novel affordance learning algorithm that au-
tomatically discretizes the result feature space in an unsu-
pervised manner to form affordance classes that are then
used as labels to train a supervised classifier in the object
property feature space. This classifier may then be used to
predict affordance classes, grounded in the result space, of
novel objects based on object property observations.

1 Introduction

J.J. Gibson’s [10] famous quote on affordances,

“The affordances of the environment are what it
offers the animal, what it provides or furnishes, either
for good or ill.”

deftly encapsulates the broad meaning of the term, as well as
hinting at the more subtle aspects of such an idea. There is
a unique relationship between an individual cognitive agent
and its environment such that affordances will mean differ-
ent things to different cognitive agents depending on their
individual characteristics and their current situation. Thus,
when discussing how an agent learns affordances, a num-
ber of important considerations present themselves, namely,
the morphology, or shape, of the cognitive agent, the mor-
phology of the environment and the objects that inhabit it,
the environmental context and object contexts, e.g., how an
object is positioned in the environment, the agent context,
and the possible actions that are available to the agent in the
present context. As indicated in the title, we are chiefly con-
cerned with how a cognitive agent might discover and learn
to exploit basic affordances of objects in its environment.
By using its sensors to observe objects and by using its
actuators to interact with them, an agent may infer rela-
tionships between the morphologies of objects, the differ-

Object Object Range Result Video of Object in
Image Data Motion

.E + ¢ Aﬁ:irz:n
\ A 4 v

| Object Property Features | [ Result Features

Object Property Space

Result Space

Figure 1: The main idea of our affordance learning framework.

ent actions used to interact with them and the way they be-
have during interaction. If the information that is used to
infer such relationships is rich enough and these relation-
ships are learned effectively, then it should be possible to
generalize over the relationships and aid the agent in mak-
ing predictions in novel situations by applying such general-
ized knowledge. In other words, the cognitive system would
perform an action, e.g. “push the centre of the object”, on
similar objects, e.g. a football and a tennis ball, and ob-
serve what happens afterwards- in the case of our example,
the objects would roll away from the effector because they
are round. When the system subsequently encounters an or-
ange, it should be able to infer that it will also roll away
when pushed in its centre, based on what it observed in the
previous situations pushing similar round objects.

Our working experimental system and environment,
shown in Fig. 2, involves a robotic arm attached to a table
surface, coupled with both monocular and stereo camera
systems that allow for visual observation of objects and
interactions in the learning environment. The learning
environment itself is the table surface to which the arm is
attached and the arm interacts with household objects that
are placed on the table surface by pushing them with its
two-fingered gripper. The cameras allow for the recording
of both still images and video of the objects and the stereo
camera in particular, records range data of the objects which
may be used to generate 3-dimensional shape features.

The main idea behind our affordance learning framework
is illustrated in Fig. 1. During experimental trials, when
an object is placed in the working environment, both in-



Author’s version — provided for personal and academic use. Do not redistribute.

camera systems. An arm action is then performed on the
object and its resulting behaviour is recorded to video. Var-
ious object property features are derived from the intensity
and range images of the objects, forming an object prop-
erty feature space, while various result features are derived
from the videos of the objects, generating a result feature
space. The main task of the affordance learning algorithm
as defined in our framework, is to identify significant clus-
ters in the result space and associate these clusters with data
in the object property space. This allows for the affordances
of novel objects to be broadly classified in terms of result
space clusters, by observing their respective object property
features and using them as input to a classifier trained by the
affordance learning algorithm.

This paper is organised as follows. In the next section we
discuss related work, highlighting where appropriate how
our work differs. In Section 3 we outline the system archi-
tecture and setup. Following that, in Section 4, we discuss
the computer vision methods used to extract both the ob-
ject property features and result features we used in exper-
iments. Section 5 describes our novel affordance learning
algorithm. In Section 6, we describe an experiment, as well
as various techniques that were used to evaluate the method
with respective results. Finally, in Section 7 we conclude
and discuss potential future work.

