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Abstract. We present an artificial cognitive system for learning visual
concepts. It comprises of vision, communication and manipulation sub-
systems, which provide visual input, enable verbal and non-verbal com-
munication with a tutor and allow interaction with a given scene. The
main goal is to learn associations between automatically extracted visual
features and words that describe the scene in an open-ended, continuous
manner. In particular, we address the problem of cross-modal learning of
visual properties and spatial relations. We introduce and analyse several
learning modes requiring different levels of tutor supervision.

1 Introduction

In a real world environment, a cognitive system should possess the ability to learn
and adapt in a continuous, open-ended, life-long fashion in an ever-changing en-
vironment. This learning is inherently cross-modal; the system should use all
of its percepts and capabilities when trying to sense and understand the envi-
ronment, and update the current knowledge accordingly. This learning should
be performed efficiently via interaction with the environment and with other
knowledgable cognitive systems (e.g., a tutor), which may facilitate the learning
process and make it robust and reliable.

In this paper we present an artificial cognitive system for learning visual
concepts that addresses the premises mentioned above. The main goal is to
learn associations between automatically extracted visual features and words
describing the scene in an open-ended, continuous manner. The continuous and
multimodal nature of the problem demands careful system design. Our architec-
ture is composed of vision, communication and manipulation subsystems, which
provide visual input, enable verbal and non-verbal communication with a tutor
and allow interaction with the scene. Such a multi-faceted active system provides
means for efficient interaction with its environment facilitating user-friendly and
continuous cross-modal learning.

In particular, we address the problem of learning visual properties (such as
colour or shape) and spatial relations (such as ‘to the left of’ or ‘far away’). The
main goal is to find associations between words describing these concepts and
simple visual features extracted from the images. This symbol grounding prob-
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lem3 is solved using a continuous learning paradigm in a cross-modal interaction
between the system and the tutor. This interaction plays a crucial role in the
entire learning process, since the tutor provides very reliable information about
the scenes in question. This information can also be inferred by the system itself,
reducing the need for tutor supervision, however also increasing the risk of false
updates and degradation of the current knowledge. In this paper we introduce
and analyse several different learning modes requiring different levels of tutor
supervision.

Similar problems have often been addressed by researchers from various fields,
from psychology, to computational linguistics, artificial intelligence, and com-
puter as well as cognitive vision. Since the symbol grounding problem (SGP) was
introduced by Harnad in 1990 [1], a plethora of papers have been published aim-
ing to address it [2–7]. Our work is closely related to that of Roy [4, 5], in that
our framework focuses on learning qualitative linguistic descriptions of visual
object properties and scene descriptions. His system in [4] was designed to learn
word forms and visual attributes from speech and video recordings, and subse-
quently, he extended this work for generating spoken descriptions of scenes [5].
The work of Chella et al [2, 3] contains further attempts at developing cognitive
learning frameworks involving symbol grounding. Their system in [2] attempts to
ground linguistic symbols in superquadric representations of scenes using neural
networks. On the systems-oriented front, Bauckhage et al expound a framework
for robot-human linguistic interaction in [8] that is similarly modular to ours.

Our framework however, while vying for similar goals to those of the above
authors, differs significantly in two key respects: firstly, it performs continuous
online learning and secondly, it employs multiple learning modes featuring vary-
ing degrees of tutor interaction. Moreover, the learning mode may be altered
dynamically at any point during the learning process.

A fair amount of work exists on the subject of online learning [9–11], par-
ticularly with regard to object recognition, e.g., [9], where the authors have
developed a biologically motivated feature-hierarchy based method that com-
bines notions of short-term and long-term memory to achieve online learning of
objects. The authors of [10] developed an online learning system for the AIBO
robot that uses a similar dialogue setting for tutor interaction to ours here. In
our system, we utilise online learning for learning qualitative object properties
with a view toward using this as a basis for further learning.

