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Abstract
J. J. Gibson’s concept of affordance, one of the central pillars of ecological
psychology, is a truly remarkable idea that provides a concise theory of animal
perception predicated on environmental interaction. It is thus not surprising that this
idea has also found its way into robotics research as one of the underlying theories
for action perception. The success of the theory in this regard has meant that
existing research is both abundant and diffuse by virtue of the pursuit of multiple
different paths and techniques with the common goal of enabling robots to learn,
perceive and act upon affordances. Up until now there has existed no systematic
investigation of existing work in this field. Motivated by this circumstance, in this
article we begin by defining a taxonomy for computational models of affordances
rooted in a comprehensive analysis of the most prominent theoretical ideas of
import in the field. Subsequently, after performing a systematic literature review,
we provide a classification of existing research within our proposed taxonomy.
Finally, by both quantitatively and qualitatively assessing the data resulting from
the classification process, we highlight gaps in the research terrain and outline
open questions for the investigation of affordances in robotics that we believe will
help inform future work, prioritize research goals, and potentially advance the field
towards greater robot autonomy.
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1 Introduction
Over the last two decades, affordances have gradually occupied an increasingly
important role in robotics (Jamone et al., 2016). The emerging subfield
of developmental robotics, in particular, substantially builds on the idea of
affordances (Cangelosi & Schlesinger, 2015). Affordances comprise one of the key
concepts when it comes to formalizing and coding elements of exploratory learning
where robots autonomously interact with the environment to develop an understanding
of the world. In this work, we study the application of the concept of affordances in
robotics by collating and categorizing its core aspects, and look to forming a structured
approach to further investigation by analyzing the state of the field under this paradigm.

Horton, Chakraborty and Amant (Horton et al., 2012) provided a first brief survey
on computational models of affordance in robotics. Recently Thill et al. (2013)
and Jamone et al. (2016) published two thorough reviews on both theories and
computational models of affordance (Thill et al., 2013) as well as the use of affordances
in psychology, neuroscience and robotics (Jamone et al., 2016). Their work shows
that the field of affordance related research is truly both vast and diverse, and has
been growing rapidly since the early 2000’s. However, these studies also show that,
in practice, no common consensus about what really comprises a computational
model of affordance exists. We see this as an unfortunate deficit in the field, as it is
presently extremely difficult to quantitatively compare different computational models
of affordance to study their competitiveness.

Ugur et al. (2011) published an early, coarse classification of various
applications of the concept of affordance in robotics. In total, their classification
considered 16 published works by studying their applied learning schemes and
internal representations. Their classification assumes an internal representation of
affordances in an agent’s memory thus—by definition—contradicting Gibson’s original
formulation of the theory of affordances in which they are directly perceived (Gibson,
1966; Gibson, 1977; Gibson, 1979). Indeed, the question of whether or not
computational models of affordances can ever hope to fully satisfy Gibson’s conception
of direct perception is fraught with difficulty and is touched upon throughout the
remainder of this paper. Further to the emphasis on internal representation, the
underlying taxonomy of Ugur et al. fails to capture the concept of affordances in full
detail (see Section 3) by neglecting to study a number of important facets of their
theoretical analysis, such as their inherent hierarchy, competitiveness and dynamics.

Jones (2003) claims that the inception and need for such an internal
representation (Chemero & Turvey, 2007) stems from Gibson’s evolving discussion
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Zech et. al. 3

of his theory of affordances where Gibson used different definitions of them as
being either properties of objects or, broadly speaking, emergent properties of
the complementarity of animals and their environment (see Section 2). As this
obviously exacerbates the study of affordances by constraining their existence to at
least an environment, in this work, we motivate a perceptual shift on affordances.
Instead of studying them just as emergent properties in the context of animal-
environment systems, we ascribe them a constrained fundamental nature independent
of perception (Gibson, 1966; Gibson, 1977; Gibson, 1979; Chemero, 2003; Michaels,
2003) (see Sections 2 and 3). This abstracted interpretation attributes to affordances a
primary imperative role commensurate with those of real physical entities, which they
actually are (Chemero, 2003). Using this interpretation as a basis, we study affordances
in full detail to construct our taxonomy (see Section 4).

Min et al. (2016) recently published a survey on the use of affordances in
developmental robotics. Despite citing close to 200 papers, their study only classifies
about 30 papers on this research topic that have so far been published. Further, the
classification of selected works that is provided by Min et al. similar to Ugur et
al. fails to capture affordances in full detail (see Section 3) by only classifying them as
either deterministic or probabilistic approaches. Aside from that, and as this work shall
thoroughly demonstrate, the volume of publications resulting from the establishment
of developmental robotics as a research discipline unto itself has been more expansive
than the 30 papers by Min et al. by at least an order of magnitude.

The goal of our article is to define classification criteria for computational models
of affordance in robotics that aim at capturing affordances over a sufficiently broad
range of analytical viewpoints that have emerged from their theoretical interrogation.
The defined classification criteria are crucial in providing a formal definition of the
aspects of computational models of affordance for robotics. We further give a thorough
overview of existing affordance related research in robotics by classifying relevant
publications according to these criteria in a systematic way (see Section 5). As a result
of this classification we then provide a comprehensive and qualitative discussion on
existing research to identify both promising and potentially futile directions as well
as open problems and research questions to be addressed in future (see Section 6).
Though existing studies also give similar discussions (Ugur et al., 2011; Horton et al.,
2012; Thill et al., 2013; Jamone et al., 2016), our discussion is distinct in being
motivated by a quantitative study.

Contribution The core contribution of this article is the introduction of a
comprehensive taxonomy for classifying computational models of affordance in
robotics. A systematic search of the keywords affordance and robot resulted in 1980
hits, which were methodically (see Section 5) reduced to 398 considered papers. Out
of those, we identified and classified 146 major contributions. For each publication it
was possible to classify the employed computational models of affordance. Given the
resulting classification we then discuss the current state of the art of affordances in
robotics. Finally, on the basis of this discussion, we identify promising directions for
future research.

Intentional Limitations In this work, only computational models of affordance that
have an application in the field of robotics will be considered. Thus we will not discuss
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any research related to the concept of affordance from any other scientific fields such
as psychology or neuroscience. Apart from that, we avoid classifying papers that just
build on existing models (see Section 5).

Structure Section 2 reviews relevant theory on affordances and briefly discusses
the role of affordances in robotics. Section 3 elaborates our refined definition of
affordance in terms of the fundamentality of their existence independent of perception.
Section 4 introduces our taxonomy for computational models of affordance in robotics
by defining relevant classification criteria. Next, in Section 5, relevant publications are
selected and classified according to our taxonomy. In Section 6 we then present and
discuss our results followed by Section 7 which outlines open research challenges on
the grounds of our classification results. Finally, Section 8 draws conclusions.

2 Theories of Affordance
Since Gibson’s seminal definition of the term affordances as directly perceived action
possibilities, much controversy has abounded regarding their exact nature. As Jones
discussed (2003), the difficulty in understanding what exactly an affordance is, might
be due to the “evolved” and “unfinished” formulation of the concept in Gibson’s own
writings. In the following we provide an overview of varying, and sometimes antithetic,
definitions on the nature of affordances that have been formulated over the last number
of decades.

A relevant summary and discussion of the history of affordance is given by Dotov et
al. (2012). Contrary to their review however, we aim at discussing these theories from
the perspective of roboticists. Towards the end of this section we link the discussed
theories of affordance to robotics research and how it is currently applied.

Affordances
Gibson’s original definition of the notion of affordances as set down in The Senses
Considered as Perceptual Systems (Gibson, 1966) essentially defines them as action
opportunities in an animal-environment system, that is, encapsulations of what objects
in the environment afford an animal,

When the constant properties of constant objects are perceived (the
shape, size, color, texture, composition, motion, animation, and position
relative to other objects), the observer can go on to detect their affordances.
I have coined this word as a substitute for values, a term which carries an
old burden of philosophical meaning. I mean simply what things furnish,
for good or ill. What they afford the observer, after all, depends on their
properties (Gibson, 1966, p. 285).

Obviously this vague and early definition allows for contentious discussions as
to the nature of affordances. In his later work An Ecological Approach to Visual
Perception (Gibson, 1979), Gibson aimed at complementing his earlier definition,
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The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. The verb to afford
is found in the dictionary, but the noun affordance is not. I have made it
up. I mean by it something that refers to both the environment and the
animal in a way that no existing term does. It implies the complementarity
of the animal and the environment (Gibson, 1979, p. 127). . . . [Objects]
can all be said to have properties or qualities: color, texture, composition,
size, shape and feature of shape, mass elasticity, rigidity, and mobility.
Orthodox psychology asserts that we perceive these objects insofar as we
discriminate their properties or qualities. Psychologists carry out elegant
experiments in the laboratory to find out how and how well these qualities
are discriminated. The psychologists assume that objects are composed of
their qualities. But I now suggest that what we perceive when we look at
objects are their affordances, not their qualities. We can discriminate the
dimensions of difference if required to do so in an experiment, but what
the object affords us is what we normally pay attention to. The special
combination of qualities into which an object can be analyzed is ordinarily
not noticed (Gibson, 1979, p. 134).

One can notice how the concept evolved: the first quote (Gibson, 1966, p. 127)
explicitly states that the perception of the properties of objects such as size and
shape are required for (or at least precede) affordance detection, whereas the second
quote (Gibson, 1979, p. 134) suggests that that the discrimination of such qualities
is not the basis for or the precursor to their detection. According to Jones (2003),
this latter description of the perception of affordances as being quite distinct from the
perception of object properties (Gibson, 1979, p. 134) differs markedly from his earlier
description where it is asserted that once an object’s properties are initially perceived, it
is then possible to subsequently detect its affordances (Gibson, 1966, p. 127). Although
Gibson had aimed at clarifying what is actually required from the environment such
that affordances can emerge, these differing definitions led to a series of decade-lasting
contentious discussions on their true nature. It is worth emphasizing that, being one
of the founders of the field of ecological psychology, Gibson naturally assumed that
affordances (and other perceivable entities) are directly perceived. We do not seek to
question this, but—in an effort to both dissect and illuminate Gibson’s argument—are
sympathetic to this view, and attempt to analyze ways in which direct perception might
be both interpretable and implementable in robotics research in the remainder.

Barwise (1989) was one of the first to comment on Gibson’s idea of affordances
by speculating about their meaning. According to his view, their meaning resides in
the interaction of real, living things and their actual environment (Barwise, 1989),
thus providing an important description of affordances as being emergent relational
properties of the mutuality of both an animal and its environment. This mutuality
or reciprocity of the relations between animals and the environment was already
emphasized by Gibson (1977). Broadly speaking, it is the complementarity of an
object’s functionality and an animal’s ability that allows the animal to perceive this
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functionality as an affordance that can be acted upon by exploiting the ability. Section 3
further elaborates on this homeomorphism between functionality and affordance.

Contrary to Barwise, Turvey argues that affordances are properties of objects in
the environment that are of a dispositional nature. More precisely, Turvey considers
affordances to be dispositional properties of the environment, i.e., the means by
which it affects the agent’s behavior and its constituent objects, complemented by
dispositional properties of an animal (Turvey, 1992). This, however, immediately
implies the presence of an animal such that affordances become apparent, i.e., that
they require such a context to become manifest or to be actualized. Thus, in Turvey’s
view, affordances essentially only exist under specific circumstances. Apart from that,
Turvey considers affordances central to prospective control, ultimately conceding them
a leading role in shaping an animal’s behavior.

Vera and Simon (1993) argue that affordances comprise internal symbolic
representations that arise from semantic mappings between symbolic perception and
action representation. According to them, such an internal representation is vital
for affordances to be part of a cognitive system. This, however, seems to break
with Gibson’s classical view of affordances as being directly perceived. If a mental
representation has to be built in the first place, then it can be argued that direct
perception is not in fact occurring. Ultimately they also nest affordances in the
environment instead of treating them as emergent properties of the animal-environment
system.