2 Related Work

Perhaps the most closely related work in the literature on af-
fordance learning to our proposed work is by Fitzpatrick et
al. in [9, 8, 16]. The authors trained the Cog robot to recog-
nize “rolling” affordances of four household objects (a plas-
tic bottle, a toy car, a toy cube and a toy ball) using a fixed set
of actions to poke the objects in different directions as well
as simple visual descriptors for object recognition. During
training, the robot would localise objects viewed by its cam-
era system, gather shape features, poke the object from a
certain direction using one of four pre-defined actions, and
track the object for a dozen frames afterwards. Over many
trials, histograms were created for each of the actions and
each of the objects to determine both the likely direction of
movement when performing a given action on an arbitary
object, and the likely direction of movement when perform-
ing an arbitrary action on a given object. There are two main
differences between our method and that of Fitzpatrick et
al. Firstly, in their system, the feature associated with the
rolling direction affordance was pre-determined, whereas in
our system, the learning algorithm is provided with a num-
ber of different result features and it must determine for it-
self which ones are important for identifying the different
affordances that it observes. Secondly, their system used
object recognition to identify the affordances of individual
objects, whereas our system determines the affordance class
of objects (grounded in result features) based, not on their
individual identity, but on their class with respect to a broad
set of object property (e.g. shape) features.

Stoytchev examined an interesting extension of the gen-
eral affordances idea in [20,21] by enabling a robotic arm

ferent tools afford the system when used to interact with an
object. He distinguished between two sub-classes of tool af-
fordances: binding affordances, that describe how tools af-
ford being grasped by the arm, and output affordances that
describe the effect that the various tools afford during inter-
action with the environment. Like Fitzpatrick et al. in [20],
he used a small set of pre-defined exploratory actions and,
by allowing the arm to explore these actions with different
T-hook tools acting on a hockey puck, enabled the robot to
build a tool output affordance table. The T-hook tools were
colour-coded to facilitate recognition and affordances were
learned with respect to individual tools rather than classes
of tools. It is also worth noting that the features used to
learn these tool output affordances were pre-selected and ex-
plicitly associated with these particular affordances based on
prior knowledge of the experimenters.

Cos-Aguilera et al. [6] used a self-organizing map (SOM)
[11] with a Hebbian learning mechanism called a Growing
When Required (GWR) network to aid a simulated Khepera
robot in learning affordances of objects with survival values
such as nutrition and stamina so that it could prosper over
time in its environment. The GWR network was used to
cluster sensor data in the input space. When the robot en-
countered a particular situation or object, the closest match-
ing node in the network was found and weights were as-
signed to the node for each action the robot attempted to use
in that situation based on the success of the action. Their
prior work in [5] used a more simplified model to estimate
the likelihood that a particular object, perceived as a set of
features, affords the robot a particular action. While we also
make use of SOMs in our learning algorithm, we use them
in a different way to Cos-Aguilera et al.. Rather than using
individual SOM nodes as exemplars, a technique that was
employed in one of our previous works [17], we use SOMs
to vector quantize feature space and cluster over the SOM
nodes to form affordance classes. For more information on
this methodology, refer to Section 5.

Saxena et al. [18, 19] provided an interesting blend of
ideas from function-based object recognition and affordance
learning when constructing a robotic system for grasping
novel objects. Their robot used the same robotic arm used in
our work (see Section 3.1) that had a webcam mounted on
the end-effector. In [18] they trained a probabalistic model
on features extracted from ray-traced images of syntheti-
cally generated household objects with labeled grasp points.
After training, the system was tested on attempts to grasp
real objects that it had not encountered in the training set by
finding a potential grasping point and choosing between one
of two possible types of grasping actions. What differs in
our work is that rather than training our learning algorithm
on synthetically generated object examples, we train our
system through interactions with real objects. Moreover, in
the work described by Saxena et al., though the term “affor-
dance” is not explicitly mentioned, the two possible grasp-
ing outcomes are specified in advance: graspable or non-
graspable. Our system generates its own affordance classes
by observing signifcant differences in behaviour through in-
teractions with different objects.



Author’s version — provided for personal and academic use. Do not redistribute.

3.1 Robotic Arm

In our system, we use a Neuronics Katana 6M robotic arm
which features 5 DC motors for main arm movement, as
well as a 6th motor to power a 2 fingered gripper that houses
both infrared and haptic sensors (note: these sensors are not
used in the experiment presented here). The base of the arm
is mounted on a flat table with a wooden laminate surface,
and the arm is allowed to move freely in the area above the
table surface, avoiding collisions with the table through the
use of specialized control software.