The paper is organised as follows. In the next section we present our system
and the individual modules. In Section 3 we propose a general framework for con-
tinuous learning involving different learning modes and a specific implemented
method embedded into this framework. We then present the experimental results
in Section 4. Finally, we summarise and outline some work in progress.

3 Relating/connecting (linguistic) symbols to sub-symbolic interpretations of the phys-
ical world.
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2 Integrated System

Any artificial cognitive system is by definition a compound of a number of com-
ponents, including sensory components, communication sub-systems, processing
modules, and possibly manipulation components. All of these components have
to be tightly integrated in a unified system enabling the robust performance of
the individual components and efficient communication between them to ensure
synchronised and holistic functioning. Fig. 1(a) shows the setup of our system,
while Fig. 1(b) depicts all of the components of our system and the connections
between them in a schematic way. The dashed arrows indicate how requests
are passed from module to module and the solid arrows indicate the flow of
results (data). All of the modules are briefly described in the next subsection,
followed by a subsection on the integration framework used to connect all of the
components together in a unified system.
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Fig. 1. (a) System setup. (b) System diagram.

2.1 System Modules

Video Server. This module provides visual input to the system. Images are
retrieved from a V4L (Video4Linux) compliant video device and placed in a
circular buffer with a preset number of frames. Frames are identified by unique
timestamps which are pushed to other components when each frame is retrieved.

Attention. The attention module is used to detect changes in the scene. Every
frame is pulled from the video server and compared with the previous one. When
a substantial change in the image has been detected the attention module waits
for the scene to settle down, and then notifies the system specifying the region
of interest where the change has occurred.

Object Segmentation. This module serves for figure/background segmenta-
tion. Since the camera is static, it first learns the representation of the back-
ground and then uses this information for segmenting objects from the back-
ground. Each new object is stored along with its segmentation mask.
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Feature Extraction. This module gets a part of the image (ROI) along with
the corresponding segmentation mask and returns the features, which are then
used for recognition and/or learning. In principle, the system could use any type
of feature detectors; in the current implementation a few simple appearance,
shape and distance features are extracted.

Learning and Recognition. The Learning and recognition module maintains
the representations of all of the visual concepts that are being learned. Using
the features extracted in the Feature extraction module, it is able to recognize
the already learned visual concepts and to update the current representations.
The quantitative results are then returned to the VLR manager, which processes
them further. A more detailed description of the representations and the learning
and recognition method is given in Section 3.

VLR Manager. The Visual learning and recognition manager is the cen-
tral module in the system. It continuously monitors and waits for recogni-
tion/learning requests from the dialogue system and from the attention module.
It then processes these requests (given in a symbolic form) and subsequently
calls the corresponding modules. Afterwards it processes the obtained replies
and again acts accordingly - whether it sends a request for forming a question
or an answer to the dialogue system, or contacts the manipulator control to per-
form an action, or continues with the learning process. These decisions are made
in accordance with the current state of the system and with the applied learning
mode. A detailed description of different learning modes and actions that can
be taken is given in Section 3.

Dialogue Subsystem. The dialogue subsystem serves as an interface between
the system and the user, processing users spoken utterances and generating
symbolic descriptions and vice-versa, producing sentences in natural language
from symbols obtained from the VLR Manager. The speech recognition interface
uses Sphinx 4, a pure Java and open source speech recognition framework. It uses
a medium sized vocabulary that is part of the Sphinx 4 standard distribution.
The grammar is defined in the Java Speech Grammar Format (JSGF). Since
the speech recognition system is not completely reliable we also use a standard
input with a keyboard and mouse as a backup solution when necessary. Robot
responses are processed using the FreeTTS (Text-to-Speech) Java library and the
generated sentences are then played back to the user in the natural language.

Manipulator Control. To also enable active manipulation, we included the
Neuronics Katana Arm 6M180 manipulator in the system. It has five degrees of
freedom and a gripper, and is able to handle various objects up to 500g in weight
and 8cm in size. It is currently used to enrich the interaction between the user
and the system. The robot arm is able to point at objects in the scene so as to
resolve ambiguities and ease communication.

