
Author’s version — provided for personal and academic use. Do not redistribute.

components, for example, for error correction, are often

added here, too, to make the robotic system more robust

(Erdem et al., 2015; Nakamura et al., 2013; Stulp et al.,

2012).

The aforementioned industrially oriented methods

require a lot of effort from specialists (programmers and

system integrators), while learning methods remain far

from autonomous and only groups with expertise in learn-

ing are able to develop working examples. Recently,

research has also targeted the reduction of robot program-

ming and training efforts. Here, usage of advanced visual

interfaces (Huang et al., 2016; Schlette et al., 2014), also

paired with touch or gestures (Profanter et al., 2015), natu-

ral language instruction (Bollini et al., 2013; Misra et al.,

2016; Stenmark and Nugues, 2013; Tellex et al., 2011),

knowledge-based methods (Beetz et al., 2016; Tenorth and

Beetz, 2013), and advanced grasp and motion planning

(Alterovitz et al., 2016; Bohg et al., 2014), allow the robot

to behave in new environments.

We propose a framework for robot experience reuse,

based on a recombinable data structure for actions. The

structure allows code snippets to be cut from several exist-

ing action instantiations and put back together to represent

a new action instantiation (see Figure 1 for a schematic rep-

resentation). After validating the new action on a robot, we

store this action instantiation in the database for future

recombination and reuse. Thus, this approach might, over

time, become very powerful, by making use of the fact that

the database will continue to grow, allowing for more and

more possible recombinations.

Of specific interest for us was the development of a sys-

tem within a given larger application domain, essentially

independent of the robot. To this end, the data structure

introduced next allows for the storage of data from different

sources (e.g., from a KUKA LWR, or UR5, or from a simu-

lation), such that it is still possible to recombine the data

from these different sources into a new execution protocol.

We chose table-top manipulation actions as an application

domain. This includes tasks in a kitchen but also small-part

industrial assembly and chemical laboratory experimenta-

tion tasks. Hence, one goal of this study is to show that the

cut & recombine method works across different tasks and

different data sources.

As mentioned, to achieve this, the definition of an appro-

priate data structure and of the action recombination proce-

dures are the core of the problem. On top of this, one needs

to define a procedure that ‘‘tells the robot what to do’’, with-

out which the system would not know what to look for in

the database to begin with. The latter, we address by using

language-based instructions that can be understood by a

human operator, such as: ‘‘Place the bottle on the shelf’’,

performing a parsing procedure that specifically links to the

action instantiation database. To reduce the language-

analysis effort, we constrain the instruction language to

some degree, specifically requiring instructions to be

phrased with an appropriate level of granularity. Language

processing is not central to our study and, as a consequence,

we differentiate ourselves from that group of existing sys-

tems that emphasizes the translation of fully complex natu-

ral language, ubiquitous and incomplete, into robotic

execution (albeit usually in rather limited domains) (Bollini

et al., 2013; Lisca et al., 2015; Misra et al., 2016; Tellex

et al., 2011). We use simpler language than is used in these

studies, more related to the way one would give an instruc-

tion to a child or a ‘‘newbie’’ in a workshop. This makes

our approach quite intuitive and also accessible to new and

non-expert users. It also leads to more robust language pro-

cessing outputs and may result in a larger potential for

penetrating different robotic applications.

In summary, this article has three main contributions. (1)

Definition of a hierarchically organized data structure for

robotic action representation, which facilitates recombina-

tion. (2) A set of algorithms that allows sub-symbolic data

reuse from previous robot executions by recombining snip-

pets from existing actions. (3) A language link that allows

reuse based on simple language commands.

The rest of the paper is organized as follows: we start

with an overview of the approach in Section 2. Then we

describe the model assumptions on which the data struc-

tures are based in Section 3. Afterwards, we describe data

structures (Section 4) and procedures (Section 5) in full

detail. Then we provide results on instruction text process-

ing, as well as on recombination and execution of several

new instructions in Section 6. Finally, we evaluate our

approach and compare it with the state of the art in the dis-

cussion (Section 7).

Actions that robot has already executed; defined by instructions:

Act 1: Take the bottle from the shelf and put it on the tray.
Act 2: Take the cup from the table and shake it.
Act 3. Drop the bottle cap into the wastebasket.

New action; defined by instruction:

Take the bottle from the table and drop it into the wastebasket.

Act 1

Act 2

Act 3

Co
de

 sn
ip

pe
t 1

Co
de

 sn
ip

pe
t 2

Co
de

 sn
ip

pe
t 3

Co
de

 sn
ip

pe
t 4

New recombined

Time

Fig. 1. New action recombination using code snippets from

previously executed actions.

1180 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

2. Overview of the approach

Our system consists of three data structures and two main

procedures (see Figure 2).

Data structures are:

� Instruction ontology, containing verbs and nouns for

actions and objects, introduced to handle synonymy as

well as robotics-related instruction parsing issues.
� ADT database, where ‘‘ADT’’ stands for ‘‘action data

table’’. An ADT is an XML data structure containing

information from one previous robot execution of an

action down to control level parameters. While suffi-

cient for execution, the ADT also preserves the sym-

bolic link to the instruction ontology. ADTs have a

strict temporal structure allowing not only reuse of the

complete ADTs but also recombination of the ADT

snippets into new executable ADTs. A visualization

explaining the main aspects of the ADT is presented in

Figure 3.
� Action template library, where so-called action tem-

plates for a set of actions are stored. An action template

is an abstract encoding of an action, where the tem-

poral action structure is encoded in a systematic way.

Action templates are indexed (named) by the action

word (verb). The action template, as such, provides the

scaffold for the recombination processes. To create a

new ADT, the (abstract) bits and pieces of the relevant

action template will have to be filled in with snippets

from existing ADTs. The action template library pro-

vides a list of all here-investigated robot-executable

actions.

Thus, the goal of the system is to interpret a new instruc-

tion and create a new ADT, recombining snippets of ADTs

stored in the ADT database.

The procedure consists of two main parts:

� Symbolic processing (Figure 2, top), where—given a

new instruction—the corresponding action word (verb)

and object names (nouns) are extracted. Object names

are sorted according to the roles they play in the

planned execution. Action and object names with

object roles in the action are written into an empty

ADT, creating the so-called ADT blueprint. Based on

both action and object names in the new instruction, a

set of similar ADTs is extracted from the ADT

database.
� Sub-symbolic processing (a two-phased procedure, see

the bottom part of the diagram in Figure 2), where the

structural information from the action templates—the

scaffold—is used to search for useful snippets in the

set of similar ADTs. Those snippets are recombined to

form a new ADT for the new instruction. For this, we

also need to perform scene analysis in order to adapt

control information to the poses of objects in the actual

scene.

The triplet of instruction, action template, and ADT,

together with their processing routines, can be viewed as

components of a three-layer architecture. The instruction

represents an action at purely symbolic level (top layer).

The action template (middle layer) introduces an abstract

temporal action structure, based purely on the action word

in the instruction. Finally, the ADT (bottom layer) provides

execution-level details for each temporal segment intro-

duced in the action template. Note that the execution details

stored in an ADT depend not only on the action as such,

but also on the objects with which the action is performed,

as well as on the object geometry and poses in the scene

(all that information is provided in the ADT, as well). While

symbolic processing takes place at the highest level, we

employ two stages of sub-symbolic processing: action-tem-

plate-based structural analysis of the new action (middle

layer) and ADT-based snippet cutting and recombination

(bottom layer).

Details of the data structures and the procedures are pro-

vided in Sections 4 and 5.

Fig. 2. Overview of the approach.
ADT: action data table.

Tamosiunaite et al. 1181
Author’s version — provided for personal and academic use. Do not redistribute.

3. Model assumptions

We will first introduce the action model we are using in

this study. Data structures will then follow from that model.

The model encompasses elements from symbolic and sub-

symbolic (control) domains and helps to close the gap

between the human-understandable symbolic domain and

the robot-executable control domain.

3.1. Action temporal structure

We perform temporal action chunking at two different hier-

archical levels: semantic event chain level and movement

primitive level (see Figure 4 for visualization of those

levels).

� Semantic event chain (SEC). This gives a symbolic def-

inition of actions by encoding the sequence of touching

and un-touching events between object pairs (Aksoy

et al., 2011, 2017). This creates a well-defined and

reproducible temporal chunking of actions. A chunk is

a segment between two SEC (touching or un-touching)

events.
� Movement primitives. We further divide each chunk

into a sequence of movement primitives on the basis of

trajectory segmentation (Aein, 2016). Each movement

primitive corresponds to an elementary movement of

the robot arm or gripper, such as moving to a goal posi-

tion or grasping an object. The movement primitive list

is discussed in detail in Subsection 4.2. Within each

chunk, the given sequence of movement primitives

should be executed to achieve the event related to the

chunk.

3.2. Object roles

To make the action model independent of specific objects,

we define objects based on the roles that they play in the

action. These roles are determined by the types of change

Fig. 3. Main aspects of the action data table. Images on the left are provided only for visualization purposes and are not part of the

action data table.

1182 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

in object relations during the manipulation. An action starts

and ends with the manipulator not touching or holding any-

thing. From this, we get the following roles in our model:

1. Manipulator. The object that performs the action, for

example a human or robot hand.

2. Main. The object that interacts directly with the

manipulator.

3. Primary. An object that interacts with the main object.

The relation of main and primary object changes from

touching (T) to not touching (N).

4. Secondary. An object that interacts with the main

object. The relation of main and secondary object

changes from not touching (N) to touching (T).

In addition, we introduce supports: main support, pri-

mary support, and secondary support, for the main, pri-

mary, and secondary objects, respectively. At the start, the

relations of objects and their corresponding supports are

touching (T). In every action, we have at least the manipu-

lator and the main object. The existence of other object

roles depends on the action. For example, in the action

defined by the instruction ‘‘Push the bottle away from the

tray’’, the main object is the bottle and the primary object

is the tray, while in the instruction ‘‘Pick the bottle from the

shelf and place it on the tray’’, three object roles have to be

defined: the main object is the bottle, the primary object

the shelf, and the secondary object the tray.

3.3. Action granularity

As mentioned, in our framework, the start and end of an

action are clearly defined: an action starts and ends with a

free manipulator, which means that the manipulator does

not touch any other object. Between these two states, the

manipulator approaches the main object, touches it, and

performs the action. The reasoning behind defining atomic

actions in this way is discussed at great length by Wörgötter

et al. (2013). One advantage is that in this way we can

divide a long demonstration into smaller meaningful

actions in a reproducible way. We can also execute a long

task by sequencing several smaller actions. In addition,

such an action definition enables well-defined instruction-

to-action mappings to be made, as described next.

3.4. Language link

We execute instructions, which are formulated using so-

called ‘‘robotic action words’’. These are action words that

describe actions for which action templates exist in the

action template library and, thus, are robot-executable in

our system. The list of these actions is provided in Table 1.

We also define as robotic action words the verbs defining

parts of the action, such as pick up, fetch, and grasp. The

central requirement for an instruction is that only action

words from the robotic action list (or synonyms) are used,

e.g., ‘‘Pick up the bottle and place it on the tray’’, ‘‘Shake

the bottle’’, and ‘‘Shake the bottle and place it on the tray’’

would all be valid instructions within our requirements. We

do not compile instructions if they are given using action

words for which the property ‘‘robotic’’ is false (outside the

list). E.g. ‘‘Throw away the empty bottle’’ has an action

word throw away that is not in the ‘‘robotic action list’’ and

Fig. 4. Temporal action structuring at two different hierarchical levels: semantic event chain (SEC) and movement primitives (mov.

prim.). Video frames are taken for the instruction ‘‘Place the measuring beaker into a pot.’’ The SEC states (one to five) for this action

are specified in more detail in Table 2. The full movement primitive sequence (here it was truncated at the ends for visualization

purposes) is also given in the same table. The so-called object denominators are shown in parentheses under the movement primitives;

this is explained in Subsection 4.2.

Table 1. List of action templates (given by action names).

Align Lay Pull Put over
Chop Place (top-top) Punch Rotate
Cut Place (top-side) Push Screw
Drop Place (side-side) Push apart Shake
Insert Poke Push to Stir
Invert Pour Push from to Unscrew

Tamosiunaite et al. 1183
Author’s version — provided for personal and academic use. Do not redistribute.

thus would not be compiled. Such an instruction, alterna-

tively, can be expressed using robotic action words, e.g.

‘‘Drop the empty bottle into the wastebasket’’; if the waste-

basket has a lid, the task can be extended into a sequence of

instructions: ‘‘Put the wastebasket lid on the table’’,‘‘Drop

the empty bottle into the wastebasket’’, and ‘‘Put the waste-

basket lid on the wastebasket’’.

As shown in these examples, we allow more than one

robotic action word to be mentioned in the instruction. To

resolve this ambiguity, we define the action word property

‘‘central’’. This is the action word based on which the action

template is chosen for execution. Thus, this action word

must not be omitted in the instruction. In the examples con-

taining two action words, ‘‘Pick up the bottle and place it

on the tray’’ and ‘‘Shake the bottle and place it on the tray’’,

the central action words are place (first instruction) and

shake (second instruction), respectively. The remaining

action words in the instruction, we call ‘‘supportive’’. The

action words that do not have separate action templates

(pick or grasp) are always supportive, while the action word

place plays the role of the central action word in the first

instruction but the role of the supportive action word in the

second instruction.

ADTs are only labeled with respect to the central action

word in the instruction. The central and supportive action

words are distinguished in the instruction parsing proce-

dure, as described in Section 5.1.

4. Data structures

Here, we provide a detailed explanation of the three main

data structures introduced in Figure 2, adhering to the

action model described in the previous section. We also

briefly discuss how the databases were initially filled.

4.1. Data structure 1: instruction ontology

To form the instruction ontology, we use WordNet (Miller

et al., 1990) subsets separately for action words and object

names. In this study, we are mainly interested in WordNet

synsets, that is, groups of synonym words, which allow us

to resolve synonymy in the instructions (e.g., we want

action words put and place in the instructions to be treated

as the same word). The WordNet subset for action words

was formed manually (by choosing robotic-action-

compatible verb senses), based on the action template

names existing in the action template library (see Table 1)

and expanded by action names extracted from a set of sam-

ple instructions. Sample instructions were obtained using

video transcriptions, either readily provided on the Internet

(eleven videos) or transcribed by a small group of human

participants (four videos transcribed by three participants).

The video transcripts were needed to discover frequently

used alternative formulations for descriptions of actions

from the action template library, e.g. the action word insert

into in a robotic sense is a synonym of insert, but this rela-

tion is not provided in WordNet. We used a combination of

videos from robotic assembly of small parts and chemical

laboratory operations. By using such a combination, we

could cover the range of most frequent everyday actions

(e.g., place, insert, and turn were shown in the industrial

assembly videos, while pour, shake, screw, unscrew, and

invert were typical for the chemical experiment videos).

We added the earlier described binary-valued action prop-

erties ‘‘robotic’’, ‘‘central’’, and ‘‘supportive’’ to the action

words in the ontology. Finally, the ontology was fine-tuned

using the a sample of 250 instructions from a set of 500

instructions that we had created for evaluating our proce-

dures in this study. The instructions were created by a

group of three people who knew the language limitations

for instructing the robot but did not have knowledge of the

inner workings of the symbolic processing employed in this

study.

For the object ontology, object names were taken from

the sample instruction sets. Here again, the appropriate

senses of nouns were chosen and WordNet subsets corre-

sponding to those senses were extracted. All in all, we were

working with an ontology having 67 action classes (113

action names, when considering synonyms) and 305 object

classes. While these numbers seem small, it should be

noted that for manipulation on a table top in the kitchen,

chemical laboratory, or small industrial assembly not many

more actions exist. Object classes can be easily extended to

give many more actions; however, these were not yet

needed for our experiments.

Action and object names in the ontology were linked to

the ADTs. We organized this link by providing metadata

for the ADTs contained in the database. Metadata intro-

duce the relation between the ADT file name and the fol-

lowing set of names: central action and main, primary, and

secondary objects in the ADT. This allows tracking back of

which ADTs are associated to a given action or object

name appearing in the instruction ontology.

4.2. Data structure 2: action templates

Action templates are abstract action encodings following

the action model described in Section 3. One action tem-

plate represents one action (and its synonyms). Action tem-

plates are based on the action library developed by Aein

et al. (2013). In our work, we used 24 action templates from

the manipulation action ontology presented by Wörgötter

et al. (2013) (see Table 1). Note, as discussed next, that

these action templates form rigorous scaffolds for the differ-

ent actions, to allow allocation (and recombination of)

snippets.

In an action template, we provide a sequence of SEC-

based action chunks and a sequence of movement primi-

tives in each SEC-defined chunk, based on abstract object

roles (main, primary, secondary, etc.). An example of an

action template for the action place is given in Table 2 (note

that we label actions according to the central action word;

thus, for consistency, we will be using action name place

1184 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

instead of the more frequently used pick & place). Let us

explain the notation in the table in detail.

In the upper part of the table, the SEC information is

provided: that is, information of touching (T) and un-

touching (or non-touching, N) of object pairs throughout

the action. The leftmost column shows the object pairs for

which the SEC relations are calculated. Objects are given

in an abstract way, according to their roles. All other col-

umns show a single SEC state each, where the transitions

between two SEC states are the action chunks.