In his book Encountering the World (Reed, 1996), Reed defines affordances as
resources for an animal at the scale of behavior. Similarly to Barwise, Reed also sees
affordances as emergent properties. They are characteristics attributable to the intrinsic
properties that features, objects, and events possess, by virtue of their structure, that
are specified relative to a specific perceiver-actor (Reed, 1996). Reed thus provides
an interpretation of affordances that does not rely on either the environment or an
agent, but—as Gibson already suggested—on their mutuality. A key characteristic of
Reed’s interpretation of affordances is that they exert selection pressure, thus—similar
to Turvey—pointing out their relevance for regulating behavior.

Half a decade later, Shaw (2001) argued that affordances are intentional— a
harness for directing causes but not causal by themselves. That is, the true purpose
of affordances is to satisfy the intentions of an animal. They comprise a source
of information for an animal for taking behavioral decisions. In his argument,
intentionality is satisfied by effectivity, i.e., the specific combination of the functions
of tissues and organs taken with reference to an environment (Shaw, 1982). Further, he
argues that affordances and effectivities are complementary to each other by defining
the boundary conditions of the perceiving–acting cycle (Shaw, 2001; Heft, 2003). In
this vein, affordances remain dormant until completed by an effectivity of an agent’s
intention. He therefore, again, ultimately defines the reference of affordances to be the
environment.

Steedman (2002) presents a definition of affordances in terms of a computational
representation. In this spirit, his fundamental idea is to define mappings between
actions (functions) and affordances. That is, by perceiving the object and having
knowledge about its functionality, affordances are transparently perceived. Further,
he requires specific preconditions to be fulfilled in order for corresponding actions
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to be applicable. Thus, Steedman ultimately—similarly to Turvey—treats affordances
as properties of objects and their related functionality.

Heft (2003) treats affordances as percepts, as multidimensional, intrinsic properties
that objects and events possess as part of their make-up; their value however is
extrinsic (Heft, 2003). This follows from his view of affordances as being action-
related qualities that are context dependent. Ultimately, he defines affordances to be
dynamical functional relations of environmental processes and animal-related factors.
Hence, they are not static properties of the environment but rather features embedded
in a confluence of ongoing dynamic processes in a continuously changing world. Heft,
in this way, similarly to Barwise and Reed, also takes the view that affordances are
emerging properties of the animal-environment system.

Stoffregen argues in a similar vein as Barwise, Reed, and Heft. However,
he explicitly treats affordances as emergent relational properties of the animal-
environment system that do not inhere in either an animal or the environment
but in their mutuality (Stoffregen, 2003). Stoffregen also considers affordances as
determining what can be done, again thereby—similarly to Turvey and Reed—pointing
out their relevance for behavior sculpting. Central to his argument is that affordances
are—as Gibson already suggested—direct percepts, that is, they are directly perceived
by an animal without any further cognitive processing.

Chemero argues in agreement with Stoffregen’s treatment of affordances by stating
that they are emergent relational properties between the abilities of animals and
features of the environment (Chemero, 2003). He describes the process of perceiving
affordances as one involving the placement of features in the environment, while
pointing out that affordances are directly perceived as the activities a situation allows
for. Another important aspect of Chemero’s argument is related to the existence of
affordances. Chemero argues that affordances essentially exist without the presence
of an animal, however, for describing a real physical entity that can be studied, an
affordance requires at least the potential existence of an animal that could perceive it.
Chemero thus, similarly to Reed, provides an interpretation of affordances that allows
them to exist outside the presence of an animal. Gibson however, though arguing that
affordances are always perceivable, does not discuss the constraints that permit the
existence of an affordance after all (Gibson, 1977) thereby—as we believe—attributing
them a rather fundamental, independent nature,

The concept of affordance is derived from these concepts of valence,
invitation, and demand but with a crucial difference. The affordance of
something does not change as the need of the observer changes. The
observer may or may not perceive or attend to the affordance, according
to his needs. But the affordance, being invariant, is always there to be
perceived. An affordance is not bestowed upon an object by a need of an
observer and his act of perceiving it. The object offers what it does because
it is what it is. To be sure, we define what it is in terms of ecological physics
instead of physical physics, and therefore it possesses meaning and value
to begin with. But this is meaning and value of a new sort (pp. 138-139).
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Describing affordances as being invariant supports Chemero’s existence criterion in
terms of being bound to the perceivability by at least one animal. If not perceivable,
we resort to just dealing with a functionality of an object. Turning a functionality
into an affordance is subjective. It is based on—as pointed out by Gibson—an animal
inherent value system, some means of intrinsic or extrinsic motivation that goads the
animal. Section 3 further elaborates on this homeomorphism between functionality and
affordance.

Michaels (2003) finally gives an interpretation on the notion of affordances and their
origin which is in line with both Gibson’s and Chemero’s views as being emergent
properties embodied in relations of the animal-environment system. In Michaels’
view, affordances refer to a specific action level, that is, they are not to be equated
with arbitrary action components or action aggregation. Additionally, according to
Michaels, affordances exist independently of their perception, but require effectivities
for their actualization, and are subjective. In other words, an affordance exists in the
absence of an animal with the effectivities necessary to perceive it, but cannot be made
manifest in terms its perception in the absence of those effectivities, and moreover,
those effectivities are particular to a given animal. In this sense, Michaels contradicts
Gibson’s theory of affordances (Gibson, 1979),

[. . . ] These are the invariants that enable two children to perceive the
common affordance of the solid shape despite the different perspectives,
the affordance for a toy, for example. Only when each child perceives
the values of things for others as well as for herself does she begin to
be socialized (p. 141).

Biological evidence for such mirrored perception is evident by the well-adapted
theory of mirror neurons (di Pellegrino et al., 1992; Rizzolatti et al., 1996). Further,
Thill et al. (2013) in their survey give an ample discussion of the tight link between
mirror neurons and affordances thereby reinforcing Gibson’s argument.

To summarize our discussion from this section Table 1 provides an overview of the
different concepts various authors used for discussing their view on affordances.

The Role of Affordances in Robotics
The concept of affordances as imagined by Gibson provides a powerful notion for
making sense of, and finding meaning in, the environment or in a given situation.
As such, affordances comprise a powerful tool for learning, reasoning and behavioral
decision making for artificial systems. Duchon et al. (1998) were probably the first
roboticists to recognize the relevance of certain ideas of ecological psychology for
building autonomous robots. In their work they investigated the notion of direct
perception by capitalizing on optical flow as a source of information for decision
making using Warren’s law of control (1988) to avoid obstacles in order to survive in
a game of tag. Nearly a decade later, Sahin et al. (2007) set forth a novel formalization
of the concept of an affordance and its subsequent application in mobile robots for
autonomous navigation. Though in their interpretation, affordances are also relations,
they break with an important aspect of Gibson’s theory of affordances by defining
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Table 1. Summary of the various definitions of affordances as given by the previously
discussed authors as well as the concepts on which their definitions build.

Author Definition Concepts
Gibson (1966,
1977, 1979) emergent object properties valence, invitation,

demand, mutuality

Barwise (1989) emergent relational properties
of the animal-environment
system

functionality, ability,
mutuality

Turvey (1992) dispositional properties of the
environment

prospective control

Vera & Simon (1993) semantic mapping of symbolic
perception and action
representation

mental representation

Reed (1996) resources for an animal
for decision making

mutuality

Shaw (2001) source of information for
decision making

intentionality, effectivity

Steedman (2002) mapping between action
(function) and affordances

computational entities

Heft (2003) dynamical functional relations
of environmental processes
and animal-related factors

intrinsic properties,
extrinsic value

Stoffregen (2003) emergent relational properties
of animal-environment
system

mutuality

Chemero (2003) emergent relation properties
of the animal-environment
system

activities

Michaels (2003) emergent properties embodied
in relations of the animal-
environment system

independence, subjectivity

these relations to be mental representations. This immediately requires some kind
of cognitive processing such that these representations can emerge. Thus, according
to Sahin et al., affordances are neither properties of an object or an animal, nor
properties that emerge from the animal-environment system, but rather properties that
emerge from cognitive processing. This, however, contradicts Gibson’s assumption
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in his theory of affordances that states that they are directly perceivable. According
to Chemero and Turvey, such a representationalist view as taken by Sahin et al. is
unnecessary. Direct perception along with dynamical modeling already comprise the
necessary conceptual tools for equipping artificial systems with the ability to perceive
Gibsonian affordances (Chemero & Turvey, 2007).

The discussions of this section clearly reveal that over the past few decades there
has been much controversy regarding the nature of affordances, that is, regarding how
affordances come about and where they ultimately come from. We claim that the
definitions of both Gibson and Chemero are complementary. Whereas Gibson defined
the original meaning of affordances as being directly perceivable action opportunities,
Chemero described the nature of their constrained existence as to be perceivable by at
least one animal (Chemero, 2003). Such a definition seems quite rational as it defines
affordances to be properties that are subjective to an animal given its embodiment and
the features of objects in the animal’s environment. This subjectivity was also pointed
out by Michaels, who additionally emphasized that affordances exist independently of
perception (Michaels, 2003). We treat affordances—as Chemero suggested—as real
physical entities of fundamental nature that exist independently of perception— as
highlighted by Michaels (Section 3). This is strongly in line with Gibson’s fundamental
argument of his theory of affordances that they are directly perceivable. It is this
interpretation of affordances that nourishes our extended definition of affordances and
motivates our taxonomy as elucidated further in the two subsequent sections.

One open question that remains unanswered however is why is robotics research
related to affordances apparently unaffected by these controversies as they exist in
ecological psychology. We guess that this is due to the circumstance that generally,
roboticists view the idea of affordance as an interesting concept that can be helpful
in the development of autonomous agents, yet they neglect to stick to its original
Gibsonian definition with regard to direct perception. As our classification shows (see
Section 5), it is generally the case that most research circumvents this problem of direct
perception by drawing on an internal representation of affordances. Though this clearly
contradicts Gibson’s original formulation, it immediately allows for modern machine
learning techniques to build computational models and structures that can easily be
processed and manipulated for learning. This paradigm is also evident from the results
of our classification (see Section 6), which clearly support our argument that roboticists
generally extract features as a basis for affordance detection and learning, thereby
implicitly building an internal representation.

3 An Extended Definition of Affordances

As argued earlier, we attribute affordances a fundamental, independent nature.
Informally speaking, this defines affordances as properties of the animal-environment
system that essentially are always present. This has already been argued by
Gibson (1977),
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An important fact about the affordances of the environment is that they
are in a sense objective, real, and physical, unlike values and meanings,
which are often supposed to be subjective, phenomenal, and mental. But,
actually, an affordance is neither an objective property nor a subjective
property; or it is both if you like. An affordance cuts across the dichotomy
of subjective-objective and helps us to understand its inadequacy. It is
equally a fact of the environment and a fact of behavior. It is both
physical and psychical, yet neither. An affordance points both ways, to
the environment and to the observer (p. 129).

The crucial question then is how can such an interpretation be in line with the fact
that affordances are also emergent properties of the animal-environment system?
To answer this question, we first want to elaborate on the difference between an
affordance and a functionality which is crucial for our argumentation. Obviously
there is a tight relationship between these two terms, not least because an affordance
eventually possesses a functionality. Softening this argument, one essentially arrives
at the equality of these two terms, that is, an affordance is a functionality. In favor of
Gibson, we argue that this equality is sound. However, we also see a clear difference
between functionality and affordance. To become affordable by an animal an object’s
functionality must relate to an animal’s embodiment. Only then is it a germane
affordance for an animal. Otherwise, it only comprises another source of information
that—by slightly abusing terminology—in the context of our study at least, is also
treated as an affordance. Consider for example a stone used for hammering. Contrary
to a hammer as such—remember, it had to be invented to fulfill its purpose—the
functionality of hammering is fundamental, or arguably primordial, to stones (of
course proper size and shape are required for effectivity). However, perceiving this
functionality as an affordance requires (i) knowing about hammering and (ii) being in
need of a hammer. It is now clear that functionalities of tools essentially are there in
nature. However, to be perceivable we first must learn about them. At the end of the
day, this boils down to learning new affordances. Section 4 further elaborates on this
issue.