2.2 Integration Framework

To facilitate communication between most of the components we use the pro-
cess communication framework BALT [12]. For cross-language compatibility, the
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toolkit supports components written in the Java and C++ languages. To hide
communication details from the end-user, the toolkit uses CORBA (Common
Object Request Broker Architecture), as its underlying communication archi-
tecture, thus making it possible for the components to communicate over any
TCP/IP network. The system can thus be distributed over several computers.
Components running on the same machine can share data using shared memory.

BALT components can be connected using two types of connections, namely
push and pull. If the provider of certain data needs to notify other components,
the push connection is used. An example of this is the video server component
that pushes frame timestamps on every frame change to registered components.
Pull connections are used by components to query providers for data. As an
example, the attention module uses a pull connection to the video server to get
a new frame when the timestamp is received.

3 Continuous Learning Framework

At the heart of the system is a continuous learning framework that processes
requests, performs recognition, and updates the representations according to the
current learning mode. In this section we define several learning modes which
alter the behaviour of the system and require different levels of tutor involvement.

When implementing a continuous learning mechanism, two main issues have
to be addressed. Firstly, the representation, which is used for modeling the ob-
served world, has to allow for updates when presented with newly acquired
information. This update step should be efficient and should not require ac-
cess to previously observed data, while still preserving the previously acquired
knowledge. Secondly, a crucial issue is the quality of the updating, which highly
depends on the correctness of the interpretation of the current visual input. With
this in mind, several learning strategies can be used, ranging from completely su-
pervised to completely unsupervised. Here we discuss three such strategies:

• Tutor-driven approach (TD). The correct interpretation of the visual
input is always correctly given by the tutor.

• Tutor-supervised approach (TS). The system tries to interpret the
visual input. If it succeeds to do this reliably, it updates the current model,
otherwise asks the tutor for the correct interpretation.

• Exploratory approach (EX ). The system updates the model with the
automatically obtained interpretation of the visual input. No intervention
from the tutor is provided.

We further divide tutor-supervised learning into two sub-approaches:
• Conservative approach (TSc). The system asks the tutor for the correct

interpretation of the visual input whenever it is not completely sure that
its interpretation is correct.

• Liberal approach (TSl). The system relies on its recognition capabilities
and asks the tutor only when its recognition is very unreliable.

Similarly, we also allow for conservative and liberal exploratory sub-appro-
aches (EXc, EXl).
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To formalise the above descriptions, let us assume that the recognition al-
gorithm always gives one of the following five answers when asked to confirm
the interpretation of the visual scene (e.g., the question may be: “Is this cir-
cular?”): ‘yes’ (YES), ‘probably yes’ (PY), ‘probably no’ (PN), ‘no’ (NO), and
‘don’t know’ (DK). Table 1 presents actions that are taken after an answer is ob-
tained. The system can either ask the tutor for the correct interpretation of the
scene (or the tutor provides it without being asked), update the model with its
interpretation, or do nothing. As is seen in Table 1, the system can communicate
with the tutor all of the time (TD learning), often (TSc), occasionally (TSl) or
even never (EX learning). This communication is only initiated by the tutor in
the tutor-driven approach, while in other approaches the dialogue and/or the
learning process is triggered by the system itself.

Table 1. Update table.

YES PY PN NO DK

TD ask ask ask ask ask
TSc update ask ask / ask
TSl update update / / ask
EXc update / / / /
EXl update update / / /

To speed up the initial phase of the learning process and to enable devel-
opment of consistent basic concepts, one could start with mainly tutor-driven
learning with many user interactions. These concepts would then be used to
detect new concepts with limited help from the user. Later on in the process,
when the ontology is sufficiently large, many new concepts could be acquired
with limited or even without user interaction.