Beneath each SEC column in the table, we show the

sequence of movement primitives required to perform the

action chunk. We indicate the sequence of movement pri-

mitives by labels (P11, P12, P13, etc.), and below we specify

the movement primitive name and the object denominator

indicated in the brackets.

In the action template, we only consider movement pri-

mitives at the symbolic level (i.e., only movement primitive

names are given, where the movement primitive set that we

used is indicated in Table 3). For real execution, all move-

ment primitives must have control level parameters, as indi-

cated in the second column in Table 3. These control level

details are not indicated in the action template. Note that

the movement primitive list we are using is quite standard,

as arm-hand systems often use a similar movement primi-

tive list (Aksoy et al., 2016; Manschitz et al., 2014;

Stenmark et al., 2015).

The object denominators (main, primary, secondary, or

free, given in Table 2 in parentheses) are provided for

movement primitives arm_move and hand_pre, where the

latter is the pre-shaping of the hand. Object denominators

specify which objects are to be dealt with by a certain

movement primitive and are used to enable linking to the

actual objects, as given in existing ADTs. Thus, for exam-

ple, in the action template, the object denominator main

provides information that the robot arm movement has to

be interpreted with respect to the main (and not any other)

object.

The relational meanings of the object denominators pri-

mary and secondary are given in Table 4. We also use the

object denominator free, which specifies that the movement

Table 2. Action template in tabular form for action place. The semantic event chain (SEC) is given in the top part, with five states

(Roman numerals) and touching (T) and non-touching (N) relations for different object pairs in these states. Below, it is indicated that

four action chunks (Arabic numerals) are formed as transitions between the five SEC states. Movement primitive sequences belonging

to each action chunk are indicated in the bottom line; each movement primitive is denoted Pij, where i is the action chunk number and j

is the number of the movement primitive in that action chunk. Concrete movement primitives, in the format name(object denominator),

are shown below the table.

SEC
States (I) (II) (III) (IV) (V)
hand, main N T T T N
main, primary T T N N N
main, secondary N N N T T
main, p.s. N N N N N
main, s.s. N N N N N

Action chunks

Movement primitives P11 P12 P13 P21 P31 P41 P42 P43

hand_pre(main) arm_move(primary) arm_move(sec.) hand_ungrasp
arm_move(sec.)

arm_move(free)
arm_move(main)

hand_grasp

1 2 3 4

R
el

at
io

ns

p.s.: primary support; sec.: secondary; s.s.: secondary support.

Table 3. Movement primitives with parameters. The third

column indicates which parameters are extracted from action data

tables (ADTs).

Movement primitive Parameters Parameter source

arm_ move TCP pose ADTs
Main object pose
Primary object pose
Secondary object pose
Start time
End time

arm_rotate Rotation axis Default
Rotation angle
Start time
End time

arm_move_periodic Frequency Default
Amplitude in X
Amplitude in Y
Amplitude in Z
Start time
End time

hand_pre Opening width ADTs
hand_ungrasp No parameters
hand_grasp Gripping force Default

TCP: tool center point.

Tamosiunaite et al. 1185
Author’s version — provided for personal and academic use. Do not redistribute.

primitive is independent of objects in the scene. In the con-

text of the movement primitive hand_pre, we used an object

denominator to declare pre-grasp width; see the last line in

Table 4. Some movement primitives in our setting (e.g.,

hand_grasp and hand_ungrasp) are parameter-free and thus

require no object denominators.

4.3. Data Structure 3: Action Data Tables

(ADTs)

The ADT is a data structure that provides control level

information as well as the symbolic-to-control link. An

ADT consists of a header and body and is coded in XML.

In the ADT header, the following items are provided:

� initial language instruction;
� central action name;
� main, primary, and secondary object names;
� object dimensions and weight (when available);
� links to object 3D models (when available);
� precondition as poses of main, primary, and secondary

objects;
� SEC of the action;
� name of the robot or simulation setup in which the

action is performed.

In the ADT body, action chunk and movement primitive

information is provided at control level. The ADT body is

structured on the basis of action templates and keeps the

following information for each action chunk:

� start time;
� end time;
� TCP start pose;
� TCP end pose;
� main, primary, and secondary object start poses;
� main, primary, and secondary object end poses;
� a sequence of movement primitives with parameters as

described in Table 3;
� grasp information (if grasp is present) in an action

chunk;
� success specifier.

All information in the ADT is given in absolute coordi-

nates. Thus, ADT information can only be reused directly

in the same setup. To adapt to different setups, relative

information between different entities represented in the

ADT must be extracted. This can be achieved via coordi-

nate transforms.

4.3.1. Initial filling of the ADT database

The ADT database grows through the cut & recombine

approach but we had to kick-start it. Thus, the basis for our

experiments was a database of 28 ADTs for 10 different

actions performed using different objects. This ADT list is

found in Section 6, needed there to better understand our

final observations (see Table 10 in Section 6).

It is important in the cut & recombine method that ADT

information should transfer across similar robotic systems.

Hence, eight of those ADTs were acquired using the

KUKA LWR arm with Schunk SDH2 gripper, the same as

used in the test experiments; three ADTs were acquired

using a Universal Robot Arm UR5 with Schunk WSG50

gripper (Kramberger et al., 2016); and the remaining 17

ADTs were made in simulations using a Razor Hydra

device and the robotic simulator Gazebo, as described by

Haidu and Beetz (2016).

All these ADTs were created using different conven-

tional robot programming and simulation methods; the data

were semi-automatically extracted and stored as described

briefly in the following.

To extract ADTs from robot programs, action and

object names (ADT header) were entered manually.

Semantic event chains (Aksoy et al., 2011, 2017) were

extracted based on video information (augmented by touch

sensor readings); in this way, action chunks were obtained.

Within these chunks, arm and gripper movement segmenta-

tion was performed as described by Aein (2016), where the

standard approach of velocity change (Buchin et al., 2011;

Kong and Ranganath, 2008) was employed for segmenta-

tion. In addition, an ADT editor tool suite was developed

and employed to verify the obtained segmentation. This

suite of tools consists of both a command-line tool and a

graphical user interface (GUI) editor. The command-line

tool generates new, or populates existing, ADT XML files

using ROS bag recordings, either by making use of specia-

lized binary topics in the ROS bag file, indicating how the

bag file recordings should be parsed into ADT data

chunks, or by taking such annotations as manual input

arguments via intuitive point-and-click annotation along

the action timeline.

To extract ADTs from Gazebo simulations, symbolic

information was extracted and stored using the web ontol-

ogy language OWL (for the ADT headers) and low-level

data were saved into a MongoDB database. The tool suite,

discussed previously, was extended by tools for transform-

ing MongoDB knowledge entries into sub-symbolic data

for the ADTs.

Table 4. Relations expressed by object denominators.

Object denominator ADT information to be reused

main in arm_move Relation between TCP and main
object

primary in arm_move Relation between main and
primary object

secondary in arm_move Relation between main and
secondary object

free in arm_move Movement is object-independent
main in hand_pre Pre-grasp width, defined by

main object

ADT: action data table; TCP: tool center point.

1186 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

5. Procedures

In this section, we specify the algorithms we are using in

symbolic and sub-symbolic processing, briefly introduced

in Section 2.

5.1. Symbolic processing

The symbolic processing has two parts: (1) parsing the pro-

vided instruction for action and object name and role

extraction and (2) finding similar existing ADTs according

to the extracted action and object names.

Action and object name extraction is based on instruc-

tion syntactic analysis. Syntactic annotation is performed

using the Stanford Parser (de Marneffe and Manning,

2008). Parsing errors are corrected using a dictionary of

predefined syntactic roles, which are extracted from a refer-

ence set. Parsing errors occur because the Stanford Parser

is not adapted to instruction parsing. Obtained dependency

tree nodes are then analyzed by matching them with

Semgrex patterns (Chambers et al., 2007): head-dependent

relations are recognized using predefined regular

expressions.

To parse a syntactic dependency tree, we use the modi-

fied Breadth First Search (BFS) algorithm, which includes

static combinational logic blocks (Nivre and Nilsson,

2005). We assume that a parsed sentence is a directed acyc-

lic graph of words. Each word, depending on its syntactic

role, activates a set of logic rules, which are then used to

process further tree nodes. The sequence of rule execution

is important and proceeds down the rooted tree. First, we

identify the central action, then the main object, and, finally,

the primary and secondary objects. Our algorithm performs

the following steps:

1. Identify central action. The dependency tree is a

directed acyclic graph with the verb as root, where

each word appears exactly once (Klein and Manning,

2004). When there is only one verb in the sentence,

the root identifies the central action. If there are sev-

eral verbs, the relations between the verbs are ana-

lyzed. For the relation conj expressed by conjunction

and (e.g., in the instruction ‘‘Pick up the bottle and

place it on the tray’’), we query the instruction ontol-

ogy to disentangle which verb denotes the central

action (see Algorithm 1). For other conjunctions (e.g.,

after, although, or because), the root verb is consid-

ered to be the central action.

2. Identify multiword expression defining the central

action. If the link between the central verb and some

other word in a sentence describes phrasal, particle, or

serial relations (dependency relations
1

: compound: prt,

compound :svc or aux), the word is attached to the

expression of the central action. For example, using

the mentioned relations, the instruction ‘‘Put down the

bottle’’ is parsed with the central action put down.

Multiword central action expressions are recognized

using finite or non-finite clause expressions (depen-

dency relations: ccomp, xcomp). In the example ‘‘Start

mixing the liquid’’ the word mixing is identified as the

clausal complement of the verb start and thus serves

as the central action.

3. Identify main object. The core argument of the root

verb is the subject (dependency relation: nsubj) which

is normally omitted in instruction sentences. The sec-

ond dependency after the subject is the object. It is

recognized with nominal arguments: nsubjpass, dobj

(de Marneffe et al., 2014). For example, in a sentence

‘‘Place the pot on the table’’, the noun pot is identified

as the direct object of the root verb place. In the

robotic instruction, it takes the main object’s semantic

role. The use of passive forms of the subjects is

handled in the same way: e.g. in the sentence ‘‘The pot

shall be placed on the table’’, the noun pot is identified

as the main object of the passive verb placed.

4. Identify multiword expressions defining the main

object. To identify the noun or noun phrase and its

relations, we use the nmod dependency. For example,

‘‘Pour the content of the bottle’’ is parsed with the

main object content of bottle. We use a collocation list

to distinguish adjectival modifiers (relation amod, e.g.,

‘‘Get the red bottle’’: amod(bottle, red)) from colloca-

tion expressions, e.g., ‘‘measuring beaker’’ (colloca-

tions are word sequences that occur more often than

would be expected by chance and have special mean-

ings). The collocation list was prepared using a

domain-specific corpus, by calculating the logDice

coefficient (Markievicz et al., 2013).

5. Identify primary and secondary objects. Definition

of the primary and secondary objects is based on the

Algorithm 1 Procedure for choosing the central action.

Inputs:
� A list of action words that have relation conj in the

dependency tree obtained from the instruction.
� Instruction ontology indicating properties central_action and

supportive_action for action words.
Output:
� The action word for central action in the instruction.
1: procedure CENTRAL_ACTION

2: candidate_list =�.
3: Move all action words connected by relation conj to the

candidate_list.
4: Delete action words for which property central_action

= 0 from the candidate_list.
5: if more than one action word is remaining in the

candidate_list and there are action words for which
property supportive_action = 0 then

6: Delete action words for which property supportive_action
= 1 from the candidate_list.

7: if only one action word remains in the candidate_list then
8: The action word denotes central action.
9: else

10: Human intervention is required.

Tamosiunaite et al. 1187
Author’s version — provided for personal and academic use. Do not redistribute.

nmod dependency relation among indirect connections

with respect to the central action. The relation nmod is

used with different types of prepositions: place prepo-

sitions (e.g., in, on, at), direction prepositions (e.g., to,

toward, through, into) and device prepositions (e.g.,

by). The definitions of primary and secondary objects

are based on preposition types and the thematic role of

the action verb from VerbNet (Kipper et al., 2006). We

read each verb–preposition pair and compare it with

the pre-built VerbNet frame lists, separately for pri-

mary and secondary objects. For example, the verb

place in VerbNet has the thematic role destination and

the lexical frame NP V PP.destination NP.

Encompassing this thematic role allows the secondary

object to be recognized.

After extracting action and object names, we record

them in the otherwise empty ADT, in this way producing

an ADT blueprint. In addition, based on the extracted

names, a set of ADTs is extracted from the database, where

at least one of the symbolic names matches. These are can-

didate ADTs for extracting control information in the sub-

symbolic processing phase.

5.2. Sub-symbolic processing

Here, we recombine information from existing ADTs into

a new ADT for a new instruction. Two stages of processing

are used:

1. Abstract action-template-based analysis;

2. Cutting snippets from existing ADTs and recombining

them into a new ADT.

The action template usage in the algorithm is twofold.

First, an appropriate action template is used to extract the

movement primitive sequence required for execution of the

new instruction. Second, abstract movement primitive

replacement lists are formed based on action templates.

Searching for concrete control details (snippets in the exist-

ing ADTs) is then based on those lists.

Here, we show by an example what is meant by move-

ment primitive sequence extraction and then proceed to a

detailed description of the action-template-based analysis.

For example, for the instruction ‘‘Drop the bottle into the

wastebasket’’, we would use the action template for the

action drop (Table 5), where the following movement pri-

mitive sequence is given: hand_pre(main), arm_move(-

main), hand_grasp, arm_move(prim.), arm_move(sec.),

hand_ungrasp, arm_move(free). Object denominators are

shown in the parentheses. The movement primitives with-

out object denominators (here, hand_grasp and hand_un-

grasp) are parameter-free, thus, no information from

previous execution is needed. The movement primitives

with object denominators (all others) require snippet

extraction from the existing ADTs; a detailed explanation

of this procedure is given next.

5.2.1. Action-template-based analysis. This analysis is

based on the similarity of so-called neighborhoods of move-

ment primitives within different actions. Specifically, we

consider the self-inclusive temporal neighborhood, both at

the level of the movement primitive sequence and at the

higher hierarchical level of semantic event chain states.
2

An

example of the neighborhood of a movement primitive P12

is given in Table 5 using blue font. The exact procedure of

the neighborhood definition is given in the appendix.

Table 5. Action template in tabular form for action drop with the neighborhood of movement primitive P12 indicated in blue. Table

reads as follows: in the top part, the semantic event chain (SEC) is given with five states (Roman numerals) and touching (T) and non-

touching (N) relations shown for different object pairs in these states. Below, it is indicated that four action chunks (Arabic numerals)

are formed as transitions between the five SEC states. In the bottom line, movement primitive sequences for each action chunk are

indicated; each movement primitive is denoted Pij, where i is the action chunk number and j is the number of the movement primitive

in that action chunk. Concrete movement primitives in the format name(object denominator) are shown below the table.

R
el

at
io

ns

hand_pre(main) arm_move(prim.) arm_move(sec.)
hand_ungrasp

arm_move(free)
arm_move(main)

hand_grasp

1 2 3 4

SEC
States (I) (II) (III) (IV) (V)
hand, main N T T N N
main, primary T T N N N
main, secondary N N N N T
main, p.s. N N N N N
main, s.s. N N N N N

Action chunks

Movement primitives P11 P12 P13 P21 P31 P32 P41

prim.: primary; p.s.: primary support; sec.: secondary; s.s.: secondary support.

1188 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

We assume that a movement primitive of one action can

be replaced by the movement primitive of the same or a dif-

ferent action where the neighborhoods of the movement pri-

mitives match. Let us show by an example that reuse of

movement primitives from a different action is also viable.

Let us assume that we have an ADT for the instruction ‘‘Place

the bottle on the shelf’’ (the action template for place is pro-

vided in Table 2) and that the new instruction is ‘‘Drop the

bottle into the wastebasket’’ (the action template in Table 5).

One can observe that the emphasized neighborhood of move-

ment primitive arm_move(main) for the action drop (Table 5)

corresponds to the neighborhood of the analogous movement

primitive arm_move(main) in the action template for the

action place. Thus, we include the movement primitive arm_

move(main) from action place in the replacement list of the

movement primitive arm_move(main) for the action drop.

This corresponds to human judgment that one can most

probably approach the bottle with the arm for dropping it

the same way as the bottle has been approached for the

place action.

Now we will proceed to the algorithmic details of for-

mation of the movement primitive list for potential use in a

new ADT. The algorithmic procedure is shown in Figure 5.

The procedure is as follows:

� First, we extract a set of all possible movement primi-

tive neighborhoods from the action template library

(Figure 5(a)).
� Then we extract the action template indicated in the

ADT blueprint by the central action name and extract

movement primitives in a sequence from that template

(Figure 5(b)).
� For each of the movement primitives in the action tem-

plate for the new action, we extract the neighborhood.
� Finally, we search the entire extracted set of neighbor-

hoods for matches with the neighborhood of the new

action movement primitive (right side of Figure 5).

In this way, we make a list of possible replacements for

each movement primitive of the new action. An example of

the result of this procedure is given in Table 6, where the

replacement list for the movement primitive drop (1, 2) is

shown. Pairs of indexes indicate: (number of the action

chunk, number of movement primitive in the action chunk).