According to this separation of functionality and affordance, it now becomes
evident how affordances actually emerge in an animal-environment system. No
matter whether perceived or not, an object’s or the environment’s functionality is
fundamental or possibly even primordial. We argue that these fundamental facets
of object functionality already comprise affordances that essentially can always be
perceived but not yet necessarily acted upon. However, upon relating an affordance
to an animal’s skills and its homeostasis it immediately emerges as a reasonable action
opportunity from the mutuality of the animal and the object or the environment by
becoming meaningful. According to Chemero, this is expressed by fully grounding*

the relation
Affords–φ(feature, ability),

∗Observe that partial grounding by a feature according to our argument then just entails a functionality.
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where φ denotes a specific affordance, i.e., support or danger. Clearly, this describes
an emergent property that becomes real and physical upon an animal possessing a
specific ability it can relate to a feature in the environment in order to apply an
affordance. Despite thus providing an elementary and pivotal formalism for the nature
of affordances, we however argue that this relation does not capture the various aspects
of affordances in full detail as discussed next.

Recent research (Ellis & Tucker, 2000; Wells, 2002; Cisek, 2007; Borghi &
Riggio, 2015) has shown that affordances—outside of their fundamentality and
independence—are, further to that, of a hierarchical, competitive and dynamic nature.
This requires an extension of the relational scheme as introduced by Chemero (2003).

The Hierarchy of Affordances
The hierarchical nature of affordances is fundamental. If not so, mammalian cognition
could only reason in terms of atomic actions instead of being able to develop solutions
for complex higher-level action goals. Upon this notion, Ellis and Tucker (2000)
introduce their concept of micro-affordances. They argue that micro-affordances are the
potentiated components of a perceived affordance. For example, in the case of grasping,
perceiving graspability of an object triggers specific preparation actions, execution
actions and possibly cleanup actions. These are referred to as the micro-affordances, the
effects of affordance perception on action selection. Following their line of reasoning,
affordances are a rather abstract entity that trigger multiple micro-affordances in
sequence to be acted upon. Consequently, micro-affordances are low-level actions that
need to be taken to achieve some higher-level action goal, i.e., applying a higher-
level affordance subsumes these micro-affordances. Observe that Chemero’s classical
interpretation of the structure of affordances, i.e., Affords–φ(feature,ability), fails to
capture such hierarchical relations (see Section 2). This is as a result of defining them
as constrained emergent relational properties of the animal-environment system, i.e.,
features of both the animal and the environment. Yet, the relation does not capture
connections between affordances such that their hierarchy can be studied.

Turvey also discussed the hierarchical nature of affordances by attributing them
the foundation on which other affordances might be based (Turvey, 1992). From a
behavioral point of view, these interrelations and dependencies between affordances
play a crucial role for action selection and behavior sculpting that goes beyond
the present moment and allows planning into the future by chaining different
affordances together. This ultimately results from the coordination of perception and
the possibilities for action that a situation affords at a given time and place (Wells,
2002). For capturing this idea of a hierarchy among affordances coupled with the
paradigm of behavior affording behavior (Gibson, 1977) in a relational manner, we
introduce the relation

Affords–Φ(Affords–φ1,Affords–φ2, . . . ,Affords–φn, ability)

We define Affords–Φ to be an (n+ 1)−ary relation that subsumes an arbitrarily large
but countable number of affordances. Here, Φ denotes the higher-level action goal in
terms of an affordance. Informally speaking, Affords–Φ collects low-level actions to
be taken to achieve a higher-level action goal relative to an animal. Observe that this
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relation also includes an ability. However, in this context, it does not refer to some
low-level motor skill but rather to cognitive reasoning abilities that allow for thinking
in terms of higher-level action goals.

The Competitiveness of Affordances
The competitive nature of affordances is obvious. Without competitiveness, there could
be no concept of deliberate choice as, essentially, at every instant of our lives we would
not have the option of choosing between different action possibilities, but would be
forced to take a preordained next step. Cisek studied the idea of affordance competition
by developing a computational model that mimics action selection in animals (Cisek,
2007). His research is motivated by the single argument that at every moment,
the natural environment presents animals with many opportunities and demands for
action (Cisek, 2007). This obviously requires some mechanism that decides which
affordance is ultimately acted upon in an environment. Cisek’s model presumes such
a mechanism to be present in the cognitive system of an animal and grounds its
workings on an internal representation. This, however, contradicts Gibson’s argument
that affordances are directly perceived. Contrary to Cisek, we argue that affordance
competition does not occur in the cognitive system of an animal but rather is the result
of the needs and embodiment of an animal in relation to the stimulus of an affordance to
cause selective attention, i.e., by focusing on what provides for good rather than for ill.
This competition ultimately happens at the affordance level in an animal-environment
system, and we formalize it by introducing the relation

Competes–Υ(Affords–Υ1,Affords–Υ2, . . . ,Affords–Υn)

where Υ ∈ {φ,Φ}. That is, we allow affordance competition among both affordances
relating to low-level action goals as well as among those relating to higher-level action
goals where Υ denotes the affordance under question. The competitiveness is reflected
in forcing all usages of the Afford–Υ predicate to ground (i.e., to bind to a specific
affordance instance) either to Φ or φ. The arity of Competes–Υ is ultimately restricted
to an arbitrarily large but countable number of affordances that may compete with each
other. However, we do not constrain the ability necessary for applying an affordance
as (i) it may differ for distinct affordances or (ii) may even be ungrounded (which
would relate to some plain functionality). This latter treatment is vital to also allow
functionalities to compete with each other, e.g., hammering with a stone or an actual
hammer.

The Dynamics of Affordances
Attributing affordances a dynamic nature is crucial for explaining effects in a changing
environment. Without having an effect that reveals novel affordances or expunges
previous ones, the state of an animal-environment system would not change. Such
an existent nature was already suggested by Chemero in constraining affordances to
be perceivable by at least one animal (Chemero, 2003). Borghi and Riccio further
elaborate on this idea of the dynamics of affordances (Borghi & Riggio, 2015). They
argue that affordances can be both stable and variable. Stable affordances relate to
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static object properties†, e.g., graspability at the handle of a mug, whereas variable
affordances relate to temporary affordance of an object or the environment, i.e.,
fillability in the case of an empty mug, or jumpability over a stream in the case of
taking a run-up instead to attempting to make a standing jump. This dynamic nature was
already anticipated by Gibson when he suggested that acting upon a given affordance
causes new affordances to become available, that is, behavior affords behavior (Gibson,
1977). This clearly shows a strong interplay and dependency among the affordances
available in an animal-environment system. This issue also becomes apparent in the
case of the hierarchy of affordances (see Section 3) which, at the end of the day, is
implicitly shaped by these dynamics by virtue of affordances being acted upon. We
capture these dynamics by introducing a third and final relation

Changes–φ(Affords–φ, ability),

where again φ relates to a specific affordance. Further, we also relate this predicate to
a specific ability indicating what skill is necessary to change the dynamic state of an
object or the environment that is bound to φ. Observe also that this predicate is not
applicable to Φ in terms of higher-level action goals. This is by virtue of the fact that
the dynamics of affordances eventually are nested at the feature level of an object or
the environment relative to a temporary property.

Summarizing the above discussion, the competitive and dynamic hierarchical
structure of affordances can thence be described by the four relations

Affords–φ(feature, ability)

Affords–Φ(Affords–φ1,Affords–φ2, . . . ,Affords–φn, ability)

Competes–Υ(Affords–Υ1,Affords–Υ2, . . . ,Affords–Υn)

Changes–φ(Affords–φ, ability)

where Υ ∈ {φ,Φ}. Our novel formalization of the structure of affordances does not
break with Gibson’s argument that affordances are directly perceived. In Chemero’s
theory, direct perception is expressed by the relation

Perceives[animal,Affords–φ(feature, ability)].

Clearly, in this form an animal could only perceive affordances related to low-level
action goals. To allow for direct perception of both affordances relating to low-level as
well as higher-level action goals, we refine Chemero’s definition to

Perceives[animal,Affords–Υ]

where Υ ∈ {φ,Φ}. This readily makes affordances relating to higher-level action goals
directly perceivable by an animal.

†Observe that this does not contradict Chemero’s notion of existence (Chemero, 2003).
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As a final remark, let us briefly elaborate on Affords–Φ. One might argue that
this relation, despite solidifying the hierarchical structure among affordances, does
not account for their competitive and dynamic aspects as expressed by Competes–Υ
and Changes–φ. However, we argue that Affords–Φ is implicitly dependent (i) on
the availability (e.g., some temporal property) of an affordance to be grounded, and
(ii) only perceivable affordances, i.e., Affords–Φ holds, can compete. Moreover, only
affordances that appear more beneficial (e.g., won the competition) are considered in
constructing a hierarchy that depicts a higher-level action goal.

To conclude, we want to clarify that we do not want to claim to redefine the notion
of affordances. We rather see our contribution as a comprehensive summary of how the
this notion has evolved over the years by extending Chemero’s original formalism.
Interestingly, these novel facets of affordances do not contradict Gibson’s original
formulation. In fact, they are just refined explanations of his original thoughts on which
he did not elaborate more thoroughly during his life.

4 Classification Criteria for Computational Models of
Affordances

It is obvious that the underlying notion of an affordance is paramount in a
computational affordance model for it to succeed. We thus represent a computational
affordance model as the union of both an abstract affordance model and an underlying
computational model. In this spirit the former model then deals with perceptive,
structural and developmental aspects, that is, the embodiment of affordances.
Complementary to this, the computational model addresses relevant aspects related
to the concrete implementation of the mechanics of affordance perception.

Figure 1 gives an overview of our taxonomy and its classification criteria.
For each of the criteria discussed in Sections 4.1 and 4.2, if a clear choice cannot be

made due to missing information in a paper, the criterion is categorized as not specified.

Affordance Model Criteria

Affordance model criteria provide means to study the structure of affordances for a
specific computational model (see Computational Model Criteria). Thus, these criteria
describe perceptive, representational and developmental aspects of the model under
evaluation. Naturally, both the perceptive and developmental aspects could be regarded
as being part of the implementation of a computational affordance model rather than of
the affordance model itself. We however justify their inclusion as part of the affordance
model by arguing that, in both cases, they ultimately ground the means by which
an understanding of affordances can be developed in the first place given the close
association between the embodied aspects of a computational affordance model, what
affordances are modeled, and how they end up actually being modeled.
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Affordance
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{simulation, real robot, benchmark,
virtual reality}

{stable, variable}

{0, 1, 2}

{local, meso, global}

{agent, environment, observer}

{micro, macro}

{yes, no}

{yes, no}

{exploration, demonstration, hard
coded, ground truth}

{classification, regression, inference,
optimization}

{yes, no}

{action selection, single-/multi-step
prediction, planning, language}

{online, offline}

{mathematical, neural}

{supervised, self-supervised, semi-
supervised, unsupervised}

{ }

{ }

{ }

Figure 1. Overview of our taxonomy for classifying computational models of affordances in
robotics. For the sake of clarity, the choice not specified is excluded.

Perception Perceptive aspects of our affordance model study the means by which the
agent‡ that embodies the model under study perceives and understands affordances.

‡Observe that an agent may also comprise an animal. However, since we are studying affordances in a
robotics context we deliberately replace the animal in the animal-environment system by an agent to put
more emphasis on the artificiality of the primarily interacting entity.
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These are essential drivers for the development of a meaningful interpretation of
affordances, as they identify the main input modalities in terms of affordance
perception.

Perspective The perspective identifies the view from which affordances are
perceived. Gibson originally did not consider such an aspect, which initially led to
much confusion. Obviously, the prevalent perspective in robotics is that of an agent’s
point of view. Yet, to allow for a precise distinction, according to Sahin (Şahin et al.,
2007) three perspectives are necessary:

• The agent’s perspective, as just stated, is the prevalent one in robotics, where
an agent perceives an affordance from their own perspective depending on the
embodiment of its skills and capabilities (see Order) (see Table 2, rows 1-15).

• From the perspective of an environment, affordances are perceived as extended
properties of the environment itself. This yields an agent that attends to the
environment until it is offered an affordance. This is, in contrast to the agent’s
perspective, a sense of passive affordance perception, as the agent does not
actively seek them.