The arm control software that was be used for this work
is a modified version of Golem !, control software for the
Katana arm developed by researchers at the University of
Birmingham. Given desirable parameters, Golem uses for-
ward kinematics to generate arm joint orientations and mo-
tion paths, then uses cost functions and searches to select the
ones that most closely fit the parameters. In order to ensure
that the actions, and by extension the object affordances,
that are available to the system are as consistent and learn-
able as possible, the software was modified to optimize for a
linear end-effector motion trajectory when moving between
workspace positions. We have developed the system to be
controlled from the Matlab software environment using a
CORBA interface and a Java control client which can eas-
ily be called from Matlab. This allows for swift arm/work-
space calibration from within Matlab and provides simple
moveTo(x,y, z) functionality for moving the end-effector to
a localized position (z, y, z) in the workspace.

3.2 Camera Systems

2 Point Gray Research cameras- the Flea monocular cam-
era (640x480 @ 60FPS or 1024x768 @ 30FPS) and the
Bumblebee 2 grayscale stereo camera (640x480 at 48FPS or
1024x768 at 20FPS) were used to gather intensity images,
range data and video for the experiment listed in Section 6.
The camera system is operated using a similar interface to
that of the robotic arm. A Java client is called from Mat-
lab to interface with a CORBA server that implements the
low-level camera functionality.

4 Visual Feature Extraction

4.1 Object Property Features

With regard to the object property features, for the pur-
poses of this particular affordance learning scenario, we
are mostly interested in extracting features that describe the
global shape of an object, as they are likely to be most rele-
vant for determining how the object will behave. However,
in theory, any types of features that describe properties of
the objects under consideration could be used here.

4.1.1 RangeData We have developed a method for seg-
menting the object from range images that uses RANSAC
(RANdom SAmple Consensus) [7] to fit a plane to the ta-
ble surface for removal, then mean-shift clustering [3] as
well as a graph-cut segmentation in the corresponding in-
tensity image to isolate the object range data with mini-

Uhttp://www.cs.bham.ac.uk/"msk/

Figure 2: Experimental Setup.

mal noise. The graph-cut segmentation method we used
was from [15], which uses the min-cut/max-flow algorithms
oulined in [2,12,1] to apply the standard graph cut technique
to segmenting multimodal tensor valued images. See Fig. 3
for sample range and intensity image segmentations for 2
different objects.

A quadratic surface may then be fitted to the object range
data to derive curvature features from the object surface. To
achieve this, we fitted the following quadratic polynomial
surface function to the segmented object range data:

1 1
Z:§aX2+bXY+§cY2+dX+eY+f

using least squares to solve for the coefficients a, b, c,d, e

and f. Taking eigenvalues of the matrix then pro-

a
b
vided two features which form a good description of the
global curvature of the object. This surface fitting technique

is also illustrated on the two objects shown in Fig. 3.

4.1.2 Intensity Images The segmentation technique de-
scribed in the previous sub-section produces reasonably
good intensity image segmentations of objects. These are
then used to calculate the following 10 shape features: area,
convex area, eccentricity, equivalent cicular diameter, Euler
number, extent, filled area, and the major axis length.

4.2 Result Features

After an arm action has been performed on an object, the
resulting videos of the interaction are processed for result
features. This is primarily acheived by tracking the object in
motion using a probabilistic tracker from [14]. This tracker
is in essence a colour-based particle filter, which also makes
use of background subtraction using a pre-learned back-
ground image. Background subtraction by itself is insuffi-
cient to localise the object in our experimental setup due to
changes in lighting and the motion of the arm, but it is help-
ful in reducing ambiguities for the tracker. Object shapes
are approximated by elliptical regions, while their colour is
encoded using colour histograms. The dynamics of objects
are modeled using a dynamic model from [13], which al-
lows for tracking with a smaller number of particles, and



Author’s version — provided for personal and academic use. Do not redistribute.

Figure 3: Examples of image and range data taken with the stereo camera for two different types of objects: a book which slides when
pushed by the robotic arm, and a Pepsi can which rolls when pushed by the arm. From left to right: intensity image, range data of the scene,
segmented object, segmented object range data, object range data with a fitted quadric surface.

consequently, near real-time tracking performance.