Fig. 5. Action-template-based replacement list formation. (a) Extraction of movement primitive neighborhoods from all action

templates. (b) Movement primitive replacement list formation procedure. The inputs are the ADT blueprint, the action template

library, and the set of all movement primitive neighborhoods extracted in part (a). The output is the sequence of lists of movement

primitive replacements indicated on the right. The notation P1(:), P2(:), Pm(:) means symbolic movement primitive names without

concrete parameters. Movement primitives here are labeled by a single index (as opposed to the double-index used elsewhere in the

paper) to simplify the notation. An labels the new action. The object denominator O for An is saved together with the replacement list.

Table 6. Replacement list for movement primitive (1,2), action

drop. Pairs of indexes denote the number of the action chunk and

the number of movement primitive in the action chunk in the

action template.

What to replace With what to replace

Action Index Action Index

Drop (1,2) Drop (1,2)
Insert (1,2)
Lay (1,2)
Place (1,2)
PutOver (1,2)
Screw (1,2)
Shake (1,2)
Unscrew (1,2)

Tamosiunaite et al. 1189
Author’s version — provided for personal and academic use. Do not redistribute.

Clearly, the movement primitive can be replaced by the

same movement primitive from the same action drop, but it

can also be replaced by movement primitives from actions

insert, lay, place, etc. We make such replacement lists for

all movement primitives requiring replacements in the new

action, as shown on the right side of Figure 5.

5.2.2. Cutting and recombining snippets from ADTs. In

this step, we cut appropriate snippets with control para-

meters from existing ADTs and recombine them to obtain

an executable ADT for the new action. A snippet in our

formalism essentially corresponds to a parametrized move-

ment primitive. We search for snippets in the ADTs based

on the replacement lists made in the action-template-based

analysis step.

While we only considered action names in the action-

template-based analysis, here we also take object names

into account. We make the assumption that for movement

primitives from the same replacement list performed with

similar objects, the movement will be similar. Note that as

we are talking about generalization here, we only require

that this assumption holds in most cases; we do not expect

to achieve full 100% performance.

The algorithm is specified in Figure 6. The input to the

algorithm is the sequence of replacement lists (see output

from the previous algorithmic procedure, Figure 5, right

side). We analyze one list at a time. For each possible

replacement of a movement primitive in the list, we search

for instantiations in a set of similar ADTs. We cut out the

discovered instantiations of these movement primitives

from the ADTs and save them, together with symbolic

action and object names (also obtained from ADTs). In this

way, we obtain a set of different ADT snippets: candidates

for replacement of one movement primitive in the new

instruction. We use symbolic names to rank the extracted

snippets. The ranking rules are provided in Table 7. We use

Fig. 6. Cutting and recombining snippets of action data tables (ADTs) based on replacement lists. Inputs are replacement lists (on the

right) and a set of similar ADTs, as well as ADT blueprints formed in the symbolic processing stage. The output is robotic execution

of the new instruction and the finished ADT for the performed execution. The notation P(X) means movement primitive instantiated

with control parameters. Other notation comes from Figure 5.

Table 7. Rank orders for movement primitive replacement with different object denominators, showing which symbolic items have to

match in order to achieve the rank, for three different cases.

Case 1 Case 2 Case 3
Rank Object denominator

main
Object denominator
primary

Object denominator
secondary

1 all all all
2 act. + main + sec. act. + main + prim. act. + main + sec.
3 act. + main + prim. act. + prim. + sec act. + prim. + sec.
4 act. + main act. + prim act. + sec.
5 main + prim. + sec. main + prim. + sec. main + prim. + sec.
6 main + prim. main + prim. main + sec.
7 main + sec. act. + main act. + main
8 main act + sec. act. + prim.

act: central action name; main: main object name; prim.: primary object name; sec.: secondary object name

1190 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

different ranking rules, given different object denominators.

The reasoning behind this is the following: if one performs

a movement with respect to some role of objects (e.g.,

main, primary, or secondary), the corresponding object

becomes more important in the ranking. Otherwise (when

comparing objects that are not indicated in the object

denominator), we consider the main object more important

than primary and secondary objects.

In addition to symbolic-name-based ranking, we have

implemented a hybrid ranking procedure, taking both sym-

bolic and sub-symbolic similarity of ADTs into consider-

ation. To evaluate the sub-symbolic similarity, we have

compared the bounding boxes (in a real scene compared

with in an ADT) of the object given in the movement pri-

mitive denominator (main, primary, or secondary). This

allows object size and aspect ratio to be compared, where

the latter is a shape-related parameter. To obtain the hybrid

measure, we re-implemented the symbolic ranking given in

Table 7 on the basis of a weighting procedure, thus obtain-

ing the similarity value Ssymb in the interval ½0, 1�. To com-

pare object bounding boxes, we use the intersection over

union (IoU) measure to obtain another value Sbox in the

interval ½0, 1� (for details on both measures see the appen-

dix). We define the hybrid similarity measure Sh by apply-

ing the weighted average of Ssymb and Sbox

Sh = uSbox + (1� u)Ssymb ð1Þ

where u is the weight in the interval ½0, 1�; we show results for

the complete interval of u values in the Section 6 (see Figure

8 in that section). We rank the snippets according to Sh.

From here on, one can now concatenate the (top-ranked)

snippets for each movement primitive required in the execu-

tion of the new instruction and form the new ADT, as dis-

cussed next.

5.2.3. New ADT formation, execution, and storage. The

previously described automatic procedure renders a rank

list of the different snippets for recombination. However,

because snippets come from foreign actions with different

objects, fully automatic selection of snippets following

their ranking will, in rare cases, lead to execution failures

(e.g., when object sizes are too different), which would be

detected only after robotic execution. To save time (and

avoid looping through such unsuccessful executions), we

have here built in one check by the user. If the user dis-

covers, according to his or her expert knowledge, that a

certain snippet will very probably not work, we allow the

system to choose the next best from the rank list. This pro-

cedure is indicated in Figure 6 on the right side (yellow).

In addition, the actual visual scene configuration needs

to be taken into account (Figure 6, red box). This involves

extracting the object location and orientation. As this is a

technical aspect, details are given in the appendix, where

we also show how to perform coordinate transformation

from the object coordinates given in the ADT to the actual

scene coordinates.

After completion of recombination, the action will be

executed and, in case of success, we insert the movement

primitive with control parameters in the new ADT for fur-

ther ADT storage in the database (bottom part of Figure 6).

This concludes all procedures. Several smaller additional

algorithmic details are described in the appendix.

6. Results

6.1. Symbolic processing

We have used a set of 500 instructions of five different lev-

els of complexity (100 instructions for each level) and ana-

lyzed them using the parser described in Section 5.1. The

five complexity levels are:

(a) Simple instructions, where only one central robotic

action word is present and object names are simple

(e.g., ‘‘Invert the book’’);

(b) Instructions with several action words, where both

central and supportive action words are present but

object names are kept simple (e.g., ‘‘Take the book

and invert it’’);

(c) Instructions where only the central action word is pro-

vided but objects have object identifiers (e.g., ‘‘Invert

the second book’’);

(d) Instructions with both: several action words and

objects with identifiers (e.g., ‘‘Take the story book

and invert it’’);

(e) Instructions presented in passive form (e.g., ‘‘The sec-

ond book must be inverted’’).

We used half of the instruction set (50 in each category)

to tune the instruction ontology (as described in Section

4.1) and the symbolic processing procedure (as described

in Section 5.1). The other half was used for testing. Test

results are shown in Table 8.

Within the assumed reduced instruction language com-

plexity, these results show that the symbolic processing pro-

cedure produces only isolated mistakes.

6.2. Sub-symbolic processing

We have investigated the cut & recombine approach by per-

forming on a robot a test set of ten instructions that the

robot had not executed before. The instructions are pre-

sented in the first column of Table 9. For execution we

used a KUKA LWR robot arm with Schunk SDH2 gripper.

First we used the symbolic-name-based snippet ranking

procedure as described in Table 7 and further extended the

study with the hybrid ranking procedure.

Note that the performed analysis is strictly feed-forward.

Hence, no error correction mechanisms or reactive control

policies were added, because we wanted to analyze how the

cut & recombine approach performs on its own.

To make a comparison with a baseline method, we have

performed a subset of these test instructions using an

object-independent action library (Aein et al., 2013). This

Tamosiunaite et al. 1191
Author’s version — provided for personal and academic use. Do not redistribute.

is also a feed-forward method, which, however, does not

consider object properties. By contrast, in the cut & recom-

bine approach, we reuse ADT snippets based on both action

and object similarity. Unlike this, in the baseline method

(Aein et al., 2013), each individual action is defined using

one set of parameters tuned by trial-and-error for kitchen-

sized objects (cups, bowls, bread, fruits, etc.). For example,

the grasp primitive in this library uses a wide pre-grasp in

order to increase the success of grasping most of the men-

tioned objects in uncluttered scenes. To give another exam-

ple, to lift the main object in the place action, a specific

fixed lifting height of 15 cm is used. Thus, the comparison

Table 8. Error rate in instruction parsing into: central action, main, primary, and secondary objects. For each case, n = 50.

Instruction class Error rate, %

Central action Main object Primary object Secondary object Instruction in general

Simple instructions 0 0 0 0 0
Several action words 0 2 2 0 4
Objects with identifiers 0 0 0 2 2
Several action words and
objects with identifiers 0 2 0 0 2
Passive form 2 0 0 2 4

Table 9. Success rate of the recombined actions as well comparison to the success in case of using ‘‘object-independent’’ actions for

10 instructions. Where not indicated differently in the Remarks column, all the first hits in the ranked movement primitive lists were

used. The same instruction was executed with three to ten different object–position combinations, as indicated by the number behind

the slash in columns 3 and 4.

New instruction Action data tables used
in recombination

Successful
cut & recombine

Successful
baseline

Remarks

(given in the form of instructions)

Rotate cup on table. (1) Rotate rotor axle. 10/10 –

Take jar and place
in box.

(1) Place jar in pot. 10/10 9/10 In compiled version, box
was slightly pushed twice.

Take spoon from bowl (1) Take spoon from bowl and 9/10 –
and insert into jar. drop into box.

(2) Insert knife into jar.
Take cup from table (1) Put rotor cap over rotor axle. 9/10 –
and put over fixture.

Lay jar on tray. (1) Put jar into pot. 6/7 – Snippet ranked third was
(2) Take bottle from tray and lay chosen by expert for
on table. ‘‘lay’’ movement.

Shake measuring beaker
and put it on tray.

(1) Take measuring beaker from
table and put on tray.

4/5 0/5 Large improvement with
respect to baseline.

(2) Take jar from tray, shake, and
put on table.

Unscrew lid from
thermal mug.

(1) Unscrew lid from jar. 2/3 2/3 One of two equally
ranked snippets had to be
chosen.

Drop bottle into
wastebasket.

(1) Take bottle from tray and
drop into box.

6/10 0/10 Large improvement with
respect to baseline.

(2) Drop rotor cap into box.
(3) Drop bottle cap into wastebasket.

Push bottle away
from jar.

(1) Push bottle away from box.
(2) Push cup away from jar.

6/10 6/10 For reliable execution this
action needs two object
denominators.

Invert a jar. (1) Pick jar and place into pot. 3/6 -
(2) Invert bottle cap.

1192 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

of cut & recombine with the object-independent approach

allows us to determine whether taking objects into account

increases the success of robotic execution.

As discussed, the basis for our experiments was a data-

base of 28 ADTs for 10 different actions performed with

different objects (twelve different main, nine primary, and

eleven secondary objects), see Table 10.

The instructions for the test set were chosen so that sim-

ilar actions and similar objects could be found in the ADT

database, but in different combinations. Also, we included

some examples where the object mentioned in the new

instruction was never dealt with before, to investigate

whether generalization could work in those situations, too.

To obtain statistics on execution success, we performed

the same instruction with different object combinations and

different object placements in the scene (see object sets

used in different actions in Figure 7). Our target was ten dif-

ferent object or placement settings for each instruction,

however, if only a single object type was mentioned in the

instruction, we performed the instruction only as many

times as we had different objects (e.g., we had only five dif-

ferent measuring beakers and only three different thermos

mugs). With these object choices, we tried to push our algo-

rithm to the limits, using considerably larger and smaller

objects than in the execution examples in the ADTs, but we

did not use objects or object configurations where it was

clear in advance that the algorithm would not be able to

handle the situation at all (e.g., objects differing in size by

orders of magnitude as compared with the examples or

objects touching each other when the example objects were

standing separately).

The results for the cut & recombine approach are shown

in columns two and three in Table 9. Column two shows

from which ADTs information was recombined (for ease of

reading, ADTs are given in form of instructions). In column

three, we show how many trials were successful; the overall

numbers of performed trials are given behind the slash.

As column two shows, in four out of ten cases, the sub-

symbolic processing has chosen to perform new actions

using snippets from a single ADT (without recombination),

but in the remaining cases snippets from several different

ADTs were recombined. On five occasions, the new ADT

was recombined using snippets from two ADTs; one case

occurred where the new ADT was recombined from three

different ADTs.

Instructions in the table are sorted from most successful

to least successful (column 3). For two instructions, the

success rate was 100%, for another five instructions, errors

Table 10. Existing action data tables.

No. Action Main Primary Secondary
object object object

1 Drop Bottle cap Tray Wastebasket
2 Drop Bottle Shelf Box
3 Drop Bottle Tray Box
4 Drop Pressure ring Support Cup
5 Drop Rotor cap Table Box
6 Drop Spoon Plate Box
7 Insert Knife Table Jar
8 Invert Bottle cap Table Table
9 Lay Rotor axle Shelf Tray
10 Place Bottle Table Bottle holder
11 Place Bottle Table Cup
12 Place Bottle Table Pot
13 Place Jar Table Pot
14 Place Jar Table Bottle holder
15 Place Jar Tray Shelf
16 Place Rotor cap Conveyor Fixture
17 Place Rotor cap Conveyor Robot platform
18 Place Rotor cap Fixture Table
19 Place Measuring beaker Table Tray
20 Push apart Bottle Box Table
21 Push apart Cup Jar Table
22 Put over Rotor cap Table Rotor axle
23 Shake Bottle Tray Tray
24 Shake Jar Tray Table
25 Rotate Rotor Table Table
26 Unscrew Bottle cap Bottle Table
27 Unscrew Bottle cap Bottle Tray
28 Unscrew Jar lid Jar Table

Tamosiunaite et al. 1193
Author’s version — provided for personal and academic use. Do not redistribute.

happened only once, and there were three instructions

where errors happened in a systematic way (the three last

rows in Table 9).

Example videos for successful and unsuccessful execu-

tions can be found on the website.
3

Next, all results will be discussed in some detail to allow

the reader to judge performance and to show that simple

error correction methods would almost always suffice to

resolve the remaining errors of the feed-forward cut &

recombine approach.

The two instructions that were 100% successful were

‘‘Rotate cup on table’’, and ‘‘Take jar and place it in box’’.

The reuse and execution success of those instructions are

analyzed in more detail next:

� For rotation of the cup, movements were taken from a

single ADT describing rotation of a rotor axle.

Although the object in the existing ADT was quite dif-

ferent, the action, as such, was very simple and the

replacement worked.
� For placing the jar in a box, the movements were again

taken from a single ADT. The execution was successful

in the sense that the jar ended up in the box in all

experiments, but the box was slightly pushed two

times. This happened because we were defining move-

ment only through the relative object center coordinates

and the size of objects was not considered. However,

lifting over the rim of the box also depends on the size

of the box. Where the box was taller or wider than the

object that was used when making the ADT from

which the snippets were being reused, the approach

toward the box became tighter. This was why the side

of the box was touched by the jar and the box was

slightly moved.

The five instructions where incorrect execution only

happened once were ‘‘Take spoon from bowl and insert into

jar’’, ‘‘Take cup from table and put it over fixture’’, ‘‘Lay

jar on table’’, ‘‘Shake measuring beaker and put it on tray’’,

and ‘‘Unscrew lid from thermal mug’’. Individually, those

executions are analyzed next:

� Insertion of a spoon in a jar was recombined using

snippets from two ADTs. Approach, grasping, and lift-

ing of the spoon were taken from the ADT describing

dropping of the spoon, while the insertion movement

was taken from a different ADT, describing insertion

of a knife in a jar. The execution worked successfully,

except in one case of a very tight fit between the jar

and the spoon, where the spoon got stuck at the mouth

of the jar, owing to slight pose inadequacy.
� Putting the cup over the pin of a fixture depended on a

single ADT describing putting a rotor cap over a rotor

axle. These objects were similar in size to the cups and

fixture pins in our new scenario. The only unsuccessful

execution occurred with a very small cup. The move-

ment for ‘‘putting over’’ in the ADT had the approach

slightly sideways, with a small offset between the center

of the fixture and the center of the rotor cap that was

put over, as would be the case if the fit is tight. Such a

movement did not work if the cup was short.
� Laying of the jar was recombined from two different

ADTs, where approach and grasp were taken from the

ADT of placing a jar and the specific laying movement

was taken from another ADT for laying a bottle. In lay-

ing the jar, only one unsuccessful execution happened;

this was because of uneven mass distribution in a jar

(heavy sand on the bottom); the jar flipped back into a

standing position from almost a lying position when

the robot hand released it.
� Shaking the measuring beaker was also recombined

from two different ADTs; approach and grasp (from a

side) of the measuring beaker were taken from one

ADT, while the shaking movement was taken from the

other ADT, where the grasp contained in the same

ADT would have been incorrect, as the jar therein was

grasped from above, which does not work for the

Fig. 7. Object sets used in the experiments.