• The observer perspective essentially classifies a computational affordance model
as a multi-agent model (see Table 2, rows 16, 21, and 48). In this context, an agent
does not perceive affordances at all but instead relies on an additional agent
— the observer — that provides relevant information by embodying relevant
affordance perception modalities.

Level In the context of a concrete scene of the environment, affordances can be
perceived at different levels of the scene. That is, an agent may perceive affordance at
three different levels:

• At the local level, an agent perceives affordances at small object regions, e.g.,
specific object patches (see Table 2, rows 1, 8, and 22). This has the advantage
that an agent can immediately predict how to interact with specific objects, yet
at the expense of discarding any additional semantic or contextual information
on the concrete object or its situatedness in the environment, respectively.

• At the meso level, an agent perceives affordances in terms of complete
objects instead of only small patches (see Table 2, rows 15-21). This has
the advantage that the agent can use information about object actual state, its
physical properties, and relationships between patches to perceive more complex
affordances such as task-based grasping, pounding, and pouring.

• At the global level, an agent perceives affordances in the context of its
environment (see Table 2, rows 3-6). This has the advantage that an agent
can situate itself to create a more complete view of the world and its current
action possibilities. This then opens up the possibility of chaining affordances
(see Chaining) to achieve higher-level cognitive tasks. However, alternating
situatedness may introduce a substantial degree of uncertainty, such as that
produced by occlusion and clutter, that may tamper with accurate perception.

Observe that an agent may perceive both stable and variable affordances
(see Temporality) at all levels, as well as of all orders (see Order).
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Order The order of affordances (Aldoma et al., 2012) is related to the set of skills
embodied as well as the actual embodiment of an agent. In this sense, this criterion
classifies which kinds of affordances the agent—given its skills and embodiment—can
perceive and make use of:

• 0th-order affordances are those which are found on objects irrespective of their
current state in the world (see Table 2, rows 1, 24, and 61). From a cognitive
point of view, this allows for the creation of a semantic model of an object in
order to understand its functionality. That said, 0th-order affordances ultimately
comprise a specific functionality (see Section 3).

• 1st-order affordances can be seen as immediate action possibilities offered to the
agent with respect to its embodiment and skills (see Table 2, rows 5-23). In this
way, not only the affordances depend on the embodiment and skills of the agent
but also on the current state of the object and the environment.

• 2nd-order affordances are those that appear as a consequence of an agent acting
upon a specific affordance (see Table 2, rows 4, 28, and 40). Perceiving such
affordances is crucial for affordance chaining (see Chaining) as well as for
achieving higher-level cognitive tasks.

Observe that this criterion has an intrinsic hierarchical structure as both 1st- and 2nd-
order affordances are a subset of 0th-order affordances. Further, 2nd-order affordances
can be seen as a subset of 1st-order affordances, as they also represent immediate action
possibilities, yet are only applicable if a necessary action has been taken previously.

Temporality Temporality relates affordances to the statics and dynamics of the
environment or object with respect to an agent’s behavior (Thill et al., 2013; Borghi
& Riggio, 2015). This aspect is important given the nature of the world we live in,
which essentially is a highly dynamical system that may rapidly change over time
(see Section 3, The Dynamics of Affordances). To account for such changes, it is
important to both be able to recognize them and to be able to react to them. We reflect
this capability within an affordance model in terms of an agent’s ability to differentiate
between both stable and variable affordances:

• Stable affordances are affordances that are related to static object properties, e.g.,
a mug’s handle usually affords graspability, which normally does not change over
time (except in the case where the handle breaks off or is occluded) (see Table 2,
rows 1-3).

• Variable affordances, in contrast, are affordances that depend on dynamic object
properties, that is, properties that change over time (see Table 2, rows 59, 67,
and 139). Considering again the concrete case of a mug, a variable affordance is
fillability, which clearly changes over time. A mug that is already full cannot be
filled any further.

Observe that this criterion is open to multiple selection. Perceiving stable affordances
does not exclude perception of variable ones. Equally, perceiving variable ones also
does not exclude perception of stable ones.
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Selective Attention Selective attention comprises an interesting aspect when it
comes to perceiving affordances. If an agent embodies selective attention it essentially
is capable of focusing on those affordances only needed to reach a specific goal. Such
a behavior is desirable to efficiently learn and achieve higher-level actions and action
goals, respectively, by focusing on the task at hand and inhibiting any disturbances and
noise from the surrounding world. This criterion supports two choices, viz. yes or no.

Structure Structural aspects of our affordance model study how the perceived
affordances are organized in the environment. That is, they describe the relationship
and interplay between the different affordances offered to an agent. From a cognitive
point of view, this defines the means that ultimately allow an agent to reason about its
actions and the resulting effects in the world around it.

Abstraction Generally affordances are considered at an atomic level, that is, they
describe a single action possibility offered by the environment. However, treating
affordances only at such an atomic level hinders an agent in constructing a more
thorough picture of the world and in developing a deeper understanding of its
embodiment. Thus, our taxonomy considers both atomic affordances, and also
combinations of these atomic affordances, that allow an agent to think in terms of
higher-level action goals (see Section 3, The Hierarchy of Affordances).

• Micro affordances represent single, atomic affordances (see Table 2, rows 70-88).
The term atomic shall indicate that such an affordance cannot be deconstructed
beyond representing a single, atomic action. From a developmental point of view,
micro affordances correspond to low-level action goals that are achieved using a
single, primitive motor skill.

• Contrary to micro affordances, macro affordances represent, from a cognitive
point of view, higher-level action goals that result from achieving a series of
low-level action goals (see Table 2, rows 57, 60, and 62). From a developmental
point of view this corresponds to learning that performing specific actions in the
correct order can result in achieving higher-level action goals.

Competitive Competition among affordances introduces to an agent a certain degree
of deliberate choice (see Section 3, The Competitiveness of Affordances), by enabling it
to choose between identical (or infinitesimally similar) affordances that yield identical
(or infinitesimally similar) outputs. Clearly, competition among semantically unrelated
affordances is to be neglected as this is driven by the agent’s homeostasis and happens
at a behavioral level. Thus, by allowing identical (or infinitesimally similar) affordances
to compete with each other, an agent can not only react properly based on the offered
action possibilities, but further rely on a weak notion of free will in terms of deciding
which affordance to choose. More formally, if and only if an agent decides deliberately
between similar but spatially separated affordances (e.g., different chairs), then the
perceived affordances in the environment are competing. This criterion supports two
choices, viz. yes or no.

Chaining Chaining of affordances is essential for an agent to learn and reason
about higher-level action goals (see Abstraction). Obviously, an agent needs to have
the ability to chain affordances by relating actions to effects and in turn, effects to
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novel action possibilities, not only to be able to understand a complex task overall,
but also how to achieve it given its embodiment. This resembles Gibson’s idea of
behavior affording behavior (Gibson, 1977). Observe however that being able to chain
affordances does not yet imply that an agent understands higher-level action goals or
how to reason about macro affordances (see Abstraction). Further, we want to clarify
that chaining does not only refer to strict sequential application of affordances, but may
also refer to overlapping affordances, e.g., in bimanual manipulation tasks. Chaining
of affordances can also happen at a low level in terms of repetitive execution of some
primitive motor skill. This criterion supports two choices, viz. yes or no.

Development Finally, developmental criteria of our affordance taxonomy analyze how
an agent learns about new affordances. Although we previously discussed perceptual
aspects of the taxonomy, these should not be confused with developmental aspects. In
order to develop knowledge by learning about the world, an agent requires some means
of perception. Thus, this dimension of our taxonomy of affordance model relates to
developmental processes that allow agents to learn how to interact with the world.

Acquisition For an agent to be able to make meaningful use of its knowledge of the
affordances in the environment, it must first be endowed with a systematic means of
acquiring that knowledge, not only in terms of the data involved, but also in terms of
the meaning behind the data. This acquisition can happen in multiple ways, from fully
autonomous learning to bootstrapped learning in terms of hardcoded knowledge:

• Exploration is the most common strategy for affordance acquisition (see Table
2, rows 5-9). As inspired by the cognitive development of children, an agent
learns about affordances by (i) recognizing objects, (ii) performing simple
interactions with them, i.e., pushing, pulling, and the like, and (iii) observing
the effect triggered by the performed action. By repeating this process with
different objects an agent then gradually learns about the affordances offered
in its environment.

• Programming by Demonstration (PbD) is a popular concept in robotics that is
used to teach a robot a manipulative task (see Table 2, rows 117-120). In such
a setting, an agent is usually guided by some teacher while remembering the
specific movements and interactions it is taught. Compared with exploratory
learning of affordances, this kind of learning forces an agent to adopt the role
of an observer as it does not perform any movements autonomously.

• Providing an agent with ground truth essentially boils down to supervised
learning where the agent learns affordances from examples in terms of features in
its environment (see Table 2, rows 3, 13, and 14). These examples are generally
provided by means of 2D video or image data, but also sometimes 3D scene data,
and are usually annotated with 0th-order affordances (see Order).

• Hardcoded affordance information avoids the acquisition and learning process
altogether (see Table 2, rows 53, 54, and 66). In such a setting, the agent is
initially provided with a set of known affordances and rules with which to detect
them in the environment. Using annotated action information it then interacts
with the world using corresponding, also hardcoded, motor skills.

Prepared using sagej.cls



Zech et. al. 21

It should be noted that, apart from exploratory learning of affordances, in all cases the
agent is essentially forced to “live” with what is provided and lacks any possibility to
learn more about the world autonomously. We believe that the latter circumstance is not
useful for affordance learning, as affordances, in general, depend on the embodiment of
the agent itself. It thus should learn on its own what it is able to do instead of being told
what it can do in order to foster an understanding of its own embodiment. However, for
the sake of completeness, we also include these choices in our taxonomy.

Prediction After learning, in order to make use of its knowledge, an agent needs
to be skilled in predicting the affordances in its environment. That is, given its
perceptions, it needs some way of predicting which affordances will emerge in the
environment. We are well aware that this criterion has a strong intersection with
the computational model of our taxonomy (see Computational Model Criteria) as it
entirely relies on its implementation (see Implementation). However, we argue that
for the sake of completeness of the developmental dimension of our taxonomy, the
means of predicting affordances are necessary, as this is also an important aspect of the
development of affordances in terms of how the agents recognize them:

• Classification is used if an agent learns to relate specific input patterns to discrete
categorical outputs (see Table 2, rows 17-19). In this spirit, an agent identifies
classes of affordances which it relates to similar patterns in its environment.
Observe that classification readily allows for generalization. Formally, this
defines a mapping from continuous to discrete space.

• Regression relates to estimating the relationships among variables (see Table 2,
rows 8-11). In this sense, an agent learns to predict an outcome given its sensory
inputs by learning descriptive regression functions. Formally, this defines a
mapping from continuous to continuous space.

• Inference is a natural scheme to logically infer new knowledge from existing
knowledge (see Table 2, rows 4-7). In such a setting an agent usually employs
hard-coded inference rules, e.g., logical formulas, connections within graphs,
and the like, to derive new knowledge from existing knowledge using observable
data. Formally, this defines a mapping from discrete to discrete space.

• Optimization is another popular tool to learn the best expected outcome given
some input (see Table 2, rows 25-27). Framed from a mathematical point of view,
any learning problem essentially describes an optimization problem, whether or
not one wants to minimize a loss or maximize accuracy or a reward. Formally,
this defines a mapping from either discrete or continuous to continuous space.

Generalization Being able to generalize affordances enables an agent to use its
acquired knowledge to adapt to new situations it has not yet faced. However, simply
being able to recognize a known object in a different pose, or a similar object, does not
account for generalization on its own. We claim that in the context of affordances,
generalization is required to happen at a cognitive level. As a concrete example,
consider an agent that has learned that a ball affords rollability. Now, if faced with a
sideways lying cylinder, in order to be able to generalize, the agent should also be able
to perceive the rollability offered by this very cylinder. Being able to generalize at such
a cognitive level ultimately results in faster development, as an agent is not required
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to learn each and every affordance for each and every environment. Instead, the agent
exploits various means of similarity to map existing knowledge to a new environment.
This criterion supports two choices, viz. yes or no.