An important part of such a framework is an update algorithm, which is able
to continuously update representations of visual concepts being learned, and a
recognition algorithm, which is able to query these representations and produce
quantitative answers. I.e., the main task of these algorithms is to assign associ-
ations between extracted visual features and the corresponding visual concepts
(visual attributes or spatial relations). It has to consider two main issues: con-
sistency and specificity. It must determine which automatically extracted visual
features are consistent over all images representing the same visual concept and
that are, at the same time, specific for that visual concept only. Note that this
process should be performed incrementally, considering only the current image
and learned representations – previously processed images cannot be re-analysed.

In principle, any method for incremental visual learning and recognition that
fulfills the above mentioned requirements could be used. In our system we use
algorithms based on a generative representation of extracted features associated
with visual concepts. Each visual concept is associated with a visual feature
that best models the corresponding images according to the consistency and
specificity criteria mentioned above. The learning algorithm thus selects the
extracted feature whose values are most consistent over all images representing
the same visual concept (i.e. the variance is small and the feature values are
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concentrated around the mean value). At the same time it also ensures that
the same does not hold true for some other visual concepts, thus satisfying the
specificity criterion. A visual concept is therefore represented with the mean
and variance of the best feature [13] and this representation gets continuously
updated over time according to the selected learning mode.

4 Experimental Results

The cognitive vision system presented in this paper was primarily designed to
work in interaction with a user; it includes both a communication sub-system
and a manipulation module that ease tutor-system communication. Fig. 2 shows
a sample dialogue between the tutor and the system, which indicates the process
of learning of object visual properties (colour, size, and shape). The first part
of the dialogue took place in the tutor-driven learning mode, when the tutor
was teaching the system about the objects in the scene, while the second part of
the dialogue took place using the tutor-supervised modes of learning, when the
system took the initiative and asked the tutor for clarification when needed. In
other experiments, the system may also have used the robot arm to point at the
object of interest when many objects were present. The communication between
the tutor and the system is thus performed in a very natural and user friendly
way.

’H: This is a blue, large, and square object.’
’R: OK.’
...
’H: What do you see?’
’R: I don’t know this object.’
’H: It is green, small, and triangular.’
’R: OK.’
...
’H: What do you see?’
’R: I see a small and square object.’
’H: Yes, that’s correct.’
’R: OK.’
...
’H: What do you see?’
’R:I see a green object. I think it is also large.’
’H: Yes, that’s correct.’
’R: OK.’
’H: It is also rectangular.’
’R: OK.’

...
’R: I don’t know this object. What is it like?’
’H: It is blue, small, and rectangular.’
’R: OK.’
...
’R: Is this object large?’
’H: Yes, that’s correct.’
’R: OK.’
’H: It is also yellow and circular.’
’R: OK.’
...
’R: Is this object red?’
’H: No, it is not red.’
’R: OK.’
’H: It is yellow.’
’R: OK.’
...
’H: What do you see?’
’R: I see a red, small, and triangular object.’

Fig. 2. An example dialogue between the tutor (H) and the system (R).

However, to comprehensively analyse the proposed learning modes, such in-
teractive work is time consuming and impractical. Therefore, we instead per-
formed experiments on images with known ground truth, and simulated the
answers of the tutor by replacing the dialogue system. In this way the extensive
tests could be automatically performed and a reliable evaluation of the proposed
methods were obtained.

We tested the algorithms by running a number of experiments on both ar-
tificial and real data. Basic shapes of various different colours and sizes were

Author’s version — provided for personal and academic use. Do not redistribute.



selected as test objects. Some of them are depicted in Fig. 3(a). We considered
three visual attributes (colour, size and shape), and ten values of these visual
attributes altogether (red, green, blue, yellow; small, large; square, circular, tri-
angular, and rectangular).

The objects were first perspective-rectified and segmented from the back-
ground. Then the visual features were extracted. We used six simple one-dimen-
sional features; three colour features (median of hue, saturation and intensity
over all pixels in the segmented region) and three simple shape descriptors (area,
perimeter and compactness of the region). The main goal was to find associations
between ten given attribute values and six extracted features.