1194 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

measuring beaker. The execution of the instruction was

correct, except for the smallest measuring beaker,

where shaking was successful but stable placing on the

table was not guaranteed.
� For unscrewing the lid from the thermos mug, we

encountered the aforementioned situation that there

were two equally ranked ADT snippets. The user had

to choose: either snippets could be taken from unscrew-

ing a bottle or from unscrewing a jar. Here, the jar case

was chosen for reuse, as from human knowledge the

radius of the jar lid is more similar to the radius of the

thermos mug lid. One execution was unsuccessful

because one example of the thermos mug had a lid that

fit very deeply and tightly into the mug; this did not

match the conditions of unscrewing the jar.

Several systematic errors occurred in three cases: ‘‘Drop

bottle into trash basket’’,‘‘Push bottle away from jar’’, and

‘‘Invert a jar’’. The reasons for this are given in detail next:

� Dropping of the bottle into the wastebasket was recom-

bined from three different ADTs: dropping the bottle

into a box (for reaching and grasping), dropping the

rotor cap into a box (for lifting off the table) and drop-

ping the bottle cap into a wastebasket (for the specific

drop motion). We had four incorrect executions, for the

following reasons: grasps were not stable on three occa-

sions; twice when grasping a substantially bigger bottle

and once for a substantially smaller bottle, as compared

with the bottle for which the ADT was recorded. The

bigger bottles could not be grasped stably because we

were taking the pre-grasp width from ADTs and thus

the pre-grasp was adjusted to a smaller bottle. A tight

pre-grasp in an uncluttered scene proved disadvanta-

geous, alternatively it would be able to serve its role in

a cluttered scene. The fourth unsuccessful case hap-

pened for a substantially smaller wastebasket that was

used as compared with the one with which the ADT

had been made and the bottle fell just behind the rim.

In summary, unsuccessful executions only happened

here when we were ‘‘provoking’’ our framework with

objects of substantially different geometries.
� Pushing the bottle away from the jar was recombined

from two different ADTs: pushing the bottle away from

the box and pushing the cup away from the jar. Thus,

the general targeting of how to push the bottle was cor-

rect; however, the entire action was performed correctly

for only a subset of object configurations. This time,

the limitations of our model were at fault: we only used

one object denominator per movement primitive, while

two object denominators are needed to define pushing

away, as the hand needs to go between the objects.
� Inverting a jar was combined from two ADTs: one for

approaching and picking up the jar and the other one

for inverting a very different object: a bottle cap. In

spite of such large object differences in the ADT

used, in all six cases, picking up and inversion went

error-free, where the three errors only happened as

the inverted jar did not land stably on the table. This

resulted from our robotic implementation, where

placing of an object was not elaborate (not force or

otherwise controlled).

For five out of ten instructions, we could make compari-

sons with execution based on the object-independent action

library (baseline method). Note that we only made compar-

isons in cases for which the corresponding action was

already available in the object-independent action library

prior to this study. We did not expand the library by devel-

oping new actions specifically for comparison with our

current work, as the library uses heuristic approaches and

new actions would thus have come out biased toward the

examples used in the current work, possibly leading to

excessively favorable comparisons.

In the comparison with the baseline we twice saw sub-

stantial improvement by using our cut & recombine

approach (for the instructions ‘‘Shake measuring beaker

and put it on tray’’, and ‘‘Drop bottle into wastebasket’’),

and similar performance three times. Note that an improve-

ment was not achieved in all cases, because the object-

independent action library already performed well on some

of our objects. This is because the library was tuned for

performing table-top manipulations with a wide set of

objects, including a subset of the objects that we used in

our experiments. However, in those cases where object-

specific handling was needed, large improvements were

achieved when using ADT recombination. In the case of

shaking the measuring beaker, the improvement came from

object- specific reaching and grasping from one side, as

indicated in the first of the recombined ADTs, where the

grasp from the top inscribed in object-independent actions

for the measuring beaker was completely unusable. For

dropping an object into a wastebasket, the existing ADT

gave an example similar to how a human being would per-

form the action: dropping from relatively high above. This

allowed for variability in trash basket and bottle sizes. By

contrast, the action in the object-independent library was

defined as dropping with approaching the small container

tightly, which was not similar to a trash-dropping situation

and never worked.

It is also interesting to note that there was only one case

(pushing the bottle away from the jar), which pointed to a

possible problem of the cut & recombine approach for this

given case. (We had only used one object denominator per

movement primitive but two object denominators are

needed to define pushing away.) All other cases of error

can be corrected by feedback error correction mechanisms.

Thus, it seems that, for most of the existing table-top oper-

ation, the framework is already relatively complete and

useful.

We had only a six out of ten (60%) success rate in the

execution of the command ‘‘Drop bottle into wastebasket’’,

based on the symbolic-name-based snippet ranking proce-

dure. As the errors mainly happened because of incorrect

Tamosiunaite et al. 1195
Author’s version — provided for personal and academic use. Do not redistribute.

object sizes in the selected ADTs, for this command, we

repeated the experiments using the hybrid ranking proce-

dure described in equation (1). In this case, we had different

sets of movement primitives (extracted from different sets

of ADTs) for the same command but different scene instan-

tiations, depending on the size and aspect ratio of the pre-

sented objects. As some errors in the original execution of

the command came from the robot not being able to grasp a

large bottle, we had to introduce a new ADT, as there were

no examples in the original set of ADTs presented in Table

10 on manipulating large enough objects with the denomi-

nator ‘‘main’’. We added an ADT for the command ‘‘Take a

bottle from a tray and drop it into the box’’ (ADT No. 29),

but this time with a larger bottle than that in ADT No. 3

(Table 10).

To evaluate the performance of the hybrid ranking pro-

cedure, we changed the weight u in equation (1) in the

interval ½0, 1� and investigated how the composition of the

movement primitives and the success rate of execution

changed. The proportion of changed movement primitives

over the entire pool of 10 scene instantiations (× 4 move-

ment primitives per instantiation) with u in the interval

½0, 1� is provided in Figure 8(a). One can see that the per-

centage of changed movement primitives increases with u

and reaches 60% when u = 1 (only object size matters).

The execution success rate as a function of u is provided in

Figure 8(b). For pure symbolic ranking, we have a 60%

success rate. When combining symbolic and sub-symbolic

information in the ranking procedure, the success rate

increases and reaches 100% for a wide range of parameters

u. When ranking is based on object size alone, the success

rate is 50%.

Example movies for u = 0:7 showing successful execu-

tions in two cases: a large bottle and a small (short) bottle,

where grasps were unsuccessful in our previous approach,

can be found on our website.
4

Now the large bottle is

grasped successfully, because of a wider pre-grasp and the

small bottle is grasped differently, namely, from above.

This grasp comes from a different ADT, now ranked high-

est using the hybrid similarity measure.

Clearly, the performance of the cut & recombine

approach largely depends on the existing ADT database. If

the ADT database were different, the results would most

probably be different too. The interplay between the new

instruction and the ADT database is quite complex,

already, given the 28 ADTs (29 in the second part of the

study), we could not predict what our algorithm would

choose to recombine. Thus, the situations we have provided

were not staged.

Summarizing, the results show the general possibility of

ADT snippet recombination and ADT-based action transfer.

There are cases where usage of object-dependent ADTs

brings substantial improvement in comparison with object-

independent actions, as defined in our baseline method.

The observed deficiencies in our transfer procedures, such

as an insufficient number of object denominators in the

case of the push-away action, indicate a path for improving

our framework.

7. Discussion

We have proposed a framework for existing action compo-

nent reuse in new robotic execution examples. The task is

conveyed to the robot by language instructions. Language

instructions are parsed for symbolic names of actions and

objects. These symbolic names then allow a set of previ-

ously executed instructions containing potentially reusable

code components to be found. We cut and recombine code

snippets within this set to obtain code for execution of the

new instruction. By ‘‘code’’, we mean parametrized tran-

scripts of previous executions presented in XML structures

called action data tables (ADTs).

Our framework allows robots to be programmed by

instruction to perform table-top operations, which do not

require great precision (e.g. in a kitchen scenario), where

examples of the execution of similar instructions exist.

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

% %

Fig. 8. Performance evaluation using a hybrid ranking procedure. (a) Percentage of movement primitives replaced using the hybrid

procedure as compared with movement primitive composition obtained using symbolic-name-based ranking procedure. Results are

given for different weights u (equation (1)), indicating the influence of the sub-symbolic counterpart in ranking. (b) Execution success

as a function of u.

1196 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

However, owing to the code recombination that we per-

form, we do not require that exactly the same instruction

was executed in the past.

The specificity of the proposed approach lies in the

strict temporal structure of the analysis of temporal neigh-

borhoods at two hierarchical levels of temporal chunking.

Neighborhoods are defined using (1) SECs and (2) move-

ment primitives in the action templates. As discussed in

Subsection 3.4, we constrain the language in the instruc-

tions so that omissions in instructions at the defined level

of granularity are not allowed. In this way, we achieve a

functioning instruction-to-ADT link. It is mainly through

all these action structuring efforts that code snippet recom-

bination becomes viable.

Through the recombination processes, new ADTs are

created. Thus, this approach ultimately creates a continu-

ously growing database.

7.1. Parametric considerations

There are several entities on which the results of our proce-

dure depend. One important entity is the neighborhood of

movement primitives. We parametrize the neighborhood by

its ‘‘width’’, which in our study is defined by a pair of para-

meters: the number of neighboring SEC states and the num-

ber of neighboring movement primitives included in the

neighborhood. The ‘‘width’’ influences how many other

movement primitives from other actions are allowed to

replace movement primitives of the new action. When one

considers a ‘‘wider’’ neighborhood, fewer hits are found in

different actions, and vice versa. In our study, we set the

neighborhood (see Algorithm 2 in the appendix) by expert

review of the suggested replacement lists and choosing the

most suitable widths. End-performance-based evaluation of

different neighborhoods is also possible, but in this study it

was not performed because this requires a lot of effort.

Another set of parameters is associated with the replace-

ment ranking rules, based on action and object names. We

have heuristically chosen the ranking order, based on the

assumption that the object on which the movement primi-

tive depends (i.e., the one that stands in the object denomi-

nator) is more important than the other objects.

Finally, ADT interpretation plays an important role.

Currently, we are only considering object positions defined

by the center of the object bounding box as well as pair-

wise object relations (TCP to main object, main to primary

object, and main to secondary object). More detailed inter-

pretations, where object size is taken into account or rela-

tions between more than two objects in the scene are

considered, would form alternative methods, which were

not yet considered.

7.2. Comparison with the state of the art

Our approach is related to a group of studies attempting to

bridge the gap between natural language and robotic action

(Bollini et al., 2013; Lisca et al., 2015; Misra et al., 2016;

Tellex et al., 2011). We, in fact, address a question that is

slightly narrower: programming robots by instruction,

which puts limitations on the language provided to the

robots. We use language only as a means to define an

instruction and analyze only instructions indicating ‘‘robotic

actions’’ (the actions for which we have made a formal

action description). We forbid essential omissions in

instructing: all actions within the defined granularity must

be spelled out explicitly. These constraints allow us to

achieve a relatively lightweight approach, as compared with

the previously mentioned systems attempting full natural

language complexity. Next, we will compare our work with

those approaches in more detail.

Misra et al. (2016) investigate the translation of natural

language instructions into a sequence of predefined robot-

executable routines. They use an energy function that

encompasses natural language evidence as well as environ-

mental evidence and attempt to find the maximum likeli-

hood solution based on learning examples. The approach

(unlike ours) requires many learning examples and is

firmly based on a set of predefined robot-executable rou-

tines. Changing the sample of those routines or changing

the domain would require extensive relearning, while our

approach works by adding new action templates and new

execution examples to the existing database as needed and

can thus be re-adapted to a new domain in a continuous

manner. In addition, our approach processes language and

sub-symbolic entities in two different processing steps, thus

making the method easier for a human operator to under-

stand and access. Moreover, our approach suggests strict

structuring of robotic actions, defining granularity and a

two-level hierarchical composition, while the approach of

Misra et al. (2016) uses an inconsistent sample of robot-

executable routines at different levels of granularity (e.g.,

compare MoveTo (simple) and Open-Close doors (compli-

cated), an example taken from Table 2 in Misra et al.

(2016)). Our more structured view of robot executables

could be advantageous in this (and similar) data-driven

approaches. It is, however, clear that our approach cannot

handle some of the aspects that are central to the approach

of Misra et al. (2016). We do not handle missing instruc-

tions and we do not reason about object states, both of

which requires general-purpose commonsense knowledge,

which is not in the center of our study.

A group of approaches exist for handling strongly task-

specific natural language instructions. One example is pre-

sented by Lisca et al. (2015), who analyze how to transform

natural language instructions for chemical experiments into

robot control programs. These authors address much more

complicated instructions than those in our study (an exam-

ple being ‘‘Neutralize 75 ml of hydrochloric acid’’.). This,

however, requires extensive hand design, which is supple-

mented by training of a Markov logic network based on

datasets collected specifically for the developed core struc-

ture. By comparison, in our approach, we only design

the action template for each action, as shown in Table 2

for action place. (Note that the SEC in the table is not

Tamosiunaite et al. 1197
Author’s version — provided for personal and academic use. Do not redistribute.

hand-designed but denotes an objective sequence of

touches and un-touches of objects throughout manipula-

tion.) Plans for actual robotic action in Lisca et al. (2015)

(e.g., aspirating a pipette and pipetting in the ‘‘neutraliza-

tion’’ action) are manually linked during the design of the

core structure. Automated inference processes, which are

emphasized in this study, are possible only after hand

design and learning steps have been accomplished. A simi-

lar approach was applied for executing cooking recipes,

specifically, pancake making, by Nyga and Beetz (2012).

Reuse of previous action components, which lies at the

center of our study, is not addressed in the cited studies.

There, the data structure for a different instruction must be

hand-designed essentially from scratch.

Another example closely related to the domain is the

cooking robot developed by Bollini et al. (2013), who spe-

cifically address the execution of baking recipes.

Translation of natural language instructions for baking is

done based on hand-annotated mapping of natural lan-

guage recipes into so-called cooking primitives and then

mapping those primitives into robotic actions. For example,

the cooking primitive ‘‘bake’’ is mapped into a long

sequence of robot-executable primitives of operating the

oven, such as opening and closing doors, inserting a dish

into the oven, and so on. In this study again, instructions

are given at a higher level than in our study but with the

need for substantial hand design and learning based on

human-annotated examples. Reuse of structures in this

framework is not foreseen. In our approach, the robot is

instructed at a lower level, that is, immediately indicating

robotic actions. In this way, we overcome the requirements

for complicated hand-designed structures as well as the dif-

ficulties of changing domains, as the number of actions, at

the granularity we are at, is limited (see Wörgötter et al.

(2013) for discussion). We still, however, manage to intro-

duce reuse of previously executed action details.

One domain, which is easier to describe using natural

language, is navigation. There one can find more straight-

forward grounding of natural language instructions in real-

world geometry; thus this domain can be tackled quite suc-

cessfully (Artzi and Zettlemoyer, 2013; Guadarrama et al.,

2013; Kollar et al., 2014; Matuszek et al., 2013; Rosenthal

et al., 2016; Tellex et al., 2011; Walter et al., 2014;

Williams et al., 2017). Navigation can be supplemented by,

for example, ‘‘pick and place’’ or ‘‘point’’ actions, where

geometrical considerations define actions up to trajectory

precision (Guadarrama et al., 2013; Tellex et al., 2011).

Kollar et al. (2014) analyze a wider set of verbs, referring

to more complicated actions like ‘‘follow’’, ‘‘meet’’, or

‘‘bring’; however, those verbs are still groundable through

path description. We are working in the manipulation

domain, going beyond strongly geometry-bound actions,

which require richer grounding approaches. We have cho-

sen example-based reuse of action components instead of

building more rigorous world (or path) models, which is

the approach used in the cited studies.

When instructing a robot using natural language, dialog

systems can help resolve ambiguities in the instructions.

Work in this direction exists (Gemignani et al., 2015;

Perzylo et al., 2015; She et al., 2014; Thomason et al.,

2015).Though we do not address the issues of disambiguat-

ing instructions through dialog, we have met, in our work,

many of the difficulties indicated by Perzylo et al. (2015),

such as difficulties in disambiguating verb senses. We also

resolve these questions by querying the user, e.g. when the

algorithm cannot determine the central action in our

framework.

A natural language interface is a convenience but not

absolutely necessary to employ our suggested sub-symbolic

recombination procedure. For example, robot programming

on predefined action blocks (Alexandrova et al., 2015;

Schlette et al., 2014) or skills (Bøgh et al., 2012; Steinmetz

and Weitschat, 2016; Stenmark et al., 2015) could also be

used as an interface. All the cited approaches are also

designed to help non-experts to program robots. Stampfer

and Schlegel (2014) and Wächter et al. (2016) go further

and define reusable state charts for easier humanoid robot

programming, where the state chart defines an action as a

branching structure of states. However, in all these

approaches, the user is expected to parametrize predefined

blocks (or state charts) from scratch and reuse is addressed

only in a limited way. For example, Alexandrova et al.