Exploitation The concept of affordances was originally formulated in a visual
perception theory where action possibilities are thought to be ‘directly’ detected for
actuation without further recognition or reasoning. In robotics, the idea of direct
perception of affordances has already been studied and fits well to behavior-based or
reactive architectures where the tight coupling between perception and action is the
main emphasis. Robots, on the other hand, are expected to perform in ways that are
much more intelligent and complicated than those of reactive systems. Roboticists have
thus exploited the affordances concept for different tasks which require different levels
of decision making: the range varies from detecting affordances for reactive action
selection to reasoning over affordances for higher level cognition.

• Action Selection: Given the percept of the environment, use affordances to select
an action to achieve a goal (see Table 2, rows 41-54).

• Single-/Multi-step Prediction: Given the percept of the environment, use
affordances first to detect action possibilities, and then to predict the changes
obtained through execution of the afforded actions (see Table 2, rows 21, 35,
and 41). These studies typically chain the predicted changes to make multi-
step predictions on the future states of the environment that are expected to be
obtained by sequences of actions.

• Planning: Multi-step prediction can be achieved through simple search
mechanisms such as forward chaining that forms a search tree starting from the
current state. Established AI planning methods, on the other hand, run on rules
defined over symbols. Some researchers have been able to form such symbols
and rules by exploiting affordances and have achieved symbolic planning using
affordance-based structures.

• Language: Finally, affordances are extended to natural language constructs such
as verbs and nouns, enabling communication between different agents (see Table
2, rows 11, 143, and 144).

Learning In order for an agent to proceed in its development and acquire knowledge,
it must implement a learning procedure. The learning procedure is crucially dependent
on the availability of training data, that is, how and when the data is acquired relative to
when the machinery of the learning procedure is triggered. How this process proceeds
can heavily influence the construction of the model, as well as the generalizability
and developmental aspects of the system. Broadly, this criterion breaks down into two
categories: offline vs. online learning.

• Offline learning or batch learning refers to a type of learning procedure in which
the entire training data set is available at a given time as a single batch and
in which the learning procedure is applied to only that batch of training data,
typically just once without being updated (see Table 2, rows 13-16). Thus, in an
evaluation setting, the model might be trained using a batch of training data and
subsequently tested using a batch of test data, both of which have been gathered
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in advance, or, in live robotics setting, the model might be trained in advance
of deployment and subsequently used to evaluate individual test cases as they
become available to the robot.

• Online learning or continuous learning, by comparison, refers to a type of
learning procedure in which the model may be trained using incremental updates,
training-sample-by-training-sample (see Table 2, rows 4-7). The model may be
initiated either via offline learning using a batch of training data, where the model
is subsequently updated incrementally, or from scratch, perhaps using some
form of random initialization, and subsequently updated incrementally using
individual training samples. In the former case, when the model is being updated,
it should not have access to the original batch of training data. If the model were
to require the entire original batch of training data as well as the novel training
data in order to make an update, then, although this could be considered to be
a type of incremental updating, we consider it to be batch learning under our
taxonomy.

Computational Model Criteria
Computational model criteria capture the underlying implementation of a
computational affordance model. In this spirit, these criteria deal with the mathematical
and theoretical underpinnings of the computational aspects of an affordance model.
Observe that the selections for these criteria usually depend on the formulation of the
affordance model itself. This is by virtue of the perceptive and developmental aspects of
the affordance model which ultimately define the necessary mechanisms for perception
and learning.

Formulation The formulation of the computational model specifies its theoretical
origins in terms of being neurally or mathematically motivated. These are the two main
strains of computational models of affordances that are prevalent in current robotics
research. Further, in the case of a neural model, this criterion also captures the neural
counterparts of the model for specific brain areas.

Abstraction The abstraction of the computational model classifies a model as
being either mathematically or neurally motivated. In this sense, the abstraction
decides whether a model approximates or emulates cognitive processes of the human
brain. Obviously, a mathematically motivated model can only aim at approximating
cognitive processes by definition of its underlying mathematics, e.g., statistical
inference. On the other hand, neurally motivated models aim at emulating cognitive
processes by rebuilding specific neuronal structures. Though the latter one may also be
described using mathematical formalisms, the underlying mechanisms are not built on
mathematical concepts but rather on biological processes.

Brain Areas In the case of neural models that aim at imitating cognitive processes,
there is a strong relationship to specific areas of the mammal brain that are emulated
using software models. This criterion tries to capture this relatedness. It is an open
choice criterion in the sense that we do not restrict the possible set of choices. This is
motivated by the large number of brain areas that may by involved. In the event of a
mathematically formulated model, this criterion may be left empty.
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Implementation Implementational aspects of the computational affordance model
finally specify various characteristics at the software level. This subsumes (i) the
concrete mathematical tools that are employed for learning and prediction, (ii) the
environmental features that are used by the model, and (iii) the kind of training that
is applied to the model. Clearly, this is a purely technical dimension of our taxonomy,
yet it is evidently relevant in order to discuss the capabilities of concrete models and
compare them with other models.

Method The method describes the concrete mathematical tools that are used to
implement the computational model corresponding to an affordance model. This,
again, is an open choice criterion as the number of available tools and their combination
is by no means limited.

Features In order to be able to work on meaningful inputs, a computational
affordance model generally employs various features to understand the environment.
This essentially subsumes any kind of feature that is employed, from plain points to
complex 3D surface features. Similar to the case with the selected method, this criterion
is also an open choice one. The reason is that the number of possible features and their
potential combinations are vast.

Training The penultimate dimension of the implementational aspects of a
computational affordance model addresses the kind of training that is used. This
depends on the predictive aspects of the developmental dimension of the affordance
model (see Development). Clearly, using classification for prediction requires the
training of a classifier. This criterion captures the four prevalent types of training
paradigms in robotic affordance learning research.

• Unsupervised learning generally refers to learning procedures that involve
finding the underlying structure in data, e.g. clustering or density estimation,
without the provision of ground-truth labels or the specification of a desired
outcome beyond certain constraints on the structure itself (see Table 2, rows
2, 12, and 18). With respect to developmental robotics, this corresponds well
conceptually to the idea of the autonomous discovery of patterns or concepts
from sensory information.

• Supervised learning refers to learning procedures that employ training data
consisting of two components– input samples and associated target values, e.g.
ground-truth labels– in order to learn to predict target values for unknown input
samples (see Table 2, rows 1, 3, and 10). It generally functions well as a model
for robot instruction, e.g. a tutor might show a robot a series of objects while
telling it what the objects afford and the robot must learn to correctly identify the
affordances of those objects so that it can accurately predict the affordances of
similar objects in future.

• Self-supervised learning is a form of learning where information from one data
view, e.g. the feature space associated with a particular sensory modality, is
used to direct the learning procedure in another data view (see Table 2, rows
5-9). Usually this entails unsupervised learning, e.g. clustering, in the first data
view forming concepts that can be used as target values, e.g. category labels, for
supervised learning in the second view. This is termed self -supervised learning
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because the supervision comes from the internal representations of a learning
agent as opposed to some external source.

• Semi-supervised is a hybrid form of learning that employs both labeled
and unlabeled training data (see Table 2, rows 11, 32, and 35). It most
naturally resembles human learning which similarly builds on initial training as
supervised by a caregiver with subsequent unsupervised learning via autonomous
exploration.

Evaluation The last dimension of the implementational aspects of a computational
affordance model in our taxonomy captures the means of evaluation that have been
used to study the model. Observe that this dimension still has a high relevancy for
a computational affordance model, as it allows for the judgment of whether or not a
model is useful in practice or is simply a theoretical idea that lacks any grounding in
the real world. Further, it allows for a discussion of the maturity of an approach.

• Simulation implies that a computational affordance model has only been
evaluated in a robotic simulation environment (see Table 2, rows 7-9). Clearly,
this renders an approach rather immature as the crude approximation of
a simulated world differs drastically from the real physical world and its
uncertainty. Evaluating an approach only in simulation does not allow for more
than stating that its potential feasibility.

• Real robot classifies an approach as mature, since the corresponding
computational affordance model has been evaluated in the physical world using a
real robot (see Table 2, rows 63-68). This immediately implies that the proposed
model can deal with problems of the real world like noise and uncertainty.

• Benchmark applies to computational models of affordances for which
benchmark-like evaluation schemes were devised by the authors (see Table 2,
rows 1, 3, and 10). Generally, these can fall into two categories. On the one side,
a baseline is computed from a training data set which is then compared to the
outcomes of a test data set. On the other side, the baseline is established from
results from similar studies investigating the same research question, and then
compared against the authors’ own model using the same data as the reference
study.

• Virtual Reality applies to computational models of affordances for which
are evaluated in a virtual environment by a human providing non-simulated
interactions in an otherwise simulated environment with a simulated artificial
agent.

Finally, as a last note, this criterion is also open for multiple selection. Clearly, there
are models that have been evaluated both in simulation and using a real robot.

The taxonomy as outlined in this section ought not represent ruling guidelines
on how to implement computational models of affordances in robotics. Rather, it
comprises a pivotal attempt to outline, in an organized manner, the manifold aspects
that may comprise a computational affordance model. Hence, we claim that it
represents a metamodel for computational models of affordances that, while aiming
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to avoid impeding research by advocating for its adherence, shall motivate the study of
what actually comprises a computational affordance model in robotics.

5 Selection and Classification of Publications on
Computational Affordance Models

This section describes the systematic search and selection procedure that we followed
when selecting relevant papers for classification. Further, we discuss relevant threats
to the validity of our study. The resulting classification of computational models of
affordances covered in the selected publications is then used in the next section to
indicate the adequacy of the defined criteria and for further discussions.

Selection of Publications
The selection of relevant peer-reviewed primary publications comprises the definition
of a search strategy and paper selection criteria as well as the selection procedure
applied to the collected papers.

Search Strategy The initial search conducted to retrieve relevant papers was
performed automatically on the 31st December 2016 by consulting the following
digital libraries:

• IEEE Digital Library (http://ieeexplore.ieee.org/),
• ScienceDirect (http://www.sciencedirect.com/),
• SpringerLink (http://link.springer.com/), and
• SAGE (http://journals.sagepub.com).

These libraries were chosen as they cover most of the relevant research on robotics.
The search string was kept simple, i.e.,

affordance AND robot

in order to keep the search very general and to avoid missing any publications
featuring more precise terminology. Observe that the search was applied to all of the
following search fields: (i) paper title, (ii) abstract, (iii) body, and (iv) keywords. The
search produced a set of 1980 retrieved papers, thus a paper selection process was
subsequently employed to further filter the results.

Paper Selection Figure 2 gives an overview of the paper selection process, which
occurred in three phases. In the first phase, papers were rejected based on their title:
if the title did not indicate any relevance to robotics and affordances, papers were
discarded from the classification. This reduced the initial set of 1980 papers to 987
remaining papers. In the second phase, papers were rejected based on their abstract,
reducing the number of relevant papers to 398. In the third and final phase, papers were
rejected based on their content, reducing the set of relevant papers to 146. Thus, our
final classification, as discussed in Section 6, consists of a total of 146 papers. Note
that during the last iteration, a number of relevant papers were rejected on the basis
that they either failed to introduce a novel model or failed to sufficiently reevaluate an
existing model.
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Figure 2. Selection of publications studied in this survey.

Paper Classification

The 146 remaining publications were classified according to the classification criteria
as defined and discussed in Section 4 by five researchers. For this purpose, the
remaining set of primary publications was randomly split into five sets of equal
size for data extraction and classification. A classification spreadsheet was created
for this purpose. Besides bibliographic information (title, authors, year, publisher)
this sheet contains classification fields for each of the defined criteria. To avoid
misclassification, the scale and characteristics of each classification criterion were
additionally implemented as a selection list for each criterion. As previously
mentioned, the list also contained the item ‘not specified’, to cater for situations where
a specific criterion is not defined or could not be inferred from the contents of a
paper. Problems encountered during the classification process were remarked upon in
an additional comment field. The resulting classification of all publications was then
reviewed independently by all five researchers. Finally, in multiple group sessions, all
comments were discussed and resolved among all five researchers.
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Threats to Validity

Obviously there exist different factors that can influence the results of our study, e.g.,
the defined search string as discussed previously. Threats to validity include publication
bias as well as the identification and classification of publications.