4.2.1 Global Object Motion Features The following 9
features are calculated from the particle filter tracker output
data: total distance traveled in x-axis, total distance traveled
in y-axis, total Euclidean distance traveled, mean velocity in
x-axis, mean velocity in y-axis, velocity variance in z-axis,
velocity variance in y-axis, final « position, final y position.

4.2.2 Object Appearance Changes To estimate how
the appearance of the objects change during motion, we
chose to calculate the average difference of both colour and
edge histograms between video frames of the objects. This
required developing an extension to the particle filter tracker
previously described. The tracker by itself is quite sufficient
for tracking the motion of objects, but it is slightly inaccu-
rate at times. For example, if an object is rolling and stops
suddenly, the tracker sometimes briefly overshoots the ob-
ject before returning to it a few frames later. While this does
not affect global motion tracking too significantly, it is an
unacceptable starting point if we wish to use the output of
the tracker to segment an object from frame to frame before
calculating histogram differences. If the tracker overshoots
the object, this causes subsequent segmentation to be inac-
curate, producing major inaccuracies in the histogram differ-
ence calculations. To compensate for this, we use the output
of the tracker to define a broad window around the object
in the video frames, before using colour histogram back-
projection [22] to localise the object within the window. An
initial segmentation of the object from the start frame of the
video is used to get a colour histogram model which forms
the basis for the histogram back-projection object localisa-
tion. See Fig. 4 for sample frames from an interaction with
an object that illustrates this technique at work.

Once the object has been localised over the entire motion
sequence, colour and edge histograms are calculated over its
local area for every frame and histogram differences are cal-
culated between frames using the Bhattacharyya coefficient.
Histogram difference averages are then calculated from the
start of object motion until the end. We determine the start
frame of object motion in a similar way to Fitzpatrick et
al. [8] by looking for a significant expansion of the image re-

gions segmented by background subtraction, e.g. when the
arm moves towards the object. We derive 3 result features
from this procedure: average colour histogram difference,
average edge histogram difference, and the multiplication of
these two values. Although these features are sensitive to
object rotation, this may not necessarily be a bad thing since
objects that rotate behave differently to those that do not by
definition, and this may equate to a significant difference in
terms of their respective affordances.

5 Learning Method

Our learning method is outlined visually in Fig. 5 and in
algorithmic form in Algorithm 1. It involves 2 main stages:
unsupervised clustering in the result space and training a su-
pervised classifier in object property space using the clusters
as labels. These are described later in Sections 5.1 and 5.2.
In Stage 1, we chose to use a self-organizing map (SOM)
[11] to vector quantize the result space. In [17], we pro-
vided a more detailed review of the SOM training algorithm,
but to briefly summarise, a SOM is effectively a finite set of
nodes that are connected to each other via a map topology
and a neighbourhood relation on a low-dimensional (usu-
ally 2D) grid. These nodes contain weight vectors that share
the same dimensionality as the data that the SOM is trained
on. Training occurs by way of finding best-matching unit
(BMU) nodes in the SOM for input data vectors and updat-
ing both the BMU and its neighbours using an update rule.
The overall result of this type of competitive learning
amounts to a form of vector quantization that preserves the
topological structure of the input data. We use SOMs in our
algorithm as a first step towards making the algorithm ca-
pable of on-line learning. The SOMs may be trained incre-
mentally and always maintain a fixed, pre-selected number
of nodes. The neighbourhood function and learning rate are
also easily adjustable. This means that if we have a small
amount of data, the learning rate can be increased so that
data clusters are approximated quickly, or if we have a large
amount of data, the learning rate can be decreased to ac-
comodate the additional information over a longer learning
period, all while maintaining a constant dataspace size. The
type of two-staged clustering of data described in the previ-



Author’s version — provided for personal and academic use. Do not redistribute.

Figure 4: An example of the object tracking mechanism described in Section 4.2. The images in the first row show a progression of frames
tracking a Sprite can being pushed by the arm. The outer rectangle is a likelihood window around the object obtained using the particle filter
tracker. The inner rectangle is the result of using histogram back-projection within that window to localise the object. The second row of
close-up images shows how the appearance of the object within the inner rectangle changes during the course of object motion.

ous paragraph, where a SOM is trained on the data before
it itself is clustered using k-means or another unsupervised
clustering algorithm, has previously been shown to perform
well when compared to direct clustering of the data and also
reduces the computation time [23]. This would obviously be
a desirable trait to incorporate in an on-line learning system.