(2015) suggest generalization to different numbers of

objects by embedding the predefined blocks in loops or

adjusting a block developed for grasping to different size

of objects by readjusting thresholds. Wächter et al. (2016)

show a use-case of transferring a state chart to a different

robot. Stenmark et al. (2015) talk about skill reuse, but

only in the sense of reparametrization of the previously

developed skill by a user, without providing an explicit

framework for choosing the skills for reuse. By contrast,

our study addresses the reuse of previous examples of exe-

cution based not only on action but also on object similar-

ity, with the aim to reduce the user’s parametrization effort.

At the other end of the spectrum of robot programming

stands objectcentric programming, where the scene appear-

ance is used to derive robot code. In objectcentric program-

ming, geometric and relational properties play a central

role in defining the action (Angerer et al., 2009; Hart et al.,

2015; Huang et al., 2015; Perzylo et al., 2016). We adhere

to this approach at the low (movement primitive) level,

reusing relations between, for example, main and primary

or main and secondary objects, instead of planning an

action from scratch, as suggested in the cited studies.

An intermediate approach with constrained natural lan-

guage use in robot programming was analyzed by

Stenmark and Nugues (2013). In this approach, only verbs

corresponding to skills are allowed; thus language is not

fully natural, similar to our approach (we, however, also

handle synonymy). The cited approach allows fewer

actions and does not address our question of how to best

parametrize skills based on previous execution examples.

1198 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

Instead, a skill sequence with default parameter values is

given to a programmer for parameter adjustment.

Alternative studies do exist that emphasize data collec-

tion from robotic experiments in both industry-oriented

(Björkelund et al., 2011; Persson et al., 2010) and service

robotics domains (Beetz et al., 2016; Ovchinnikova et al.,

2015; Riazuelo et al., 2015; Tenorth and Beetz, 2013;

Tenorth et al., 2013; Winkler et al., 2014). In the following,

we will discuss how the mentioned approaches relate to our

study. Persson et al. (2010) and Björkelund et al. (2011)

mainly address the question of how to convert code adher-

ing to the emerging industrial standard AutomationML

(Drath et al., 2008) into RDF representations allowing rea-

soning (Miller, 1998) and accumulate data adhering to

Semantic Web standards (Shadbolt et al., 2006). These ini-

tial efforts are followed by limited reuse attempts

(Stenmark and Nugues, 2013; Stenmark et al., 2015), but

not in a Semantic Web context. Persson et al. (2010) and

Björkelund et al. (2011) had already found that the desired

conversion into RDF structures has obstacles; in industry

the code is currently mainly accumulated in

AutomationML formats. AutomationML, however, does

not target the specificity of defining reusable robotic

actions or action fragments, as in our study, but rather tar-

gets standardized coding conventions, such that code is

easily reusable by another programmer.

Another group of studies addresses the question of accu-

mulating robotic knowledge in service applications (Beetz

et al., 2016; Bozcuoğlu et al., 2018; Riazuelo et al., 2015;

Tenorth and Beetz, 2013; Tenorth et al., 2013; Winkler

et al., 2014). This line was started with the RoboEarth proj-

ect to create a ‘‘World-Wide Web for Robots’’ (Waibel

et al., 2011). There the reuse of knowledge was investigated

from a very wide perspective, where the aim was to accu-

mulate ‘‘all’’ information required for the robot: action

recipes (tasks), actions, object models, environment maps,

algorithms that were used for creating accumulated data,

robot capabilities required to perform actions, and so on

(Tenorth and Beetz, 2013; Tenorth et al., 2013; Winkler

et al., 2014). Owing to its complexity, this approach can no

longer be transferred to the users as a collection of algorith-

mic ideas, but only as a program package; indeed, it is

released as an open-source ROS package. However, again

because of complexity and the large amount of special

knowledge required for each example, only a few applica-

tion examples with full functionality of the RoboEarh sys-

tem have been demonstrated so far. We propose a less

powerful but more accessible approach of storing and reus-

ing robot experience. For example, we do not handle the

issues of robot capabilities and just talk about table-top

manipulations with a ‘‘standard’’ arm-hand system. We

require the robot to be instructed at a much lower level, as

compared with the task level (e.g., ‘‘Serve a drink’’) given

by Tenorth et al. (2013). However, we do not require com-

plex high-level knowledge from the robot about tasks exist-

ing in the (human) world. Also, our approach appears more

compact and more rigorously hierarchically structured.

Thus, the two approaches are very different and there can

be no single answer as to which approach is more applica-

ble, as this depends on the task and circumstances.

Follow-ups of these studies do not suggest using the

entire system, but rather parts of it, specifically by means

of cloud services for the robotic community (Beetz et al.,

2016; Riazuelo et al., 2015). However, none of these stud-

ies looks at the same aspects as we do. Riazuelo et al.

(2015) concentrate on robots reusing knowledge about sim-

ilar environments, for example, hospital rooms, and how to

find objects in those rooms. Here geometric considerations

are primarily used to adapt existing knowledge to the new

situation and robotic manipulations are only considered in

connection with discovered object positions. A similar

question of memorizing common object locations is

addressed by Ovchinnikova et al. (2015). Beetz et al.

(2016) do indeed talk about manipulation data reuse, but

for a different purpose than in our study. They offer to use

the collected data for the analysis (in a sense of reconsi-

deration) of previously performed experiments, for exam-

ple, through creating datasets for analyzing errors in

perception algorithms. Similar aims (error analysis and sta-

tistics) are indicated in a previous study (Niemueller et al.,

2012). In none of these studies do the suggestions for data

reuse go into the direction of ‘‘programming’’ new instruc-

tions based on previous programs of similar instructions.

Conversely, we are specifically suggesting a framework for

data reuse for new instruction coding and execution.

Possibly the most closely related work is that of

Bozcuoğlu et al. (2018), who use episodic memories in

addition to domain knowledge. A number of robot execu-

tion examples are collected and grasps and, to some degree,

trajectories are transferred to a different setting. This study,

however, concentrates on a single (though difficult) action:

opening hinged containers (specifically, refrigerators).

Knowledge transfer rules are fully adapted to hinge-joint

doors with elongated handles but do not generalize to other

actions or objects.

Another quickly growing field where robot experiences

are implicitly reused concerns deep learning on visuomotor

data (Finn and Levine, 2017; Ku et al., 2017a; Levine

et al., 2018). While Finn and Levine (2017) and Levine

et al. (2018) learn to predict the consequences of pushing

and grasping motions in an end-to-end manner, Ku et al.

(2017a) use a more structured approach by associating

selected convolutional neural network features obtained

from scene analysis to robot actions. All mentioned

approaches, though not requiring much human supervision,

are tuned to solving specific situations: performing pushing

to a predefined location (Finn and Levine, 2017), grasping

of objects residing in front of a robot (Levine et al., 2018),

and grasping of a power drill (including pushing or drag-

ging when required) (Ku et al., 2017a). Thus, though pro-

mising, these approaches show for less action variety than

the approach used in our study. The end-to-end learning

approaches (Finn and Levine, 2017; Levine et al., 2018),

though able to handle a large variety of objects, are,

Tamosiunaite et al. 1199
Author’s version — provided for personal and academic use. Do not redistribute.

however, much more expensive in terms of robot experi-

ence than our approach. Moreover, they are not easy to

extend (e.g., if one needs not grasping as such, but grasp-

ing for insertion of an object into a narrow container, this

would require full retraining). By contrast, our system only

needs a few relevant examples for extension to a new task.

Finally, one could claim that examples of previous robot

experience are not needed, as better methods are being

developed for motion (Latombe, 2012; Sucan et al., 2012)

and grasp (Alterovitz et al., 2016; Bohg et al., 2014;

Lippiello et al., 2013; Vahrenkamp et al., 2012; Vezzani

et al., 2017) planning. However, reusing previous experi-

ence of similar tasks can constrain planning in a useful

way; thus, such approaches can be used together with

planning.

To compare our study with different approaches dis-

cussed above in a more rigorous manner, we have compiled

Table 11, which indicates the properties of 20 representa-

tive studies.

All studies in Table 11 describe large robotic systems

supported by different knowledge acquisition components,

including learning using neural networks, using external

(Internet) resources, and programming reusable compo-

nents. Some of these systems are specifically designed only

for a certain task, like grasping (in a bin-picking setting),

opening hinged doors, or performing well-defined cooking

sequences (Bollini et al., 2013; Bozcuoğlu et al., 2018;

Levine et al., 2018), leading to a high degree of domain

restriction. By contrast, our approach is, in principle, not

domain restricted and ADTs could also be developed for

different tasks from the here-demonstrated manipulation

domain. Our study also differs from the group of domain-

unlimited approaches, which are mostly made for manual

reuse of previously defined control structures (Alexandrova

et al., 2015; Schlette et al., 2014; Stenmark et al., 2015;

Wächter et al., 2016): we specifically consider how to find

and combine reusable components in an automated way.

Only a few systems have been rigorously (statistically)

evaluated on a robot and many studies perform simulations,

sometimes paired with proof-of-concept (PoC) robotic

experiments. Furthermore, most studies use very few

objects and actions (fewer than 10 each), whereas our eva-

luation used 10 actions and 45 objects. Generally, studies

that use manual (human-programmed or human-guided)

approaches for knowledge acquisition can cope with small

amounts of data for setting up their system, whereas (semi-)

automatic approaches (e.g., deep learning) usually rely on

large databases. Our approach starts with few data and offers

lifelong automatic extension, not found in any of the other

automatic systems. Several methods are very strong in han-

dling symbolic information (for example handling missing

information in an instruction), which we do not attempt with

our system to keep the data requirement low. Conversely,

none of the approaches is able to automatically recombine

sub-symbolic information from different objects or actions,

which is a unique feature of the here-presented method. This

analysis shows that many different approaches currently

exist, which, owing to their specificities, are not easy to

compare. In addition, quantitative comparative evaluation is

impossible, due to their complexity and their domain

restrictions.

7.3. Future work

While this study has proven that the principle of cutting

and recombining ADT snippets to obtain execution infor-

mation for new instructions works as such, more work is

needed to define ways of using information in the case of a

much larger ADT database. When the same or a similar

action is performed with similar objects in several contexts,

much more context information can be used in addition to

that used in this study. In this way, we could find more

appropriate snippets and approach a stage where the robot

can operate with very little human interference.

One could raise the question of whether the method

would scale. We argue that it is possible to develop a good

indexing system, which would allow appropriate examples

to be chosen quickly from large execution transcript data-

bases. The development of such indexing systems very

much depends on further developments of the theory of

robotic actions, to which we have contributed in our earlier

works (Aksoy et al., 2011;Wörgötter et al., 2013) as well as

here (specifically, by defining action templates as impor-

tant action structuring elements, as well as in initial

attempts to define ranking rules for action snippet similar-

ity). However, more elaborate systems for action similarity

evaluation and action knowledge transfer could be intro-

duced for an extended ADT treatment. Using deep neural

network features for sub-symbolic information representa-

tion as, for example, introduced by Ku et al. (2017a,b) may

be promising.

Currently, our work only addresses parametrization and

reuse in feed-forward action representations. Introducing

feedback and error correction schemes is another branch of

continuation for this work.

In addition, a more advanced structure and use of the

instruction ontology should be considered. First, similar

instructions can be ranked, including not only synonymy

but also distances in the ontology tree, especially for

objects. Object properties, as well as object part considera-

tions can also be handled through the ontology; this then

needs to be treated in ADT-based processing, as well.

Concerning the action counterpart of the ontology, one

could keep instruction sequence information, which would

allow the system to treat cases of missing instructions sta-

tistically based on information from previous instruction

sequences accumulating in the ontology over time. This

would release the constraints on instructing the robot.

Finally, to evaluate the work of such a system in practice,

research on human interaction with the system would be

required. Human ability to formulate instructions in a suffi-

ciently precise manner, human abilities to choose appropri-

ate snippets from the ranked lists, and different human

1200 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

T
a
b

le
1
1
.

C
o
m

p
ar

is
o
n

o
f

d
if

fe
re

n
t

st
u
d
ie

s.

T
a
sk

E
v
a
lu

a
ti

o
n

p
ro

ce
d

u
re

In
st

ru
ct

io
n

fo
rm

a
t

K
n

ow
le

d
g
e

a
cq

u
is

it
io

n

A
m

o
u

n
t

o
f

d
a
ta

u
se

d
to

se
t

u
p

th
e

sy
st

em

D
o
m

a
in

re
st

ri
ct

io
n

N
u

m
b

er
o
f

d
if

fe
re

n
t

a
ct

io
n

s

in
ev

a
lu

a
ti

o
n

N
u

m
b

er
o
f

d
if

fe
re

n
t

o
b

je
ct

s
in

ev
a
lu

a
ti

o
n

H
a
n

d
li

n
g

o
f

m
is

si
n

g

in
st

ru
ct

io
n

s/

o
b

je
ct

in
fo

R
eu

se
o
f

m
o
ti

o
n

co
n

tr
o
l

p
a
ra

m
et

er
s

R
eu

se
o
f

m
o
ti

o
n

fr
o
m

d
if

fe
re

n
t

a
ct

io
n

s

O
b

je
ct

-s
p

ec
if

ic

re
u

se
o
f

m
o
ti

o
n

co
m

p
o
n

en
ts

R
u

le
sy

st
em

fo
r

a
ct

io
n

co
m

p
o
n

en
t

re
u

se

H
u

m
a
n

-

co
m

p
re

h
en

si
b

le

fo
rm

a
t

E
x
te

n
si

o
n

s
to

th
e

sy
st

em

B
jö

rk
el

u
n

d
et

a
l,

2
0
1
1

M
an

ip
.

N
o
n
e

(1
)

C
o
d
in

g
P

ro
g
ra

m
g
.

N
o
t

d
ef

in
ed

N
3

(4
1
)

N
o
t

sp
ec

if
ie

d
N

/N
M

an
u
al

N
M

an
u
al

N
Y

(7
4
)

M
an

u
al

T
el

le
x

et
a
l,

2
0
1
1

N
av

ig
.

&
p
ic

k

&
p
la

ce

S
im

u
la

t.
(2

)
N

at
.

la
n
g
u
ag

e
L

ea
rn

in
g

(1
0
)

M
ed

iu
m

(1
6
)

Y
(3

0
)

2
(4

2
)

3
cl

as
se

s
(5

9
)

N
/N

N
N

N
N

N
R

et
ra

in
in

g

B
ø
g
h

et
a
l,

2
0
1
2

M
o
b
il

e
m

an
ip

.
R

o
b
o
t

p
re

li
m

.
D

em
o
.

P
ro

g
ra

m
g
.

M
ed

iu
m

(1
7
)

N
2

(4
3
)

2
(6

0
)

N
/N

N
N

N
N

Y
M

an
u
al

B
o
ll

in
i

et
a
l,

2
0
1
3

M
o
b
il

e
m

an
ip

.
M

o
st

ly
si

m
u
la

t.
(3

)
N

at
.

la
n
g
u
ag

e
L

ea
rn

in
g

(1
1
)

M
ed

iu
m

(1
8
)

Y
(3

1
)

3
/9

(4
4
)

1
cl

as
s

(6
1
)

N
/N

N
N

N
N

N
R

et
ra

in
in

g

G
u

a
d

a
rr

a
m

a
et

a
l,

2
0
1
3

V
is

u
al

p
er

ce
p
ti

o
n

&
m

an
ip

.

R
o
b
o
t

(4
)

N
at

.
la

n
g
u
ag

e
L

ea
rn

in
g

(1
2
)

M
ed

iu
m

(1
9
)

Y
(3

2
)

5
(4

5
)

5
0

cl
as

se
s

N
/N

N
N

N
N

N
R

et
ra

in
in

g

T
en

o
rt

h
et

a
l,

2
0
1
3
;

T
en

o
rt

h

&
B

ee
tz

,
2
0
1
3

M
o
b
il

e
m

an
ip

.
R

o
b
o
t

(P
o
C

)
(5

)
T

as
k

co
m

m
an

d
M

an
y

ex
te

r.

so
u
rc

es
(1

3
)

L
ar

g
e

(2
0
)

Y
(3

3
)

1
ta

sk
(4

6
)

3
(6

2
)

N
/Y

N
N

N
Y

(6
9
)

Y
(7

5
)

R
ed

ef
in

it
io

n
o
f

se
v
er

al
co

m
p
o
n
en

ts

S
te

n
m

a
rk

&
N

u
g
u

es
,

2
0
1
3

M
an

ip
.

R
o
b
o
t

(P
o
C

)
F

in
it

e
la

n
g
u
ag

e
P

ro
g
ra

m
g
.

N
o
t

d
ef

in
ed

N
4

(4
7
)

3
(6

3
)

Y
(6

8
)/

N
G

ra
sp

re
u
se

N
G

ra
sp

re
u
se

N
(7

0
)

Y
M

an
u
al

K
o
ll

a
r

et
a
l,

2
0
1
4

N
av

ig
.