Publication Bias This threat relates to the circumstance that only certain approaches,
i.e., those producing promising results or promoted by influential organizations are
published (Kitchenham, 2004). We regard this threat as moderate since the sources of
publications were not restricted to a certain publisher, journal or conference. Therefore,
we claim that our results sufficiently cover existing work in the field of affordances
and robotics. However, to balance the trade-off between reviewing as much literature
as possible and, at the same time, accumulating reliable and relevant information,
gray literature (technical reports, work in progress, unpublished or not peer-reviewed
publications) was excluded (Kitchenham, 2004). Further, the required number of pages
was set to four to guarantee that papers contained enough information in order to
classify them appropriately.

Threats to the Identification of Publications This threat is related to the circumstance
that, during the search and selection of publications, relevant papers may have been
missed. This is why we employed a rather general search string to avoid missing
potentially relevant publications during the automated search. However, in order to
additionally reduce the threat of missing important publications, we informally checked
papers referenced by the selected papers. We did not become aware of any frequently
cited papers that were missed.

Threats to the Classification of Publications Given the high volume of publications
that needed to be classified according to a substantial number of defined criteria, the
threat of misclassification needed to be addressed. Various measures were taken in
order to mitigate this threat. First of all, all criteria were precisely defined, as presented
and discussed in Section 4, prior to the commencement of the classification process.
There was scope for the refinement of the concepts by the researchers during the
process, but this was restricted to mainly descriptive adjustments. Secondly, for each
of the criteria we added a list of possible selections in the classification sheet to avoid
misclassification. Third, the classification was conducted in parallel by five researchers
who are experts in the field and who repeatedly cross-checked the classification
independently. Finally, bi-weekly meetings were held by the five researchers to discuss
and resolve any comments that arose during independent classification.

Terminology We are aware that the way we use specific terminology, e.g., learning,
inference, or understanding may not be perfectly in-line with their use in different areas
of research. However, this survey has been written with a robotics research background,
which is why we stick to the terminology as used in this field. However, readers from
different fields should not face any problems in properly interpreting the content of
this work, as the terminology as used in robotics research—to a high degree—has been
coined by relevant concepts from psychology and neuroscience.

Prepared using sagej.cls



Zech et. al. 29

6 Results and Discussion

This section presents and discusses the classification results of the selected publications
(see Section 5). The complete classification of all 146 papers in terms of the proposed
taxonomy (see Section 4) is shown in the supplementary material of this article (see
Table 2 and is also available online§.

For each of the selected papers it was possible to classify the covered computational
affordance model approach uniquely according to the defined criteria from Section 4.
This indicates the adequacy of the defined criteria for the classification of
computational models of affordances, thus providing a framework for understanding,
categorizing, assessing, and comparing computational models of affordances in
robotics. Besides validation of this paper’s criteria, the classification enables, as it was
performed in a systematic and comprehensive way, an aggregated view and analysis of
the state of the art of the use of affordances in robotics.

Figure 4 gives a correlated view on our classification by providing statistics for
instances in which each of the criteria coincide with each of the other criteria, thereby
providing the foundation for the following discussions. Looking at the leaves of the
taxonomy one can see the distribution of the papers in Figure 3.

Perception Structure

Perspective Level Order Temporality Selective Attention Abstraction Competetive Chaining
agent 138 global 27 0th 15 stable 128 yes 10 micro 135 yes 44 yes 19

observer 8 meso 104 1st 120 variable 4 no 132 micro+macro 7 no 102 no 127
environment 0 local 15 2nd 11 stable+variable 14 not specified 4 macro 4

Development Formulation and Implementation Evaluation

Acquisition Prediction Generalization Exploitation Abstraction Training real robot 82
ground truth 36 classification 59 yes 106 action selection 78 math 139 supervised 64 simulation 29
exploration 77 regression 22 no 40 single/m.s. pred. 23 neural 7 unsupervised 40 benchmark 25

demonstration 19 inference 26 Learning planning 32 self-supervised 25 simulation+benchmark 0
hard coded 8 optimization 39 online 53 language 3 semi-supervised 10 simulation+real robot 9
dem.+expl. 6 offline 91 not specified 10 not specified 7 benchmark+real robot 1

not specified 2 virtual reality 0

Figure 3. Summary table of all criteria for all classified papers. (numbers missing to 146:
not specified.)

Maturity of the Model One of the prime criteria for a computational affordance
model is its applicability in terms of the chosen evaluation scenario. Obviously, models
evaluated on a real robot are much more expressive and powerful than models only
evaluated, e.g., in simulation or using some benchmark. Figure 4 shows that the
majority of developed models were evaluated on a real robot (63% of total papers) thus
providing valuable examples in which Gibson’s original formulation of affordances,
whereby they are directly related to an agent’s skills, is followed. Interestingly, of
the works that were evaluated using a real robot, a higher proportion were likely to
have acquired their affordance knowledge via pure exploration than via all other means

§https://iis.uibk.ac.at/public/ComputationalAffordanceModels/
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unsupervised

not specified

real robot

sim
ulation

benchm
ark

sim
ulation+benchm

ark
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Evaluation

benchmark+real robot 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1
simulation+real robot 9 0 0 2 7 0 0 9 0 6 2 1 0 8 1 9 0 0 2 7 1 8 8 1 0 0 0 3 1 3 2 7 2 4 1 4 0 0 4 5 0 9 0 3 3 0 1 2 9

simulation+benchmark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
benchmark 21 4 0 3 15 7 11 12 2 25 0 0 2 23 0 24 0 1 7 18 2 23 0 7 0 1 17 12 4 3 6 22 3 13 3 0 0 9 4 21 0 24 1 20 0 0 5 0 25
simulation 28 1 0 3 24 2 1 27 1 23 5 1 0 28 1 29 0 0 8 21 2 27 16 2 1 2 8 12 3 6 8 22 7 16 5 8 0 0 15 14 0 29 0 13 8 3 5 0 29
real robot 79 3 0 19 57 6 3 71 8 73 7 2 7 73 2 72 7 3 27 55 14 68 52 9 5 5 11 31 14 14 23 54 28 45 14 20 2 1 30 50 2 76 6 28 13 7 29 5 82

Formulation 
and 

Implementation

Training

not specified 7 0 0 3 3 1 1 4 2 5 1 1 0 7 0 6 1 0 1 6 2 5 4 0 0 3 0 3 0 2 2 5 2 3 0 4 0 0 3 2 2 7 0 7
unsupervised 39 1 0 6 31 3 2 32 6 31 8 1 3 37 0 39 1 0 12 28 8 32 28 3 3 0 6 15 4 14 7 31 9 24 6 8 0 2 20 20 0 35 5 40

semi-supervised 10 0 0 3 7 0 0 10 0 9 0 1 0 10 0 10 0 0 4 6 0 10 8 0 1 0 1 4 2 0 4 8 2 6 1 2 1 0 5 5 0 10 0 10
self-supervised 24 1 0 5 19 1 0 25 0 23 2 0 3 22 0 24 0 1 0 25 1 24 23 0 1 0 1 13 3 5 4 15 10 8 6 9 2 0 13 12 0 25 0 25

supervised 58 6 0 10 44 10 12 49 3 60 3 1 4 56 4 56 5 3 27 37 8 56 14 16 1 5 28 24 13 5 22 47 17 37 10 9 0 8 12 52 0 62 2 64

Abstraction
Neural 7 0 0 1 6 0 0 6 1 7 0 0 1 6 0 7 0 0 4 3 0 7 4 0 1 0 2 5 0 1 1 5 2 6 0 1 0 0 3 4 0 7

Mathematical 131 8 0 26 98 15 15 114 10 121 14 4 9 126 4 128 7 4 40 99 19 120 73 19 5 8 34 54 22 25 38 101 38 72 23 31 3 10 50 87 2 139

Development

Learning
not specified 2 0 0 1 0 1 1 0 1 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 0 0 1 1 1 1 2 0 0 0 0 2

offline 84 7 0 11 67 13 13 71 7 84 6 1 6 81 4 83 5 3 30 61 13 78 32 15 5 6 33 39 16 10 26 63 28 52 14 13 3 9 91
online 52 1 0 15 37 1 1 49 3 42 8 3 4 49 0 50 2 1 14 39 6 47 45 4 1 0 3 20 6 15 12 42 11 24 9 19 0 1 53

Exploitation

Not Specified 10 0 0 3 6 1 6 4 0 9 1 0 0 10 0 10 0 0 2 8 0 10 1 3 0 0 6 4 3 1 2 8 2 10
language 3 0 0 0 3 0 0 3 0 3 0 0 2 1 0 3 0 0 0 3 0 3 3 0 0 0 0 2 0 0 1 1 2 3
planning 31 1 0 12 19 1 0 30 2 25 6 1 2 30 0 29 1 2 6 26 7 25 25 1 2 1 3 16 5 5 6 24 8 32

single-/multi-step prediction 22 1 0 5 17 1 0 20 3 18 4 1 0 22 1 18 5 0 5 18 4 19 15 2 1 1 4 10 6 5 2 16 7 23
action selection 72 6 0 7 59 12 9 63 6 73 3 2 6 69 3 75 1 2 31 47 8 70 33 13 3 6 23 27 8 15 28 57 21 78

Generalization
No 36 4 0 5 34 1 3 34 3 35 4 1 3 36 1 35 4 1 11 29 7 33 20 6 1 5 8 13 6 5 16 40
Yes 102 4 0 22 70 14 12 86 8 93 10 3 7 96 3 100 3 3 33 73 12 94 57 13 5 3 28 46 16 21 23 106

Prediction

optimization 34 5 0 4 29 6 5 32 2 35 0 4 2 33 4 35 2 2 22 17 4 35 14 9 2 4 10 39
inference 26 0 0 7 17 2 2 19 5 21 5 0 1 25 0 25 1 0 5 21 3 23 17 3 1 3 2 26

regression 22 0 0 5 14 3 2 20 0 19 3 0 0 22 0 18 4 0 6 16 2 20 15 3 0 0 4 22
classification 56 3 0 11 44 4 6 49 4 53 6 0 7 52 0 57 0 2 11 48 10 49 31 4 3 1 20 59

Acquisition

ground truth 34 2 0 7 20 9 10 21 5 33 2 1 4 32 0 34 0 2 13 23 6 30 36
hardcoded 7 1 0 2 5 1 2 5 1 8 0 0 0 8 0 7 0 1 3 5 1 7 8

demonstration+exploration 5 1 0 0 6 0 0 5 1 5 1 0 0 6 0 6 0 0 2 4 1 5 6
demonstration 15 4 0 0 17 2 3 16 0 19 0 0 0 16 3 18 1 0 9 10 1 18 19

exploration 77 0 0 18 56 3 0 73 4 63 11 3 6 70 1 70 6 1 17 60 10 67 77

Structure

Chaining
No 122 5 0 23 90 14 14 108 5 113 10 4 8 115 4 123 3 1 33 94 127
Yes 16 3 0 4 14 1 1 12 6 15 4 0 2 17 0 12 4 3 11 8 19

Competitive
No 99 3 0 23 69 10 10 90 2 87 11 4 7 95 0 97 4 1 102
Yes 39 5 0 4 35 5 5 30 9 41 3 0 3 37 4 38 3 3 44

Abstraction
Macro 2 2 0 1 2 1 1 2 1 4 0 0 0 4 0 4

Micro+Macro 7 0 0 3 4 0 0 6 1 5 2 0 0 6 1 7
Micro 129 6 0 23 98 14 14 112 9 119 12 4 10 122 3 135

Perception

Selective 
Attention

Not Specified 2 2 0 0 4 0 0 4 0 4 0 0 4
No 127 5 0 25 93 14 15 108 9 114 14 4 132
Yes 9 1 0 2 7 1 0 8 2 10 0 0 10

Temporality
variable 4 0 0 3 0 1 0 3 1 4

stable+variable 14 0 0 5 9 0 0 12 2 14
stable 120 8 0 19 95 14 15 105 8 128

Order
2nd 9 2 0 3 7 1 11
1st 114 6 0 22 91 7 120
0th 15 0 0 2 6 7 15

Level
local 15 0 0 15
meso 96 8 0 104
global 27 0 0 27

Perspective
environment 0

observer 8
agent 138

Figure 4. Correlation matrix of all criteria for all classified papers (best viewed on a
computer display).

combined:

P (exploration | real robot or simulation + real robot or benchmark + real robot)

≈ 0.66, (1)

P
(

exploration{
∣∣∣ real robot or simulation + real robot or benchmark + real robot

)
≈ 0.34¶. (2)

This indicates the importance of following an acquisition approach that allows an agent
to implicitly relate affordances to both itself and its skills when working with real robot
systems. Though there also exist works with real robots that instead use hard-coded
information (5 papers) or ground truth data (11 papers) as their basis for knowledge,
we argue that successful models generally should be built with the embodiment and
autonomy of the agent in mind, so that the agent has the potential to gain an enhanced
understanding of an affordance. Unfortunately affordance learning from demonstration

¶The derivations for these conditional probability estimates, as well as for other probabilistic estimates
herein, may be found in the supplemental material.
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(17% of total papers) has not yet received much attention, as also implied by di
Pellegrino et al. (1992), Rizzolatti et al. (1996) and Thill et al. (2013). Last but not
least, this general trend in learning by exploration is also expressed in terms of the
perspective used for the affordance model that is, the agent perspective is prevalent (138
papers) whereas the other two perspectives (observer–8 papers, environment–0 papers)
have seldom been applied or have not been applied at all. We argue that this stems from
the as yet unsolved correspondence problem in robotics research, which asks how the
perception and actions of a demonstrator should be mapped to the corresponding state
spaces of a learner.