() (%))
1 1
Result Vectors | . Object Property Vectors

y X
) 9

Stage 2
SVM Classifier

Stage 1

A SOM is trained using full
set of result vectors only. These clusters are then used as class
labels along with the object property

vectors to train an SVM classifier.

— t
i v
o .,\ After Stage 1, object property vectors

with corresponding result vectors are
used together in Stage 2. K-nearest
neighbour search is used to identify
* the clusters in the SOM that best
match the result vectors.

SOM nodes are clustered using
K-Means with K selected a
priori based on the number of
anticipated affordance classes.

Figure 5: Our learning algorithm. See Section 5 for further details.

Classification

Affordance class

. 1“
Object Property {:] —> SVM Classifier —> grounded in result

Vector . space

T

Figure 6: Classification of object property vector inputs.

5.1 Stage 1: Unsupervised Clustering in Result Space

In Stage 1 of our learning procedure, given a training set
of object property feature vectors and corresponding result
feature vectors, a SOM is trained using the full set of result
vectors only. The nodes of the SOM are then clustered using
k-Means clustering, similarly to a method reported in [23],
using a value of k that is selected a priori based on the antic-
ipated number of affordance classes present in the dataset.
These SOM clusters are then used as class labels to train a
supervised classifier in Stage 2 of the learning procedure.

5.2 Stage 2: Training a Supervised Classifier in Object
Property Space

Here, the entire training set of both object property vectors
and corresponding result vectors is then taken, and the best-
matching SOM cluster is found for each result vector using
a k-nearest neighbours (KNN) search. The best-matching
clusters for each result vector are then used along with the
corresponding object property vectors to train a support vec-
tor machine (SVM) classifier [4] with a radial basis function
(RBF) kernel in the object property space. After training,
test samples may be classified in terms of affordance classes
(i.e. the SOM clusters) grounded in the result space using
their object property feature vectors, as shown in Fig. 6.

6 Experimental Results

6.1 Description of Experiment

To test our affordance learning system, the experimental en-
vironment was set up as previously described and as shown
in Fig. 2. The Bumblebee stereo camera was positioned on
a tripod on the right side of the workspace above the table
surface, while the monocular Flea camera was positioned in
front of the workspace, also on a tripod, giving both cameras
a top-down viewpoint of the scene.

A pushing action was provided to the system which in-
volved keeping the forearm part of the arm orthogonal to the
work surface and pushing from the top part of the workspace
to the centre, through a fixed object start position as shown
in Fig. 4. We selected 8 household objects to be used in the
experiments as shown in Fig. 7: four non-rolling objects- a
book, a CD box, a box of tea and a drink carton, and four



Author’s version — provided for personal and academic use. Do not redistribute.

Input: Training dataset of matching object property vectors
OP; ={x1,...,x,}, result vectors R; = {y1,...,ya}
and constant k.

Output: Affordance classifier C.

1: Normalise {OP;} N0 and {R;} Ybae.
2: Create SOM with Ngom nodes {Wz}fvz“l”“ where

3: Initialise the SOM by randomizing the weight vectors
and setting an initial learning rate o.
4: foreach R;,i = 1... Npgat, do
5. Find SOM BMU, Wg,, for R; using
[IR; — W, || = min, {|[R; - W]}
6:  and update the ¥V; SOM nodes using the following
update rule:
Wi(t+1) = W;(t) + a(t) Hy,, ) [Ri(t) — W;(t)]
where ¢ denotes time, H- Wr, () is the neighbourhood
kernel around the BMU Wg, and «(t) is the learning
rate at time ¢.
7: end for
8: k-means cluster the SOM nodes to get clusters { K }*_;.
9: for each OP;, R;,i = 1... Npata do
10:  Use KNN search to find Kx,, the best-matching
SOM cluster for R;.
11: end for
12: Train SVN classifier C' in object property space using
an RBF kernel with {OP;, Kr, }izlg’m as the dataset,
where the K, are treated as labels.

rolling objects- a box of cleaning wipes, a Pepsi can, a Sprite
can and a tennis ball box. Fig. 7 contains examples of in-
teractions with these objects and illustrates the distinct dif-
ference in behaviour between between them. During trials,
each of these objects was placed centred at the start position
with a consistent orientation, as in Fig. 3, and the Katana
arm pushed the object at a fixed speed using the pushing
action described earlier.