We put half of the images in the training set and other half in the test set and
kept incrementally updating the representations with the training images using
different learning strategies. At each step, we evaluated the current knowledge
by recognising the visual properties of all test images. The evaluation measure
we used is recognition score, which rewards successful recognition (true positives
and true negatives) and penalises incorrectly recognised visual properties (false
positives and false negatives).

The results (the curves of the evolution of the recognition score through
time) of the experiment on the synthetic images (averaged over 40 trials on
different sets of generated images with added noise) are presented in Fig. 3(c).
All different learning strategies presented in Section 3 were tested. First, we
applied the various learning modes starting with one training image from the
beginning of each run (denoted as TSc1, TSl1, etc.). After that we repeated the
experiment by first applying the tutor driven mode (TD) to the first 10 images,
and then continuing by incrementally adding the rest of the images using other
approaches (TSc10, TSl10, etc.). Fig. 3(c) shows the plots of recognition scores.

The tutor-driven learning successfully associates the colours of the input
objects with the hue feature, their sizes with the area feature and their shapes
with the compactness feature. Recognition of visual attributes is very successful;
it almost gets the maximal score (640 in this case). However, the tutor has
to provide all information (about 10 visual attributes) to the system at every
step. Tutor-supervised learning proved to be quite successful as well. In this case
conservative strategy yields better results, since it asks the tutor for reliable
information more often. In the beginning the system does not have a lot of
knowledge, so the tutor is asked for help more frequently. After the knowledge
is acquired, the number of questions decreases (from 10 at the beginning to 2
after 20 updates). The explorative approach, which does not involve interaction
with the tutor, does not significantly improve the model. So, as expected, there
is a trade-off between the quality of the results and the autonomy of the system.
Similar conclusions can also be drawn from the results of the experiment on real
data shown in Fig 3(d).

Exactly the same system was also used for learning simple spatial relations.
We only changed the features that were to be extracted from the image. In
this case we used five distance features – horizontal and vertical position of the
object in the scene, absolute differences in the horizontal and vertical positions
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of two objects, and euclidian distance between them, when two objects were
present in the scene. Using these five features, the learning framework was able
to learn eleven spatial relationships (six binary relations between two objects
(with respect to the observer/camera): ’to the left of’, ’to the right of’, ’closer
than’, ’further away then’, ’near to’, ’far from’, and five unary relations describing
the position of the object in the scene: ’on the left’, ’in the middle’, ’on the
right’, ’near’, and ’far away’). The correctly assigned associations, along with the
previously learned visual attributes, enabled the automatic detection of objects
and the production of scene descriptions such as those presented in Fig. 3(b).

A

B

A is red.
B is yellow.
A is on the right.
A is far away.
B is on the left.
A is to the right of B.
A is further away than B.
A is far from B.
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Fig. 3. (a) Synthetic shapes and real objects of similar shape. (b) Automatically ob-
tained scene description. (c) Recognition score on synthetic images. (d) Recognition
score on real images.

5 Conclusion

In this paper we presented an artificial cognitive system for continuous learning
of visual concepts. It comprises of vision, communication and manipulation sub-
systems and it is based on a framework for continuous learning that enables three
modes of learning requiring different levels of tutor supervision. We experimen-
tally evaluated these three learning strategies and concluded that the learning
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process should start with tutor-driven learning to enable development of consis-
tent basic concepts, which could be updated later on in a tutor-supervised way
requiring fewer tutor interventions.

Beyond this work, we aim to improve the learning method as well as to further
analyse the proposed framework and evaluate different learning strategies under
various conditions and in various applications. We will employ the robot arm for
more advanced tasks, so that the system will actually be able to actively plan
and perform actions and explore effects of the actions on objects, thus learning
the object affordances as well. We thus aim to develop an even more general
system for continuous learning that is capable of extending its ontology with
other types of visual concepts as well.
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