More mature and expressive models provide better opportunities for exploitation.
From Figure 4 we can see a strong trend towards action selection (78 total papers),
single-/multi-step prediction (23 total papers) and planning (32 total papers). However,
the exploitation of learned models in language understanding has received little to no
attention at all (3 total papers). This is surprising as high-level cognitive representations
that allow symbolic manipulation for planning can, in theory, also be used to support
language skills. The deficit in the numbers between planning models and language
models is probably due to the fact that, while the structures used for planning can be
acquired solely via self-exploration, to achieve communication via language, robots
should develop further from social interaction, a learning paradigm which requires
much additional implementation effort. Unfortunately, there also exist a few models
where the exploitation strategy has not been explicitly mentioned (10 total papers).
These models are generally implemented using purely vision-based approaches that
do not take an agent or its embodiment into account. It remains an open question for
now how well these models can explain relevant affordances and their relationships to
agents.

Another important aspect related to the maturity and exploitability of a model is
its capacity for generalization. Figure 4 reveals that generally, models that take the
agent’s perspective into account come with strong generalization capabilities (102 of
138 papers). This connection can be understood by once again thinking about how
affordances are defined, that is, as available action opportunities that are related to, and
constrained by, an agent’s skills. Clearly, learning with respect to one’s own perceptual
capabilities unlocks stronger generalization capabilities than learning with respect to
someone else’s, as generally, subjective perception differs. Thus, an observing agent
will be able to learn from demonstrations by a teacher if and only if they come equipped
with the same capabilities and skills. An interesting discrepancy arises, however, when
the generalization capabilities of a model and the level at which affordances are learned
are compared. It is evident from Figure 4 that, of the models that learn affordances
either at the local level or at the global level, there are proportionally more of them that
exhibit generalization capabilities than there are with models that learn affordances at
the meso level (93% and 81% vs. 67% respectively). We argue that this is because
affordances at the meso level are generally learned in a category specific manner,
thereby hampering generalization capabilities by restricting them to those categories.
On the other hand, learning affordances at the local level enables agents to form direct
relationships between parts and the afforded actions and to generalize the relationships
to novel objects with known/similar parts. In the case of learning affordances at the
global level, agents must again learn the affordance relationships between items in the
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environment. Generalization to novel environments is thus possible as long as the novel
environment includes similar items.

Learning a Model The maturity of a computational affordance model is directly
related to the means by which relevant information is acquired to train the model.
An interesting aspect worthy of consideration here is the question of what kinds
of affordances are learned. Most existing models either focus solely on grasping
or take into account a broader range of manipulation affordances, e.g., pulling,
dragging, pushing, and the like. Also, traversability and locomotion have received
strong attention (grasping–29, manipulation–39, traversability and locomotion–18).
Being able to traverse between different locations is as important as being able to
manipulate objects for robots that are to be smoothly integrated into our daily lives,
and so, tackling a wide variety of affordance problems is of great necessity and ought
to be encouraged in the research community.

Taking a closer look at the perceptual features used for affordance learning and
detection reveals the use of visual features without much reference to physical or
material properties of the objects (42 papers that use properties like size or color).
A complete understanding of affordances entails forming representations over multiple
sensory modalities such that more diverse and robust representations can be formed.
The potential importance of such multi-modal sensory feedback, whereby affordances
might come to be represented in terms of the physical or material properties of
objects, is emphasized by the work of Johansson and Flanagan (2009), who have
shown experimentally that people with impaired tactile sensibility, e.g. due to fingertip
anesthesia, can experience serious difficulties with simple manipulation tasks because
their brains lack the necessary information about mechanical contact states that is
needed to plan and control object manipulations.

Despite the fact that many models do exploration-based acquisition of affordances,
there are a substantial number of models within that category that apply offline learning
(32 of 77 papers) of affordances instead of online learning (45 of 77 papers). Online
learning often requires more effort in terms of theory, implementation and experiment
compared to offline learning and the extra effort does not necessarily pay off in terms
of the publication of results. It is worth noting however that, while the data acquisition
aspect of the experimental component is often substantially simplified in offline
settings, this does not preclude the possibility of using offline datasets for training and
analyzing online models that may subsequently prove useful in developmental robotics
scenarios. In addition, while the basic idea of most online learning methods, that of
incrementally updating a model sample-by-sample, is relatively well understood, there
are still many open questions surrounding related ideas that are broader in scope,
such as life-long learning or structural bootstrapping (Wörgötter et al., 2015), ideas
which, when considered in full detail, are far beyond the capabilities of current robotic
applications. Researchers would therefore be well advised to aim to either explicitly
show the benefits of particular online learning methods, for example active selection of
future learning targets, or to try to use the available methods to implement achievable
aspects of more long-term projects, such as life-long learning in robots, in practical
settings.
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A final point worth discussing with regard to model learning is the acquisition
of affordances. As can be seen in Figure 4, the most common approach is to use
exploration (77 total papers). As already argued earlier, this is only natural as it
resembles the primary way in which humans acquire their affordance knowledge.
Although learning from exploration is more intuitive in this sense, it is unfortunately
more time-consuming to set up and difficult implement than other simpler approaches.
It does, however, show its strength for affordances whose effected behavior on the
manipulated object is hard to predict, e.g., pushing, tapping, and the like, whereas for
affordances like (task-independent) grasping or lifting, exploration is not a necessity,
as these could instead be predicted more easily from static object features. Looking
at other means of acquisition, it can be seen that—despite not yet having received
the relevant attention— learning affordances from demonstration or demonstration
and exploration collectively still account for 17% of all approaches. This shows that
there is ongoing research that is attempting to tackle what is, given its necessary
consideration of multiple agent perspectives, effectively one of the more difficult
branches of affordance learning research. In our estimation, it is clear that research in
this direction, directly targeting the construction of robots that are capable of learning
from other robots and humans, must be intensified in order to boost the capacity of
robots to developmentally acquire affordance knowledge more generally. Outside of
exploration and demonstration-based models, there also exist a few approaches that
rely on labeled ground truth or hard-coded data. We argue that these are not ideal
learning paradigms as they do not take into account the agent’s skills, thus forgoing the
acquisition of grounded agent-environment relationships, and ultimately making the
prospect of agents autonomously expanding their own affordance conceptualization
difficult, if not impossible.

Perceiving and Structuring Affordances Clearly perception plays a major role in
detecting and learning affordances in the environment. Regarding this, it is interesting
that so few existing models take selective attention into account (10 total papers),
considering that it would provide the means to selectively focus and subsequently
analyze a distinct object in the scene by removing noise and irrelevant information.
While there has been a history of research into the development of such models in the
computer vision community, e.g. (Tsotsos et al., 1995), the ideas and models developed
there have perhaps been slow to transfer into the domain of robotics research.

Another important aspect of affordance perception is the order of perceived
affordances. Most existing models perceive affordances of the 1st-order (120 total
papers), that is, affordances that are immediately related to an agent’s skills. Once
again, this focus seems motivated by Gibson’s characterization of affordances, in
which the relationships between an agent’s skills and associated action opportunities in
the environment are a core underpinning. Additionally, learning 1st-order affordances
requires forming relations from an interaction instance, while learning higher-order
affordances requires propagating the effects of interactions. Interestingly there are
relatively few works which perceive 2nd-order affordances (11 total papers). This low
number directly relates to the fact that, currently, most models also do not support
chaining of affordances which is, in many models, predicated on the perception of
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2nd-order affordances:

P (chaining | 0th-order) ≈ 0.01, (3)
P (chaining | 1st-order) ≈ 0.1, (4)

P (chaining | 2nd-order) ≈ 0.55. (5)

Focusing on the perception of 0-order affordances is rare, as noted previously,
since they only provide very coarse information on the available affordances in the
environment without specifying whether an agent can actually utilize them or not. A
further interesting insight can be gained by analyzing the statistics in Figure 4 and
relating the order of affordances to the way in which they are acquired. The use of
1st-order affordances is more likely when exploration-based acquisition strategies are
employed than when other strategies are used:

P (1st-order | (exploration or demonstration + exploration)) ≈ 0.94, (6)

P
(

1st-order
∣∣∣ (exploration or demonstration + exploration){

)
≈ 0.67. (7)

A final interesting aspect of perceiving affordances to be discussed is how well
existing techniques relate to Gibson’s idea of behavior affording behavior. This,
however, immediately requires that a model fulfill various requirements, viz., being
able to perceive both 2nd-order and macro affordances, but also being able to perceive
not only stable but also variable affordances that encode possible effects and changes in
the environment. Lacking these immediately omits the possibility of reasoning in terms
of behavior that affords novel behavior. Again, the numbers from Figure 4 are revealing
here. Generally most models only perceive stable affordances (128 total papers). If we
look at models that perceive macro affordances, the number is very low (4 total papers).
The figures further show that there are few to no papers that jointly deal with all three
of these issues, thus showing a deficit in the field of models that have the potential to
enable behavior affording behavior:

P (macro, variable) ≈ 0, (8)

P
(
macro, 2nd-order

)
≈ 0.007, (9)

P
(
variable, 2nd-order

)
≈ 0.007, (10)

=⇒ P
(
macro, variable, 2nd-order

)
≈ 0. (11)

Formalizing a Model Regarding the question of how computational models of
affordances are generally formalized, there is a clear trend towards mathematical
formalization (139 total papers) as opposed to neural formalization. The crucial
difference between these kinds of computational models is that neurally inspired
models attempt to model distinct brain areas whereas mathematically models just apply
pure machine learning without any mapping to brain areas. We assume that this again
stems from the fact that our understanding of the mammalian brain at this time of
writing is still very limited and we do not yet fully understand how concepts are
formed and causalities are employed for decision making. And of course inspiration
from the brain is important, but generally this is limited to the inspirational level. A
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further argument for using mathematical formalisms is simply the fact that math allows
for aspects of the model to be explained more easily than when modeling biological
processes using tools from synthetic biology. However, using neural formalisms would
not only allow us to define more accurate models, but also bolster our understanding
of the concept of affordances resulting in more powerful models for affordances in
robotics. What is also interesting about neural models is that in the early days of
affordance research in robotics they received quite some attention. Yet using such
models is very difficult as exploratory learning is generally not possible and thus has
to be done offline, i.e., after collecting all data and preprocessing it.