Before an action was performed on an object, both inten-
sity and range images were gathered from the Bumblebee
stereo camera. This data was then processed to produce the
12 object property features discussed in Section 4.1. After
an action was performed on an object, images were gathered
from the Flea camera and passed to the tracking system, as
well as the other feature extractors described in Section 4 to
produce 12 result features. The extracted features were then
used to train the affordance classifier. We used a 100-node
10x10 hexagonal lattice SOM with a sheet-shaped topology
and an initial « learning rate of 0.7.

In order to evaluate the affordance learning algorithm, we
first collected a dataset as follows. 20 object push tests were
carried out for each of the 8 objects listed previously and the
resulting data was processed, leaving 160 data samples. In
the following section’s evaluations, leave-one-out cross val-
idation was performed by spliting the dataset into a training
set of 140 samples consisting of all data for 7 of the objects
and a test set of 20 samples consisting of all data for the
remaining object. Cross validation was performed by using
each of the 8 objects in turn as the test object and averaging

sets and the 20 test samples contained therein.

6.2 Results

There were two major questions we were interested in.
Firstly, when performing actions on objects and observing
how they behave as a result, is the system capable of recon-
ising the results of its own actions? Secondly, when con-
fronted with an object it has not yet interacted with, is the
system capable of predicting what will happen when it does
interact with it? This second question can be broken down
further: does the system predict the same outcomes as a hu-
man would predict when presented with the same scenario?
We devised 3 evaluations to answer these questions, detailed
in the following sub-sections. Results are shown in Tab. 1.

In the following, the term test sample ground truth will
refer to the affordance ground truth label attached to the data
samples during data collection. These labels were manually
added to the dataset by the authors. The ground truth esti-
mates for the SOM affordance clusters in the classifier were
estimated by counting the number of ground truth labels that
gathered there during training.

6.2.1 Does the sytem recognise the results of its actions?
To answer this question, we assumed that the system had al-
ready observed the results of its actions contained in the test
dataset. After training the classifier using 7 training objects,
the best-matching SOM clusters for the test sample result
vectors were found using KNN over the SOM nodes, with
k set to 3. If the test sample ground truth corresponded to
the estimated cluster ground truth for the winning cluster,
this was deemed to be a true match. After performing leave-
one-out cross validation, the average score for this test was
100 % true matches, as shown in Tab. 1.

6.2.2 Can the system predict the results of its actions?
Here we assumed that the system had not yet observed the
results of its actions and trained the classifier using the ob-
ject property vectors in the training set. The test sample
object property vectors were then classified using the clas-
sifier as in Fig. 6 and the cluster label outputs were used to
identify the relevant clusters in the SOM. If the cluster se-
lected by the classifier was the same as the cluster selected
by KNN-matching the result vector (again with £ set to 3),
this was deemed to be a true match. Averaging over the
cross-validation scores, the result was 91.56 % .

6.2.3 Does the system predict the same results as a hu-
man? This final test once again assumed that the system
had not yet observed the results of its actions, and again in-
volved classifying the test sample object property vectors,
but this time, the estimated cluster ground truth was checked
against the test sample ground truth. If they matched, this in-
dicated that the system correctly predicted what the human
predicted in the same scenario. Averaging over the cross-
validation scores, the result was also 91.56%.

7 Conclusion & Future Work

To conclude, we have provided a discussion on the problem
of affordance learning, as well as a review of related works



Author’s version — provided for personal and academic use. Do not redistribute.

100%
91.56 %

Recognition
Prediction

N/A
91.56 %

Table 1: Experimental results: recognition of the observed effect
(based on the extracted result features), prediction of the effect
(based on the extracted object property features); with respect to
estimated affordance classes (obtained by unsupervised clustering)
or to manually labelled affordance ground truth classes.

in the area and how our work contributes. We have outlined
the major technical aspects of our system and we have pro-
posed a novel learning algorithm that can learn basic affor-
dances of objects in a real-world environment by interacting
with them using a robotic arm. Finally, we have proven the
efficacy of this method with an experimental evaluation.

Interesting topics for future work include possible tech-
niques for automatically estimating & (the number of affor-
dance classes), on-line learning, training the system on more
than one action, and trying a different affordance learning
scenario, e.g., grasping objects.