S
im

u
la

t.
&

ro
b
o
t

N
at

.
la

n
g
u
ag

e
L

ea
rn

in
g

(1
4
)

S
m

al
l

(2
1
)

Y
(3

4
)

5
(4

8
)

N
o
t

sp
ec

if
ie

d
N

/N
N

N
N

N
N

R
et

ra
in

in
g

S
ch

le
tt

e
et

a
l,

2
0
1
4

M
an

ip
.

S
im

u
la

t.
(P

o
C

)
V

is
u
al

b
lo

ck
s

P
ro

g
ra

m
g
.,

m
ac

ro
n
iz

in
g

N
o
t

ap
p
li

ca
b
le

N
3

(4
9
)

O
b
je

ct
in

d
ep

.
N

/N
M

an
u
al

N
N

N
Y

M
an

u
al

L
is

ca
et

a
l,

2
0
1
5

M
an

ip
.

R
o
b
o
t

(P
o
C

)
N

at
.

la
n
g
u
ag

e
L

ea
rn

in
g

&

d
at

a
b
as

es
(1

5
)

N
o
t

in
d
ic

at
ed

Y
(3

5
)

2
(5

0
)

O
n
e

se
t

(6
4
)

N
/Y

N
N

N
N

(7
1
)

Y
(7

5
)

R
ed

ef
in

it
io

n
&

re
tr

ai
n
in

g

A
le

x
a
n

d
ro

v
a

et
a
l,

2
0
1
5

N
av

ig
.,

m
an

ip
.

&
ac

t.
p
er

ce
p
.

R
o
b
o
t

(P
o
C

)
V

is
u
al

b
lo

ck
s

P
ro

g
ra

m
g
.,

m
ac

ro
n
iz

in
g

S
m

al
l

(2
2
)

N
6

(5
1
)

4
(6

5
)

N
/N

M
an

u
al

N
M

an
u
al

N
Y

M
an

u
al

S
te

n
m

a
rk

et
a
l,

2
0
1
5

M
an

ip
.

R
o
b
o
t

(P
o
C

)
G

U
I

o
r

co
d
in

g
P

ro
g
ra

m
g
.

N
o
t

d
ef

in
ed

N
1

ta
sk

(5
2
)

2
(6

6
)

N
/N

M
an

u
al

N
C

A
D

m
o
d
el

s
N

Y
M

an
u
al

P
er

zy
lo

et
a
l,

2
0
1
6

M
an

ip
.

R
o
b
o
t

(P
o
C

)
O

b
je

ct
-c

en
te

re
d

G
U

I

P
ro

g
ra

m
g
.

N
o
t

in
d
ic

at
ed

N
2

ta
sk

s
(5

3
)

N
o
t

sp
ec

if
ie

d
N

/N
M

an
u
al

N
C

A
D

m
o
d
el

s
N

Y
M

an
u
al

W
ä

ch
te

r
et

a
l,

2
0
1
6

M
o
b
il

e
m

an
ip

.
R

o
b
o
t

(P
o
C

)
G

U
I

o
r

co
d
in

g
P

ro
g
ra

m
g
.

S
m

al
l

(2
3
)

N
3

ta
sk

s
(5

4
)

N
o
t

sp
ec

if
ie

d
N

/N
M

an
u
al

N
N

N
Y

M
an

u
al

M
is

ra
et

a
l,

2
0
1
6

M
o
b
il

e
m

an
ip

.
m

o
st

ly
si

m
u
la

t.
(6

)
N

at
.

la
n
g
u
ag

e
L

ea
rn

in
g

M
ed

iu
m

(2
4
)

Y
(3

6
)

5
/1

3
(5

5
)

M
u
lt

ip
le

(n
o
.

n
o
t

g
iv

en
)

Y
/Y

N
N

N
Y

(7
2
)

N
R

et
ra

in
in

g

K
u

et
a
l,

2
0
1
7

M
an

ip
.

R
o
b
o
t

N
o
n
e

(8
)

D
ee

p
le

ar
n
in

g
S

m
al

l
(2

5
)

Y
(3

7
)

3
(5

6
)

P
o
w

er
d
ri

ll
N

/N
Im

p
li

ci
t

N
O

n
e

o
b
je

ct
o
n
ly

N
N

R
et

ra
in

in
g

o
f

C
N

N

F
in

n
&

L
ev

in
e,

2
0
1
7

P
u
sh

in
g

R
o
b
o
t

L
o
ca

ti
o
n

p
o
in

te
r

o
n
ly

D
ee

p
le

ar
n
in

g
L

ar
g
e

(2
6
)

Y
(3

8
)

1
(3

8
)

M
an

y
N

/N
Im

p
li

ci
t

N
N

N
N

R
et

ra
in

in
g

o
f

C
N

N

L
ev

in
e

et
a
l,

2
0
1
8

G
ra

sp
in

g
R

o
b
o
t

N
o
n
e

(9
)

D
ee

p
le

ar
n
in

g
L

ar
g
e

(2
7
)

Y
(3

9
)

1
(5

7
)

M
an

y
N

/N
Im

p
li

ci
t

N
N

N
N

R
et

ra
in

in
g

o
f

C
N

N

B
o
zc

u
o
g
lu

et
a
l,

2
0
1
8

M
o
b
il

e
m

an
ip

.
R

o
b
o
t

(7
)

N
o
t

d
ef

in
ed

P
ar

ti
al

le
ar

n
in

g

&
ex

t.
so

u
rc

es

S
m

al
l

(2
8
)

Y
(4

0
)

2
(4

0
)

1
(6

7
)

N
/N

P
ar

ti
al

N
Y

Y
(7

3
)

Y
(7

5
)

R
ed

ef
in

it
io

n
&

re
tr

ai
n
in

g

O
u

r
M

a
n

ip
.

R
o
b

o
t

S
im

p
le

n
a
t.

la
n

g
u

a
g
e

L
ea

rn
in

g
fr

o
m

p
re

v.
ex

ec
u

ti
o
n

s

S
m

a
ll

(2
9
)

N
1
0

(5
8
)

4
5

N
/N

Y
Y

Y
Y

Y
A

cq
u

is
it

io
n

o
f

n
ew

A
D

T
s

A
D

T
:

ac
ti

o
n

d
at

a
ta

b
le

;
C

N
N

:
co

n
v
o

lu
ti

o
n

al
n

eu
ra

l
n

et
w

o
rk

;
P

o
C

:
p

ro
o

f
o

f
co

n
ce

p
t.

(1
) A

rc
h

it
ec

tu
ra

l
fr

am
ew

o
rk

(n
o

ex
p

er
im

en
ts

).
(2

) E
v
al

u
at

io
n

w
it

h
th

e
h

el
p

o
f

u
se

r
st

u
d

y
(A

m
az

o
n

M
ec

h
an

ic
al

T
u

rk
).

(3
) Q

u
an

ti
ta

ti
v

e
ev

al
u

at
io

n
in

si
m

u
la

ti
o

n
,

P
o

C
o

n
ro

b
o

t.
(4

) Q
u

an
ti

ta
ti

v
e

o
n

A
I

su
b

co
m

p
o

n
en

ts
o

f
th

e
sy

st
em

an
d

th
en

o
n

te
st

se
t

b
y

u
si

n
g

ro
b

o
t.

(5
) P

o
C

o
n

ro
b

o
t

+
q

u
an

ti
ta

ti
v
e

ev
al

u
at

io
n

o
f

p
er

ce
p

ti
o

n
su

b
sy

st
em

.
(6

) Q
u

an
ti

ta
ti

v
e

ev
al

u
at

io
n

o
n

d
at

as
et

o
b

ta
in

ed
fr

o
m

si
m

u
la

ti
o

n
,

P
o

C
o

n
ro

b
o

t.
(7

) O
n

e
ro

b
o

ti
c

ta
sk

w
it

h
a

st
at

is
ti

ca
l

ev
al

u
at

io
n

an
d

an
o

th
er

fo
r

P
o

C
.

(8
) A

lw
ay

s
g

ra
sp

in
g

th
e

d
ri

ll
b
y

th
e

h
an

d
le

.
(9

) A
lw

ay
s

g
ra

sp
in

g
fo

r
b

in
p

ic
k

in
g

.
(1

0
) B

as
ed

o
n

m
an

u
al

ly
(A

m
az

o
n

M
ec

h
an

ic
al

T
u

rk
)

la
b

el
ed

d
at

as
et

an
d

W
o

rd
N

et
,

F
li

ck
r

im
ag

e
co

-o
cc

u
rr

en
ce

st
at

is
ti

cs
.

(1
1
) B

as
ed

o
n

m
an

u
al

ly
la

b
el

ed
d

at
as

et
.

(1
2
) S

p
at

ia
l

p
re

p
o

si
ti

o
n

la
b

el
in

g

co
ll

ec
te

d
v

ia
A

m
az

o
n

M
ec

h
an

ic
al

T
u

rk
u

si
n

g
3

D
v

ir
tu

al
en

v
ir

o
n

m
en

t
d

at
as

et
s.

(1
3
) D

o
m

ai
n

-s
p

ec
if

ic
o

n
to

lo
g

ie
s,

g
en

er
al

o
n

to
lo

g
ie

s,
o

b
je

ct
m

o
d

el
s,

en
v

ir
o

n
m

en
t

m
ap

s,
P

ro
lo

g
-b

as
ed

st
ru

ct
u

re
s.

(1
4
) M

an
u

al
ly

cr
ea

te
d

d
at

as
et

:
n

at
u

ra
l

la
n

g
u

ag
e

co
m

m
an

d
s

m
ap

p
ed

in
to

‘‘
p

er
so

n
s

b
eh

av
io

r
w

h
en

p
er

fo
rm

in
g

th
o

se
co

m
m

an
d

s
in

v
ir

tu
al

en
v

ir
o

n
m

en
t’’

,
o

b
je

ct
co

-o
cc

u
rr

en
ce

st
at

is
ti

cs
fr

o
m

im
ag

e
d

at
ab

as
e.

(1
5
) W

o
rd

n
et

,
F

ra
m

en
et

,
W

ik
ih

o
w

.
(1

6
) 2

2
v

id
eo

s
×

4
5

su
b

je
ct

s
×

(o
n

av
er

ag
e)

1
3

co
m

m
an

d
s,

fo
r

tr
ai

n
in

g
o

f
th

e
m

o
d

el
ar

o
u

n
d

1
0

0
0

p
h

ra
se

s
w

er
e

fo
u

n
d

to
b

e
re

q
u

ir
ed

.
(1

7
) S

k
il

l
se

t
d

ef
in

ed
b

as
ed

o
n

5
6

6
in

d
u

st
ri

al
ta

sk
s.

(1
8
) 6

0
co

o
k

in
g

re
ci

p
es

w
it

h
fo

rm
al

ly
sp

ec
if

ie
d

in
g

re
d

ie
n

ts
an

d
m

an
u

al
ly

an
n

o
ta

te
d

ro
b

o
t

in
st

ru
ct

io
n

s
fo

r
ea

ch
re

ci
p

e.
(1

9
) 2

9
0

u
tt

er
an

ce
s

fo
r

tr
ai

n
in

g
(2

1
0

fo
r

te
st

in
g

),
4

0
0

0
la

b
el

ed
im

ag
es

fo
r

o
b

je
ct

cl
as

si
fi

ca
ti

o
n

(8
0

p
er

cl
as

s)
.

(2
0
) L

ar
g

e
am

o
u

n
t

o
f

d
if

fe
re

n
t

ty
p

es
o

f
k

n
o
w

le
d

g
e,

h
ar

d
to

d
ef

in
e

n
u

m
er

ic
al

ly
.

(2
1
) 5

0
n

at
u

ra
l

la
n

g
u

ag
e

co
m

m
an

d
s
×

o
n

e
o

r
m

o
re

sc
en

ar
io

s
an

d

so
m

e
co

m
p

o
u

n
d

n
at

u
ra

l
la

n
g

u
ag

e
co

m
m

an
d

s.
(2

2
) O

n
e

d
em

o
n

st
ra

ti
o

n
fo

r
ea

ch
ta

sk
.

(2
3
) 1

4
sk

il
ls

ar
e

re
ad

y
fo

r
tr

an
sf

er
to

o
th

er
ro

b
o

ts
.

(2
4
) 3

0
0

d
if

fe
re

n
t

co
o

k
in

g
ta

sk
ex

ec
u

ti
o

n
s

in
si

m
u

la
ti

o
n

.
(2

5
) 8

ac
ti

o
n

se
q

u
en

ce
s

an
d

C
N

N
le

ar
n

in
g

se
t

d
er

iv
ed

fr
o

m

th
o

se
se

q
u

en
ce

s.
(2

6
) 5

0
,0

0
0

p
u

sh
in

g
at

te
m

p
ts

.
(2

7
) 2

,8
9

8
,4

1
0

im
ag

es
,

8
0

0
,0

0
0

g
ra

sp
at

te
m

p
ts

.
(2

8
) 5

8
ex

ec
u

ti
o

n
s.

(2
9
) 2

9
A

D
T

s.
(3

0
) F

o
rk

li
ft

o
p

er
at

io
n

.
(3

1
) O

n
e

co
o

k
in

g
se

q
u

en
ce

:
p

o
u

ri
n

g
se

v
er

al
co

m
p

o
n

en
ts

,
m

ix
in

g
,

an
d

sc
ra

p
in

g
fo

r
em

p
ty

in
g

.
(3

2
) M

an
ip

u
la

ti
o

n
s

b
as

ed
o

n
sp

at
ia

l
re

la
ti

o
n

s
b

et
w

ee
n

o
b

je
ct

s.
(3

3
) D

em
o

n
st

ra
ti

o
n

ex
am

p
le

is
v
er

y
sp

ec
if

ic
(d

ri
n

k
-s

er
v

in
g

in
h

o
sp

it
al

ro
o

m
).

(3
4
) N

av
ig

at
io

n
d

o
m

ai
n

.
(3

5
) N

eu
tr

al
iz

at
io

n
an

d
p

ip
et

te
u

sa
g

e.
(3

6
) F

iv
e

co
o

k
in

g
ta

sk
s.

(3
7
) P

o
w

er
d

ri
ll

h
an

d
li

n
g

.
(3

8
) P

u
sh

in
g

.
(3

9
) B

in
p

ic
k

in
g

.
(4

0
) N

av
ig

at
in

g
to

w
ar

d
fr

id
g

e
an

d
o

p
en

in
g

d
o

o
r

w
it

h
h

in
g

ed
jo

in
t.

(4
1
) G

ra
sp

in
g

,
m

o
u

n
ti

n
g

,
m

ov
in

g
.

(4
2
) M

ov
e,

li
ft

an
d

v
ar

ie
ti

es
(g

o
b

ac
k

,
p

ic
k

u
p

,
p

u
ll

p
ar

al
le

l)
.

(4
3
) P

ic
k

u
p

an
d

em
p

ty
(t

h
e

co
n

ta
in

er
).

(4
4
) 3

ta
sk

s
o

n
m

ak
in

g

d
if

fe
re

n
t

d
is

h
es

,
9

lo
w

er
-l

ev
el

ac
ti

o
n

s:
lo

ca
ti

n
g

,
g

ra
sp

in
g

,
li

ft
in

g
,

m
ov

in
g

,
p

o
u

ri
n

g
,

sh
ak

in
g

,
m

ix
in

g
,

sc
ra

p
in

g
,

b
ak

in
g

.
(4

5
) P

ic
k

u
p

,
p

o
in

t
to

,
p

o
in

t
at

,
p

la
ce

at
,

m
ov

e
to

.
(4

6
) S

er
v

in
g

d
ri

n
k

to
p

at
ie

n
t.

(4
7
) T

ak
e,

in
se

rt
,

p
u

t,
ca

li
b

ra
te

.
(4

8
) B

ri
n

g
,

m
ee

t,
av

o
id

,

fo
ll

o
w

,
g

o
.

(4
9
) M

ov
e,

g
lu

e,
g

ri
p

.
(5

0
) N

eu
tr

al
iz

at
io

n
an

d
p

ip
et

ti
n

g
.

(5
1
) P

u
t

in
b

o
x

an
d

st
ac

k
,

o
p

en
an

d
cl

o
se

d
ra

w
er

,
p

u
sh

,
g

ra
sp

.
(5

2
) In

se
rt

in
g

sw
it

ch
in

b
o
x

.
(5

3
) N

u
m

b
er

o
f

ac
ti

o
n

s
u

n
cl

ea
r.

T
as

k
s

ar
e:

as
se

m
b

ly
o

f
g

ea
rb

o
x

an
d

p
ic

k
in

g
an

d
p

la
ci

n
g

w
o

o
d

en

p
an

el
s.

(5
4
) T

h
re

e
ta

sk
s

o
f

v
ar

y
in

g
co

m
p

le
x

it
y

:
cl

o
n

in
g

o
f

st
at

e
ch

ar
t

g
ro

u
p

fo
r

p
la

ci
n

g
o

b
je

ct
s

u
si

n
g

an
o

th
er

ro
b

o
t;

tr
an

sf
er

ri
n

g
w

av
in

g
m

o
ti

o
n

to
an

o
th

er
ro

b
o

t;
g

ra
sp

in
g

o
f

u
n

k
n

o
w

n
o

b
je

ct
u

si
n

g
v

is
u

al
se

rv
o

in
g

.
(5

5
) 5

co
o

k
in

g
ta

sk
s;

1
3

lo
w

-l
ev

el

ro
b

o
t

co
m

m
an

d
s.