Acknowledgement

This research has been supported by: EU FP6 project VI-
SIONTRAIN (MRTN-CT-2004-005439), EU FP7 project
CogX (ICT-215181), and Research program P2-0214 Com-
puter Vision (Republic of Slovenia).

References

[1] Y. Boykov and V. Kolmogorov. An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1124—-1137,
2004.

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast
Approximate Energy Minimization via Graph Cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 1222-1239, 2001.

[3] D. Comaniciu and P. Meer. Mean Shift: A Robust
Approach Toward Feature Space Analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages
603-619, 2002.

[4] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273-297, 1995.

[5] L. Cos-Aguilera, L. Canamero, and G. Hayes.
Motivation-driven learning of object affordances:
First experiments using a simulated khepera robot. The
Logic of Cognitive Systems. Proceedings of the Fifth International
Conference on Cognitive Modelling, 1001:57-62, 2003.

[6] I. Cos-Aguilera, L. Canamero, and G. Hayes. Using a
sofm to learn object affordances. Proceedings of the 5th
Workshop of Physical Agents (WAF’04), Girona, Spain, 2004

[71 ML.A. Fischler and R.C. Bolles. Random sample
consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381-395,
1981.

(91

[13]

(14]

(15]

(18]

experimental manipulation. Philosophical Transactions:
Mathematical, Physical and Engineering Sciences,
361(1811):2165-2185, 2003.

P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and

G. Sandini. Learning about objects through
action-initial steps towards artificial cognition. In
Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), volume 3, 2003.

J.J. Gibson. The Ecological Approach to Visual Perception.
Lawrence Erlbaum Associates, 1986.

T. Kohonen. Self-organizing maps. Springer Series In
Information Sciences; Vol. 30, page 426, 1997.

V. Kolmogorov and R. Zabih. What Energy Functions
Can Be Minimized via Graph Cuts? IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 147—159,
2004.

M. Kiistan, J. Pers, A. Leonardis, and S. Kovaci¢. A
hierarchical dynamic model for tracking in sports. In
Proceedings of the sixteen Electrotechnical and Computer Science
Conference, ERK07, September 2007.

M. Kiristan, J. Per§, M. Perse, and S. Kovacic.
Towards fast and efficient methods for tracking
players in sports. In J. Per§ and D. R. Magee, editors,
Proceedings of the ECCV Workshop on Computer Vision Based
Analysis in Sport Environments, pages 14-25, May 2006.

J. Malcolm, Y. Rathi, and A. Tannenbaum. A graph
cut approach to image segmentation in tensor space.
In Workshop on Component Analysis Methods (CVPR), pages
18-25, 2007.

G. Metta and P. Fitzpatrick. Early integration of
vision and manipulation. Adaptive Behavior,
11(2):109-128, 2003.

B. Ridge, D. Skocaj, and A. Leonardis. A system for
learning basic object affordances using a
self-organizing map. In Proceedings of First International
Conference on Cognitive Systems (CogSys)), 2008.

A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng.
Robotic grasping of novel objects. In In Proceedings of
the Twentieth Annual Conference on Neural Information Processing
Systems (NIPS) Conference, Vancouver, Canada, 2006.

A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic
Grasping of Novel Objects using Vision. The
International Journal of Robotics Research, 27(2):157, 2008.
A. Stoytchev. Behavior-grounded representation of
tool affordances. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages
3060-3065, 2005.

A. Stoytchev. Toward learning the binding
affordances of objects: A behavior-grounded
approach. Proceedings of AAAI Symposium on Developmental
Robotics, pages 21-23, 2005.

M.J. Swain and D.H. Ballard. Color indexing.
International Journal of Computer Vision, 7(1): 11-32, 1991.
J. Vesanto and E. Alhoniemi. Clustering of the
self-organizing map. Neural Networks, IEEE Transactions on,
11(3):586-600, 2000.



Author’s version — provided for personal and academic use. Do not redistribute.

Figure 7: Sample interactions as seen from the Flea camera of the test objects from Section 6 being interacted with. From top row to bottom:
a book, a CD box, a box of tea, a drink carton, a box of cleaning wipes, a Pepsi can, a Sprite can, and a tennis ball box. The first four objects
tend to slide, while the last four tend to roll.