(5
6
) D

ra
g

,
tu

rn
,

g
ra

sp
.

(5
7
) G

ra
sp

in
g

.
(5

8
) R

o
ta

te
,

p
la

ce
,

in
se

rt
,

p
u

t
ov

er
,

la
y,

sh
ak

e,
u

n
sc

re
w

,
d

ro
p

,
p

u
sh

aw
ay

,
in

v
er

t.
(5

9
) T

ru
ck

s,
tr

ai
le

rs
,

an
d

p
al

le
ts

.
(6

0
) B

o
x

an
d

fe
ed

er
.

(6
1
) O

n
ly

b
o
w

ls
.

(6
2
) B

ed
,

ca
b

in
et

,
d

ri
n

k
b

o
tt

le
.

(6
3
) P

ri
n

te
d

ci
rc

u
it

b
o

ar
d,

fi
x

tu
re

,
sh

ie
ld

.
(6

4
) C

h
em

ic
al

la
b

eq
u

ip
m

en
t

(h
o

ld
er

s,
tu

b
es

,
p

ip
et

te
s)

.
(6

5
) B

lo
ck

s
an

d
p

ap
er

cu
p

s,
d

ra
w

er
,

b
o

tt
le

:
3

–
5

d
if

fe
re

n
t

sc
en

ar
io

s
fo

r
ea

ch
ex

p
er

im
en

t.
(6

6
) S

w
it

ch
an

d
b

o
x

.
(6

7
) F

ri
d

g
e

d
o

o
r

o
p

en
in

g
in

tw
o

d
if

fe
re

n
t

la
b

s.
(6

8
) M

is
si

n
g

sk
il

ls
in

k
n

o
w

n
as

se
m

b
ly

se
q

u
en

ce
s

w
il

l
b

e
su

g
g

es
te

d
.

(6
9
) M

an
y

(g
en

er
al

)
P

ro
lo

g
ru

le
s.

(7
0
) O

n
ly

ru
d

im
en

ta
ry

m
ap

p
in

g
o

b
je

ct
s

b
y

n
am

es
.

(7
1
) R

u
le

sy
st

em
s

em
p

lo
y

ed
,

b
u

t
fo

r
ac

ti
o

n
p

ar
am

et
ri

za
ti

o
n

,
n

o
t

fo
r

re
u

se
.

(7
2
) H

eu
ri

st
ic

en
er

g
y

fu
n

ct
io

n
u

se
d

.
(7

3
) K

n
o
w

le
d

g
e

ad
ap

ta
ti

o
n

ru
le

s.
(7

4
) O

n
ly

at
co

d
in

g
le

v
el

.
(7

5
) T

h
ro

u
g

h
ad

d
it

io
n

al
re

ad
-o

u
t

p
ro

ce
d

u
re

s.

Tamosiunaite et al. 1201
Author’s version — provided for personal and academic use. Do not redistribute.

comfort factors in working with the system will have to be

investigated and evaluated in future work.

In summary, we believe that this study is one of the first

attempts to provide a more rigorously structured action

scaffold for action-code reuse. It rests on intrinsic action

properties (the SEC events) not needing potentially arbi-

trary human definitions. This might make such a structure

more ‘‘universally agreeable’’. Thus, we see the continua-

tion of structuring efforts of action components as one of

the most important future efforts to arrive at transferable

and reusable robotics code.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was supported by the European Community’s Seventh

Framework Programme FP7 (Programme and Theme: ICT-2011.

2.1, Cognitive Systems and Robotics) (grant number 600578, ACAT).

Notes

1. http://universaldependencies.org/u/dep/index.html

2. Neighborhood defines the temporal context of the movement

primitive within the data structure used for action description;

however, we avoided using the word ‘‘context’’ here to avoid

mismatch with text-based analysis.

3. https://alexandria.physik3.uni-goettingen.de/cns-group/data-

sets/cut/

4. https://alexandria.physik3.uni-goettingen.de/cns-group/data-

sets/cut/

ORCID iD

Jan Matthias Braun https://orcid.org/0000-0003-2749-9000

Supplemental Material

Supplemental material for this article is available online.

References

Aein MJ (2016) Development and analysis of a library of actions

for robot arm-hand systems. PhD Thesis, Georg-August-Uni-

versität Göttingen, Germany.

Aein M, Aksoy E, Tamosiunaite M, et al. (2013) Toward a library

of manipulation actions based on semantic object-action rela-

tions. In: 2013 IEEE/RSJ international conference on intelli-

gent robots and systems (IROS), Tokyo, Japan, 3–7 November

2013, pp. 4555–4562. Piscataway, NJ: IEEE.

Aksoy EE, Abramov A, Dörr J, et al. (2011) Learning the seman-

tics of object-action relations by observation. The International

Journal of Robotics Research 30(10): 1229–1249.

Aksoy EE, Orhan A and Wörgötter F (2017) Semantic decomposi-

tion and recognition of long and complex manipulation action

sequences. International Journal of Computer Vision 122(1):

84–115.

Aksoy EE, Zhou Y, Wächter M, et al. (2016) Enriched manipula-

tion action semantics for robot execution of time constrained

tasks. In: 2016 IEEE-RAS 16th international conference on

humanoid robots (humanoids), Cancun, Mexico, 15–17

November 2016, pp. 109–116. Piscataway, NJ: IEEE.

Alexandrova S, Tatlock Z and Cakmak M (2015) RoboFlow: A

flow-based visual programming language for mobile manipula-

tion tasks. In: 2015 IEEE international conference on robotics

and automation (ICRA), Seattle, WA, USA, 26–30 May 2015,

pp. 5537–5544. Piscataway, NJ: IEEE.

Alterovitz R, Koenig S and Likhachev M (2016) Robot planning

in the real world: Research challenges and opportunities. AI

Magazine 37(2): 76–84.

Angerer A, Hoffmann A, Ortmeier F, et al. (2009) Object-centric

programming: A new modeling paradigm for robotic applica-

tions. In: 2009 IEEE international conference on automation

and logistics, Shenyang, China, 5–7 August 2009, pp. 18–23.

Piscataway, NJ: IEEE.

Artzi Y and Zettlemoyer L (2013) Weakly supervised learning of

semantic parsers for mapping instructions to actions. Transactions

of the Association for Computational Linguistics 1(1): 49–62.

Beetz M, Bessler D, Winkler J, et al. (2016) Open robotics

research using web-based knowledge services. In: 2016 IEEE

international conference on robotics and automation (ICRA),

Stockholm, Sweden, 16–21 May 2016, pp. 5380–5387. Piscat-

away, NJ: IEEE.

Billard A, Calinon S, Dillmann R, et al. (2008) Robot programming

by demonstration. In: B Siciliano and O Khatib (eds.) Springer

Handbook of Robotics. Berlin: Springer, pp. 1371–1394.

Björkelund A, Malec J, Nilsson K, et al. (2011) Knowledge and

skill representations for robotized production. IFAC Proceed-

ings Volumes 44(1): 8999–9004.

Bøgh S, Nielsen OS, Pedersen MR, et al. (2012) Does your robot

have skills? In: 43rd international symposium on robotics

(ISR), Taipei, Taiwan, 29–31 August 2012, pp. 6–12. Berlin:

VDE Verlag GMBH.

Bohg J, Morales A, Asfour T, et al. (2014) Data-driven grasp

synthesis—a survey. IEEE Transactions on Robotics 30(2):

289–309.

Bollini M, Tellex S, Thompson T, et al. (2013) Interpreting and

executing recipes with a cooking robot. In: JP Desai, G Dudek,

O Khatib, et al. (eds.) Experimental Robotics Heidelberg:

Springer International Publishing, pp. 481–495.

Bozcuog
^
lu AK, Kazhoyan G, Furuta Y, et al. (2018) The exchange

of knowledge using cloud robotics. IEEE Robotics and Auto-

mation Letters 3(2): 1072–1079.

Buchin M, Driemel A, Van Kreveld M, et al. (2011) Segmenting

trajectories: A framework and algorithms using spatiotemporal

criteria. Journal of Spatial Information Science 2011(3): 33–63.

Chambers N, Cer D, Grenager T, et al. (2007) Learning alignments

and leveraging natural logic. In: ACL-PASCAL workshop on

textual entailment and paraphrasing, RTE ’07, Prague, Czech

Republic, –28–29 June 2007, pp. 165–170. Stroudsburg, PA:

Association for Computational Linguistics.

de Marneffe MC and Manning CD (2008) The Stanford typed

dependencies representation. In: Coling 2008: Proceedings of

the workshop on cross-framework and cross-domain parser

evaluation, CrossParser ’08, Manchester, UK, —23 August

2008. Stroudsburg, PA: Association for Computational

Linguistics.

de Marneffe MC, Dozat T, Silveira N, et al. (2014) Universal Stan-

ford dependencies: A cross-linguistic typology. In: Ninth inter-

national conference on language resources and evaluation

(LREC) (eds. N Calzolari, K Choukri, T Declerck, et al.), Rey-

kjavik, Iceland, 26–31 May 2014, pp. 4585–4592. Paris: Eur-

opean Language Resources Association.

1202 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

Dillmann R (2004) Teaching and learning of robot tasks via obser-

vation of human performance. Robotics and Autonomous Sys-

tems 47(2–3): 109–116.

Drath R, Lüder A, Peschke J, et al. (2008) AutomationML—the

glue for seamless automation engineering. In: International

conference on emerging technologies and factory automation

(ETFA), Hamburg, Germany, 5–18 September 2008, pp. 616–

623. Piscataway, NJ: IEEE.

Erdem E, Patoglu V and Saribatur ZG (2015) Integrating hybrid

diagnostic reasoning in plan execution monitoring for cognitive

factories with multiple robots. In: 2015 IEEE international

conference on robotics and automation (ICRA), Seattle, WA,

USA, 26–30 May 2015, pp. 2007–2013. Piscataway, NJ: IEEE.

Finn C and Levine S (2017) Deep visual foresight for planning

robot motion. In: IEEE international conference on robotics

and automation (ICRA), Singapore, 29 May–3 June 2017, pp.

2786–2793. Piscataway, NJ: IEEE.

Fischer K, Kirstein F, Jensen LC, et al. (2016) A comparison of

types of robot control for programming by demonstration. In:

2016 11th ACM/IEEE international conference on human–

robot interaction (HRI), Christchurch, New Zealand, 7–10

March 2016, pp. 213–220. Piscataway, NJ: IEEE.

Gaspar T, Ridge B, Bevec R, et al. (2017) Rapid hardware and

software reconfiguration in a robotic workcell. In: 18th inter-

national conference on advanced robotics (ICAR), Hong Kong,

China, 10–12 July 2017, pp. 229–236. Piscataway, NJ: IEEE.

Gemignani G, Bastianelli E and Nardi D (2015) Teaching robots

parametrized executable plans through spoken interaction. In:

2015 International conference on autonomous agents and

multiagent systems, AAMAS ’15, Istanbul, Turkey, 4–8 May

2015, pp. 851–859. Richland, SC: International Foundation for

Autonomous Agents and Multiagent Systems.

Guadarrama S, Riano L, Golland D, et al. (2013) Grounding spa-

tial relations for human–robot interaction. In: 2013 IEEE/RSJ

international conference on intelligent robots and systems,

Tokyo, Japan, 3–7 November 2013, pp. 1640–1647. Piscat-

away, NJ: IEEE.

Haidu A and Beetz M (2016) Action recognition and interpreta-

tion from virtual demonstrations. In: International conference

on intelligent robots and systems (IROS). Daejeon, South

Korea, 9–14 October 2016, pp. 2833–2838. Piscataway, NJ:

IEEE.

Hart S, Dinh P and Hambuchen K (2015) The affordance template

ROS package for robot task programming. In: 2015 IEEE

international conference on robotics and automation (ICRA),

Seattle, WA, USA, 26–30 May 2015, pp. 6227–6234. Piscat-

away, NJ: IEEE.

Huang DW, Katz GE, Langsfeld JD, et al. (2015) An object-centric

paradigm for robot programming by demonstration. In: Fio-

piastis CM and Schmorrow DD (eds.) Foundations of Augmen-

ted Cognition. Cham: Springer International Publishing, pp.

745–756.

Huang J, Lau T and Cakmak M (2016) Design and evaluation of

a rapid programming system for service robots. In: Eleventh

ACM/IEEE international conference on human robot interac-

tion, HRI ’16, Christchurch, New Zealand, 7–10 March 2016,

pp. 295–302. Piscataway, NJ: IEEE.

Kipper K, Korhonen A, Ryant N, et al. (2006) Extending VerbNet

with novel verb classes. In: Fifth international conference on

language resources and evaluation (LREC-2006), Genoa, Italy,

22–28 May 2006. Paris: European Language Resources Asso-

ciation (ELRA).

Klein D and Manning CD (2004) Corpus-based induction of syn-

tactic structure: Models of dependency and constituency. In:

42nd annual meeting of Association for Computational Lin-

guistics, ACL ’04, Barcelona, Spain, 21–26 July 2004, pp.

478–486. Stroudsburg, PA, USA: Association for Computa-

tional Linguistics.

Kober J, Bagnell JA and Peters J (2013) Reinforcement learning

in robotics: A survey. The International Journal of Robotics

Research 32(11): 1238–1274.

Kollar T, Tellex S, Roy D, et al. (2014) Grounding verbs of motion

in natural language commands to robots. In: O Khatib, V

Kumar and G Sukhatme (eds.) Experimental Robotics. Berlin:

Springer, pp. 31–47.

Kong W and Ranganath S (2008) Automatic hand trajectory seg-

mentation and phoneme transcription for sign language. In:

8th IEEE international conference on automatic face & ges-

ture recognition, FG’08, Amsterdam, Netherlands, 17–19 Sep-

tember 2008. Piscataway, NJ: IEEE.

Kramberger A, Gams A, Nemec B, et al. (2016) Transfer of con-

tact skills to new environmental conditions. In: 2016 IEEE-

RAS 16th international conference on humanoid robots (huma-

noids), Cancun, Mexico, 15–17 November 2016, pp. 668–675.

Piscataway, NJ: IEEE.

Ku LY, Learned-Miller E and Grupen R (2017a) An aspect repre-

sentation for object manipulation based on convolutional

neural networks. In: 2017 IEEE international conference on

robotics and automation (ICRA), Singapore, 29 May–3 June

2017, pp. 794–800. Piscataway, NJ: IEEE.

Ku LY, Learned-Miller E and Grupen R (2017b) Associating

grasp configurations with hierarchical features in convolutional

neural networks. In: IEEE/RSJ international conference on

intelligent robots and systems (IROS), Vancouver, Canada, 24–

28 September 2017, pp. 2434–2441. Piscataway, NJ: IEEE.

Latombe JC (2012) Robot Motion Planning. New York, NY:

Springer Science & Business Media.

Levine S, Pastor P, Krizhevsky A, et al. (2018) Learning hand-eye

coordination for robotic grasping with deep learning and large-

scale data collection. The International Journal of Robotics

Research 37(4–5): 421–436.

Lippiello V, Ruggiero F, Siciliano B, et al. (2013) Visual grasp

planning for unknown objects using a multifingered robotic

hand. IEEE/ASME Transactions on Mechatronics 18(3):

1050–1059.

Lisca G, Nyga D, Bálint-Benczédi F, et al. (2015) Towards robots

conducting chemical experiments. In: 2015 IEEE/RSJ interna-

tional conference on intelligent robots and systems (IROS),

Hamburg, Germany, 28 September–2 October 2015, pp. 5202–

5208. Piscataway, NJ: IEEE.

Macfarlane S and Croft EA (2003) Jerk-bounded manipulator tra-

jectory planning: Design for real-time applications. IEEE

Transactions on Robotics and Automation 19(1): 42–52.

Manschitz S, Kober J, Gienger M, et al. (2014) Learning to

sequence movement primitives from demonstrations. In: 2014

IEEE/RSJ international conference on intelligent robots and

systems, Chicago, IL, USA, 14–18 September 2014, pp.

4414–4421. Piscataway, NJ: IEEE.

Markievicz I, Vitkute-Adzgauskiene D and Tamosiunaite M

(2013) Semi-supervised learning of action ontology from

domain-specific corpora. In: T Skersys, R Butleris and R But-

kiene (eds.) Information and Software Technologies. Berlin:

Springer, pp. 173–185.

Tamosiunaite et al. 1203
Author’s version — provided for personal and academic use. Do not redistribute.

Matuszek C, Herbst E, Zettlemoyer L, et al. (2013) Learning to

parse natural language commands to a robot control system.

In: J Desai, G Dudek, O Khatib, et al. (eds.) Experimental

Robotics. Heidelberg: Springer International Publishing, pp.

403–415.

Miller E (1998) An introduction to the resource description frame-

work. Bulletin of the American Society for Information Science

and Technology 25(1): 15–19.

Miller GA, Beckwith R, Fellbaum C, et al. (1990) Wordnet: An

on-line lexical database. International Journal of Lexicography

3: 235–244.

Misra DK, Sung J, Lee K, et al. (2016) Tell me Dave: Context-sen-

sitive grounding of natural language to manipulation instruc-

tions. The International Journal of Robotics Research 35(1–3):

281–300.

Moradi Dalvand M and Nahavandi S (2014) Teleoperation of

ABB industrial robots. Industrial Robot: An International

Journal 41(3): 286–295.

Nakamura A, Nagata K, Harada K, et al. (2013) Error recovery

using task stratification and error classification for manipula-

tion robots in various fields. In: 2013 IEEE/RSJ international

conference on intelligent robots and systems, Tokyo, Japan, 3–

7 November, 2013, pp. 3535–3542. Piscataway, NJ: IEEE.

Niemueller T, Lakemeyer G and Srinivasa SS (2012) A generic

robot database and its application in fault analysis and perfor-

mance evaluation. In: 2012 IEEE/RSJ international conference

on intelligent robots and systems, Vilamoura, Portugal, 7–12

October 2012, pp. 364–369. Piscataway, NJ: IEEE.

Nivre J and Nilsson J (2005) Pseudo-projective dependency par-

sing. In: 43rd annual meeting of the Association for Computa-

tional Linguistics, ACL ’05, Ann Arbor, MI, 25–30 June 2005,

pp. 99–106. Stroudsburg, PA: Association for Computational

Linguistics.

Nyga D and Beetz M (2012) Everything robots always wanted to

know about housework (but were afraid to ask). In: 2012

IEEE/RSJ international conference on intelligent robots and

systems, Vilamoura, Portugal, 7–12 October 2012, pp. 243–

250. Piscataway, NJ: IEEE.

Ovchinnikova E, Wächter M, Wittenbeck V, et al. (2015) Multi-

purpose natural language understanding linked to sensorimotor

experience in humanoid robots. In: 2015 IEEE-RAS 15th inter-

national conference on humanoid robots (humanoids), Seoul,

South Korea, 3–5 November 2015, pp. 365–372. Piscataway,

NJ: IEEE.

Persson J, Gallois A, Björkelund A, et al. (2010) A knowledge

integration framework for robotics. In: ISR 2010 (41st interna-

tional symposium on robotics) and ROBOTIK 2010 (6th Ger-

man conference on robotics), Munich, Germany, 7–9 June

2010. Piscataway, NJ: IEEE.

Perzylo A, Griffiths S, Lafrenz R, et al. (2015) Generating gram-

mars for natural language understanding from knowledge

about actions and objects. In: 2015 IEEE international confer-

ence on robotics and biomimetics (ROBIO), Zhuhai, China, 6–

9 December 2015, pp. 2008–2013. Piscataway, NJ: IEEE.

Perzylo A, Somani N, Profanter S, et al. (2016) Intuitive instruc-

tion of industrial robots: Semantic process descriptions for

small lot production. In: 2016 IEEE/RSJ international confer-

ence on intelligent robots and systems (IROS), Daejeon, South

Korea, 9–14 October 2016, pp. 2293–2300. Piscataway, NJ:

IEEE.

Profanter S, Perzylo A, Somani N, et al. (2015) Analysis and

semantic modeling of modality preferences in industrial

human–robot interaction. In: 2015 IEEE/RSJ international

conference on intelligent robots and systems (IROS), Ham-

burg, Germany, 28 September–2 October 2015, pp. 1812–

1818. Piscataway, NJ: IEEE.

Riazuelo L, Tenorth M, Marco DD, et al. (2015) RoboEarth

semantic mapping: A cloud enabled knowledge-based

approach. IEEE Transactions on Automation Science and

Engineering 12(2): 432–443.

Rosenthal S, Selvaraj SP and Veloso M (2016) Verbalization: Nar-

ration of autonomous mobile robot experience. In: IJCAI’16,

the 26th international joint conference on artificial intelli-

gence. New York City, NY, USA, 9–15 June 2016, pp. 862–

868. Menlo Park, CA: AAAI Press.

Schlette C, Losch D and Rossmann J (2014) A visual program-

ming framework for complex robotic systems in micro-optical

assembly. In: ISR/Robotik 2014; 41st international symposium

on robotics, Munich, Germany, 2–3 June 2014. Piscataway,

NJ: IEEE.

Schou C, Damgaard JS, Bøgh S, et al. (2013) Human–robot inter-

face for instructing industrial tasks using kinesthetic teaching.

In: IEEE ISR 2013, Seoul, South Korea, 24–26 October 2013.

Piscataway, NJ: IEEE.

Shadbolt N, Berners-Lee T and Hall W (2006) The Semantic Web

revisited. IEEE Intelligent Systems 21(3): 96–101.

She L, Yang S, Cheng Y, et al. (2014) Back to the blocks world:

Learning new actions through situated human–robot dialogue.

In: 15th annual meeting of the special interest group on dis-

course and dialogue (SIGDIAL), Philadelphia, PA, USA, 18–

20 June 2014, pp. 89–97. Stroudsburg, PA: Association for

Computational Linguistics.

Stampfer D and Schlegel C (2014) Dynamic state charts: Compo-

sition and coordination of complex robot behavior and reuse of

action plots. Intelligent Service Robotics 7(2): 53–65.

Steinmetz F and Weitschat R (2016) Skill parametrization

approaches and skill architecture for human–robot interaction.

In: 2016 IEEE international conference on automation science

and engineering (CASE), Fort Worth, TX, USA, 21–25

August 2016, pp. 280–285. Piscataway, NJ: IEEE.

Stenmark M and Nugues P (2013) Natural language programming

of industrial robots. In: 44th international symposium on

robotics (ISR), Seoul, South Korea, 24–26 October 2013. Pis-

cataway, NJ: IEEE.

Stenmark M, Malec J and Stolt A (2015) From high-level task

descriptions to executable robot code. In: Filev D, Jablkowski J,

Kacprzyk J, et al. (eds.) Intelligent Systems ’2014: Advances in Intel-

ligent Systems and Computing. Cham: Springer, pp. 189–202.

Stulp F, Fedrizzi A, Mösenlechner L, et al. (2012) Learning and

reasoning with action-related places for robust mobile manipu-

lation. Journal of Artificial Intelligence Research 43: 1–42.

Sucan IA, Moll M and Kavraki LE (2012) The open motion plan-

ning library. IEEE Robotics Automation Magazine 19(4): 72–82.

Tellex S, Kollar T, Dickerson S, et al. (2011) Understanding natu-

ral language commands for robotic navigation and mobile

manipulation. In: Twenty-fifth AAAI conference on artificial

intelligence (AAAI). San Francisco, CA, USA, 7–11 August

2011, pp. 1507–1514. Menlo Park, CA: AAAI Press.

Tenorth M and Beetz M (2013) KnowRob: A knowledge process-

ing infrastructure for cognition-enabled robots. The Interna-

tional Journal of Robotics Research 32(5): 566–590.

Tenorth M, Perzylo AC, Lafrenz R, et al. (2013) Representation

and exchange of knowledge about actions, objects, and

1204 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

environments in the RoboEarth framework. IEEE Transactions

on Automation Science and Engineering 10(3): 643–651.

Thomason J, Zhang S, Mooney R, et al. (2015) Learning to inter-

pret natural language commands through human–robot dialog.

In: 2015 international joint conference on artificial intelli-

gence (IJCAI), Buenos Aires, Argentina, 25–31 July 2015, pp.

1923–1929. Menlo Park, CA: AAAI Press.

Vahrenkamp N, Asfour T and Dillmann R (2012) Simultaneous

grasp and motion planning: Humanoid robot ARMAR-III.

IEEE Robotics Automation Magazine 19(2): 43–57.

Vezzani G, Pattacini U and Natale L (2017) A grasping approach

based on superquadric models. In: IEEE international confer-

ence on robotics and automation (ICRA), Singapore, 29 May–

3 June 2017, pp. 1579–1586. Piscataway, NJ: IEEE.

Wächter M, Ottenhaus S, Kröhnert M, et al. (2016) The ArmarX

statechart concept: Graphical programming of robot behavior.

Frontiers in Robotics and AI 3: 33.

Waibel M, Beetz M, Civera J, et al. (2011) RoboEarth. IEEE

Robotics Automation Magazine 18(2): 69–82.

Walter MR, Hemachandra S, Homberg B, et al. (2014) A frame-

work for learning semantic maps from grounded natural lan-

guage descriptions. The International Journal of Robotics

Research 31(9): 1167–1190.

Williams T, Johnson C, Scheutz M, et al. (2017) A tale of two

architectures: A dual-citizenship integration of natural lan-

guage and the cognitive map. In: 16th conference on autono-

mous agents and multi-agent systems (eds. S Das, E Durfee, K

Larson, et al.), Sao Paolo, Brazil, 8–12 May 2017, pp. 1360–

1368. Richland, SC: International Foundation for Autonomous

Agents and Multiagent Systems.

Winkler J, Tenorth M, Bozcuoglu AK, et al. (2014) CRAMm—

memories for robots performing everyday manipulation activi-

ties. Advances in Cognitive Systems 3: 47–66.

Wörgötter F, Aksoy EE, Krüger N, et al. (2013) A simple ontology of

manipulation actions based on hand-object relations. IEEE Trans-

actions on Autonomous Mental Development 05(2): 117–134.

Appendix: Additional algorithmic details

Here, we explain a few remaining algorithmic details to

make our algorithm fully reproducible. These are the

EXTRACT_NEIGHBORHOOD and COMPARE_NEIGHBORHOODS

procedures used in the action-template-based analysis, as

well as the procedure TRANSFORM_COORDINATES used for

adaptation of movement primitives taken from existing

ADTs to a new situation (ADT cut & recombine phase).

We also define the similarity measures used for hybrid

similarity evaluation and explain how we acquire scene

data; this is, however, independent of the rest of the algo-

rithmic procedures on ADT data reuse and can be chosen

freely.

Neighborhood extraction

The inputs to the procedure EXTRACT_NEIGHBORHOOD are:

� action name;
� action template;

� index pair (i, j), where i denotes the number of the SEC

state (column) and j is the movement primitive number

in that column.

The procedure outputs the neighborhood elements as

indicated in Algorithm 2.

Neighborhood comparison

The procedure COMPARE_NEIGHBORHOODS (see Algorithm 3)

indicates how we compare neighborhoods e1 and e2 of two

movement primitives. The output is binary: ‘‘matching’’ or

‘‘non-matching’’.

Scene interpretation and coordinate

transformation

Scene data were acquired by placing objects in canonical

poses and kinematically tracking them throughout the

movement. We considered our objects as center symmetric,

which was perfectly true for bottles, jars, lids, bowls, and

measuring beakers, but was an approximation for boxes,

trays, spoons and cups (the latter, owing to the cup handle).

The procedure TRANSFORM_COORDINATES (see

Algorithm 4) was used to adapt the TCP end pose in the

arm_move movement primitives extracted from existing

ADTs to the new coordinates in the scene. We describe the

horizontal (table) plane as (X , Y) and the vertical direction

Algorithm 3. Procedure for comparing neighborhoods e1 and e2.

1: procedure COMPARE_NEIGHBORHOODS

2: Initialize the result to ‘‘non-matching’’.
3: Match object pairs for which SEC relations are calculated
in neighborhoods e1 and e2 and divide those into two subsets:
‘‘matching pairs’’ and ‘‘non-matching pairs’’.
4: if SEC entries for the ‘‘matching pairs’’ match in e1 and e2

then
5: if the SEC entries in the ‘‘non-matching pairs’’ always
remain in the state N (not touching) then
6: if the movement primitive names and object
denominators match in e1 and e2 then
7: Set the result to ‘‘matching’’.

Algorithm 2. Procedure for specifying neighborhood.

1: procedure EXTRACT_NEIGHBORHOOD

2: Extract all object pairs for which SEC relations are indicated
from the action template ‘‘action name’’.

3: Extract SEC columns i and i + 1 from the action template.
4: Extract movement primitives max(1,j� 1) to

min(#primitives, j + 1) from the column i in the action
template.

5: Define elements extracted in 2 to 4 as the neighborhood e
for movement primitive (i,j).

Tamosiunaite et al. 1205
Author’s version — provided for personal and academic use. Do not redistribute.

as Z. As the objects used in our experiments were (or were

approximated as) axially symmetric, we used the acquired

degree of freedom for orienting the object frames based on

the vector between the TCP and the main object center in

the (X , Y) plane measured at the start point of the move-

ment. This was done in the case of the object denominator

main, where for the denominators primary and secondary

the object frames were based on relations between the cen-

ter of the main and primary or secondary objects, respec-

tively. This allowed the ADT-defined relative positions

oriented with the direction of the movement in the (X , Y)
plane to be preserved. The Z (vertical) direction was treated

separately based on the relative position with respect to

object center points in Z. The (X , Y) plane and Z direction

were treated separately, as the scene configuration in this

and other table-top scenes is normally expressed in the

(X , Y) plane, whereas the Z direction shows only the height

of the objects.

The procedure TRANSFORM_COORDINATES (see Algorithm

4) only shows how the goal position of the arm_move is

acquired in the case of object denominator main. For the

object denominators primary and secondary, the main

object position is extracted instead of the TCP and the pri-

mary or secondary object position is extracted instead of

the main object position.

One can derive the orientation of the TCP at the end of

the arm_move primitive in a similar way, reusing the

relative orientations in (X , Y) and absolute orientations in

Z to (X , Y) from the ADT. However, we implemented

orientation in this way only for the place action we per-

formed in our experiments, while in the remaining actions,

we only took the initial orientation of the TCP with respect

to the main object from the ADT, and kept it throughout the

rest of the action to reduce the complexity of the

implementation.

Measures for hybrid similarity evaluation

To combine symbolic and sub-symbolic components, we

re-implemented the symbolic ranking given in Table 7 on

the basis of a weighting procedure

Ssymb = (v1d(ac, aADT)+ v2d(mainc,mainADT)

+ v3d(primc, primADT)+ v4d(secc, secADT))=
X4

i = 1

vi,
ð2Þ

where ac and aADT are action names in the new command

and the ADT, mainc, primc, and secc are main, primary,

and secondary object names in the command, while the

mainADT, primADT and secADT are the corresponding

object names in the ADT; d is the Kronecker delta indicat-

ing the equality of two names n1 and n2

d(n1, n2)=
1 if n1 = n2

0 if n1 6¼ n2

�

Weights v1, . . . ,v4 depend on the object denominator

and are given in Table 12. We have chosen the weights so

that the resulting similarity Ssymb reproduces the ranking

given in Table 7.

Algorithm 4. Transforming goal point of the movement primitive arm_move for object denominator main.

1: procedure TRANSFORM_COORDINATES

2: Determine in the ADT the center of the TCP at the start of the movement primitive: (x1sTCP, y1sTCP, z1sTCP).
3: Determine in the ADT the center of the main object: (x1m, y1m, z1m).
4: Determine in the ADT the TCP at the end of the movement primitive: (x1eTCP, y1eTCP, z1eTCP).
5: Determine in the real scene the center of the main object: (x2m, y2m, z2m).
6: Determine the actual start TCP in the real scene: (x2sTCP, y2s

TCP, z2sTCP).
7: if abs((x1sTCP, y1s

TCP)
0 � (x1m, y1m)

0).E and abs((x2sTCP, y2sTCP)
0 � (x2m, y2m))

0.E then
8: Determine the coordinate frame of the main object in the (X ,Y) plane in the ADT based on the vector:

~FADT = (x1sTCP, y1sTCP)
0 � (x1m, y1m)

0.
9: Determine the endpoint offset in the ADT as vector:~oADT = (x1eTCP, y1eTCP)

0 � (x1m, y1m)
0.

10: Determine the coordinate frame of the main object in (X , Y) plane in the real scene based on the vector:
~Freal = (x2sTCP, y2sTCP)

0 � (x2m, y2m)
0.

11: Transform~oADT from frame ~FADT into ~Freal and obtain~oreal.
12: Define the endpoint of the arm_move primitive in the (X ,Y) plane as (x2m, y2m)

0+~oreal.
13: else
14: Take care of singular cases.
15: Define the offset in Z direction in the ADT: oz = z1eTCP � z1m.
16: Define the endpoint of the arm_move primitive in the Z direction as: z2m + oz.

Table 12. Weights used in equation 2 for different object

denominators.

Case 1 Case 2 Case 3
Obj. denom. Obj. denom. Obj. denom.
main primary secondary

v1 8 8 8
v2 10 5 5
v3 1 10 1
v4 1 1 10

1206 The International Journal of Robotics Research 38(10-11)
Author’s version — provided for personal and academic use. Do not redistribute.

To evaluate object bounding box similarity at the sub-

symbolic level, we used the intersection over union (IoU)

measure

Sbox =
volume(Bscene \ BADT)

volume(Bscene [BADT)

where Bscene and BADT are the axis-aligned bounding boxes

of the corresponding objects in the scene and in the ADT.

The axes are defined as follows: we describe the horizontal
(table) plane as (X , Y) and the vertical direction as Z. We
measure objects in the canonical poses, where X is the
smaller horizontal dimension and Y is the larger horizontal
dimension of an object.

Both measures Ssymb and Sbox are ranged in the interval
½0, 1� and we combine the two as indicated in the main text
in Subsection 5.2.2.

Tamosiunaite et al. 1207
Author’s version — provided for personal and academic use. Do not redistribute.