Finally, as a last point to discuss here we want to take a closer look at the ways in
which models are trained. The evidence shows that most models are trained in either a
supervised or unsupervised manner (64 and 40 total papers, respectively), and that far
fewer models have pursued semi-supervised or self-supervised training strategies (10
and 25 total papers, respectively) by comparison. An interesting relationship emerges
upon analyzing the statistics regarding supervised learning. When supervised learning
methods are employed, they are far more likely to be used in offline learning settings
than in online ones:

P (offline | supervised) ≈ 0.81, (12)
P (online | supervised) ≈ 0.19. (13)

The use of unsupervised learning is also rather easy to explain by looking at
the employed mathematical models. Now, looking at the way in which training is
conducted in light of the way in which affordance data is acquired, it becomes clear
that unsupervised learning has an important role in the context of online learning, being
almost twice as likely to be used in such a setting than supervised learning:

P (unsupervised | online) ≈ 0.38, (14)
P (supervised | online) ≈ 0.23. (15)

Online learning of affordances by concurrently extending existing knowledge is often
implemented by using unsupervised clustering with self-organizing maps (SOMs) as
these can be seen as parameter-free models that aim to learn the best representation just
from data. From an ecological psychologist’s point of view it would be rather obvious
to use self-supervised or semi-supervised learning for this purpose, which seem to
more plausibly resemble animal learning in the sense of building one’s own internal
representations or learning from a teacher (observe that this may also explain the lack
of demonstration-based approaches for learning affordance models), but these models
are more difficult to implement in practice.

7 Open Research Challenges
Our discussion in the previous section showed that there is a strong interest in
the robotics research community to apply the concept of affordances. However, it
also revealed that current affordance-related research in robotics is still at an early
stage, admitting various open research challenges. We believe that addressing these is
paramount to advancing affordance related research in robotics.
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• Solving the Correspondence Problem We claim that it is of utter importance to
solve the correspondence problem in robotics, i.e., mapping of observed motions.
This would address current drawbacks in both learning from demonstration and
in the perception of affordances from an observer’s point of view.

• Improving Language Understanding Humans use language as one of the
main forms of communication to exchange information. Improved language
understanding and synthesis capabilities will drastically boost affordance
research in robotics for learning affordances from natural action descriptions as
well for exploiting learned affordance knowledge more naturally for both robotic
teaching as well as for robotic assistance in our daily lives.

• Behavior Affording Behavior Most existing work currently only addresses the
detection of micro affordances. However, to make robots more autonomous in
terms of their planning and reasoning capabilities, we conjecture that future
research in affordances and robotics ought to revisit Gibson’s idea of behavior
affording behavior. This requires taking a closer look at the effects of performing
a specific action in order to reason about potential future world states and novel
resultant emerging action possibilities.

• Sensing Physical Properties Looking only at the shape of an object already
provides a lot of information on the probable purpose and use of an object.
However, we argue that in order to fully understand an object’s affordances it
is necessary to also take into account the physical properties of the object (e.g.,
material, weight, center of gravity) to properly perceive their applicability as
tools.

• The Need for Neurally Inspired Models Given that animals are biological
creatures, understanding the ways in which they perceive and act upon
affordances requires more detailed neural models of the workings of their
visuomotor systems. From primitive organisms all the way up to higher-
order mammalian species, they provide the quintessential examples of working
affordance perception systems in the natural world and the affordance research
community would do well to understand and selectively imitate their core
characteristics. We thus argue that there is an urgent need for novel, well-
informed neural models for affordance perception in order to make our robots
more powerful and autonomous.

• Intensifying Semi-supervised and Self-Supervised Learning of Affordances A
learning agent will be able to build a strong cognitive understanding about the
meaning of affordances and how to apply them only in so far as it is enabled
to learn relevant concepts with minimal external guidance and by learning to
represent them with respect to itself with a progressive degree of autonomy.
Semi-supervised learning allows for a relatively small amount of supervised
labeling of the data, and self-supervised learning endows the agent with the
ability to use its autonomously formed concepts to drive its own supervision.
We note that, given the relative lack of publications with the relevant focus, there
is an intensified need for developing novel computational affordance models that
specifically tackles these areas.

• Selective Attention Selective attention is an important aspect for focused
perception. It is imperative for blocking out clutter and noise. Moreover, it would
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not only help solve the problem of learning affordances from demonstration, but
would provide agents with the basic building blocks necessary for affordance
chaining as well as for planning in cluttered environments with more than one
object.

8 Conclusions
In this article we set forth three major contributions. After an introductory part
(see Sections 1-3) where we discussed existing interpretations and formalizations
of Gibson’s theory of affordances, we, as a first major contribution, presented a
taxonomy for computational models of affordances in robotics by discussing a battery
of evaluation criteria relevant to their study (see Section 4). Following that, our second
main contribution was to perform a systematic literature review on affordance research
in robotics to subsequently classify selected publications using the taxonomy. Given
this classification, our third and final contribution was to give a detailed overview of
existing research on affordances in robotics based on analysis of the resultant data,
followed by an elicitation of open research questions. We claim that addressing these
questions (see Section 7) is paramount to advancing affordance research in robotics.
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Supplemental material

Derivation of Probability Estimates
In the following, we detail our empirical data analysis for calculating the equations mentioned in
Section 6. Our analysis is based on conditional probability estimates using proportional statistics
from the data in Figure 4.

Derivation of Equations 1 and 2:
Letting

X = the event of a paper being classified with the label exploration,

A = the event of a paper being classified with the label real robot,

B = the event of a paper being classified with the label simulation + real robot,

C = the event of a paper being classified with the label benchmark + real robot,

using the laws of probability as well as relative frequency probability estimates, we derive the
following:

P (X|A ∪B ∪ C) =
P (X ∩ (A ∪B ∪ C))

P (A ∪B ∪ C)
(conditional probability)

=
P (A ∪B ∪ C |X)P (X)

P (A ∪B ∪ C)

(numerator follows from
conditional probability)

=
(P (A |X) + P (B |X) + P (C |X))P (X)

P (A) + P (B) + P (C)

(numerator and denominator
follow from independence)

≈
(
52
77

+ 8
77

+ 1
77

)
77
146

82
146

+ 9
146

+ 1
146

≈ 0.6630

and

P
(
X{

∣∣∣A ∪B ∪ C
)
= 1− P (X|A ∪B ∪ C)

≈ 1− 0.6630

≈ 0.3370,

where X{ denotes the complement of X .

Derivation of Equations 3, 4 and 5:
Using the relevant classification labels to denote the events of papers being classified as such,
and again using relative frequency probability estimates, we have

P (chaining | 0th-order) ≈ 1

15
≈ 0.0067

P (chaining | 1st-order) ≈ 12

120
≈ 0.1000

P (chaining | 2nd-order) ≈ 6

11
≈ 0.5455.
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Derivation of Equations 6 and 7:

Letting

Z = the event of a paper being classified with the label 1st-order,

A = the event of a paper being classified with the label exploration,

B = the event of a paper being classified with the label demonstration,

C = the event of a paper being classified with the label demonstration + exploration

D = the event of a paper being classified with the label hardcoded,

E = the event of a paper being classified with the label ground truth,

again, using conditional probability and relative frequency probability estimates, we have

P (Z |A ∪ C) =
P (Z ∩ (A ∪ C))

P (A ∪ C)

≈ ((73 + 5)/146)

((77 + 6)/146)

≈ 0.940,

and

P
(
Z
∣∣∣ (A ∪ C){

)
=

P (Z ∩ (B ∪D ∪ E))

P (B ∪D ∪ E)

≈ ((16 + 5 + 21)/146)

((19 + 8 + 36)/146)

≈ 0.6667.

Derivation of Equations 8, 9, 10 and 11:

Again, using the relevant classification labels to denote the events of papers being classified as
such, and again using relative frequency probability estimates, we have

P (macro, variable) ≈ 0

146
= 0,

P
(

macro, 2nd-order
)
≈ 1

146
≈ 0.007,

P
(

variable, 2nd-order
)
≈ 1

146
≈ 0.007,

and

P
(

macro, variable, 2nd-order
)
≤ P (macro, variable)

=⇒ P
(

macro, variable, 2nd-order
)
≈ 0.
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Derivation of Equations 12 and 13:

Using the classification labels and relative frequency probability estimates as before, we have

P (offline | supervised) ≈ 52

64
≈ 0.8125,

P (online | supervised) ≈ 12

64
≈ 0.1875.

Derivation of Equations 14 and 15:

Using the classification labels and relative frequency probability estimates as before, we have

P (unsupervised | online) ≈ 20

53
≈ 0.3774,

P (supervised | online) ≈ 12

53
≈ 0.2264.

Abbreviations for Classification Criteria

Figures 6 and 5 define the abbreviations for affordance and computational model criteria used
for the classification of computational models of affordances shown in Table 2.

Formulation 
and 

Implementation

Abstraction Ab
mathematical M

neural N

Training Train

supervised S

self-supervised SELF

semi-supervised SEMI

unsupervised U

not specified NS

Evaluation Eval

real robot RR

simulation S

benchmark B
simulation+ 
benchmark SB

simulation+  
real robot SRR

benchmark+ 
real robot BRR

virtual reality VR

Figure 5. Abbreviations for computational model criteria.
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Perception

Perspective Per
agent A

observer O

environment E

Level Lvl
global G

meso M

local L

Order O
0th 0

1st 1

2nd 2

Temporality Tmp
stable S

stable+variable SV

variable V

Selective 
Attention SA

yes Y

no N

not specified NS

Structure

Abstraction Abstr
micro MI

micro+macro MIMA

macro MA

Competitive Co
yes Y

no N

Chaining Ch
yes Y

no N

Development

Acquisition Acq

exploration E

demonstration D

ground truth GT

hardcoded H
demonstration+

exploration DE

Prediction Pr

classification C

regression R

inference I

optimization O

Generalization Ge
yes Y

no N

Exploitation Exp

action selection AS
single-/multi-  

step prediction SP

planning P

language L

not specified NS

Learning Lrn
online ON

offline OFF

not specified NS

Figure 6. Abbreviations for affordance model criteria.

Classification of Selected Publications on Computational
Affordance Models
Table 2 shows the classification of the selected publications sorted by author names and applying
the abbreviations from Figures 6 and 5. The list of publications is also available online|| as an
interactive table supporting filtering and sorting on each column.

Table 2. Classification of selected publications.
No Paper Per Lvl O Tmp SA Abstr Co Ch Acq Pr Ge Exp Lrn
1 (Abelha et al., 2016) A L 0 S N MI Y N GT O Y AS OFF
2 (Akgun et al., 2009) A M 1 S N MI N N E C Y AS OFF
3 (Aldoma et al., 2012) A G 1 S N MI N N GT C Y NS OFF
4 (Antunes et al., 2016) A G 2 SV N MIMA Y Y E I Y P ON
5 (Baleia et al., 2015) A G 1 S N MI N N E I Y P ON
6 (Baleia et al., 2014) A G 1 S N MI N N E I Y P ON
7 (Barck-Holst et al., 2009) A M 1 S N MI N N E I Y P ON
8 (Bierbaum et al., 2009) A L 1 S N MI N N E R Y P OFF
9 (Carvalho & Nolfi, 2016) A G 1 S N MI N N E R Y AS ON
10 (Castellini et al., 2011) A M 1 S N MI N N D R Y AS OFF
No Paper Per Lvl O Tmp SA Abstr Co Ch Acq Pr Ge Exp Lrn

‖https://iis.uibk.ac.at/public/ComputationalAffordanceModels/
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Table 2. Classification of selected publications.
No Paper Per Lvl O Tmp SA Abstr Co Ch Acq Pr Ge Exp Lrn
11 (Çelikkanat et al., 2015) A M 1 S N MI N N E O N L OFF
12 (Chan et al., 2014) A M 1 S N MI Y N D O Y AS ON
13 (Chang, 2015) A M 1 S N MI N N GT C Y AS OFF
14 (Chen et al., 2015) A G 1 SV N MI N N GT R Y P OFF
15 (Chu et al., 2016a) A M 1 S N MI N N DE C Y AS OFF
16 (Chu et al., 2016b) O M 1 S N MI N N DE O N AS OFF
17 (Cos et al., 2010) A M 1 S N MI N N E C Y P ON
18 (Cruz et al., 2016) A M 1 SV N MI N N GT C N AS OFF
19 (Cruz et al., 2015) A M 1 S N MI N N GT C N AS OFF
20 (Cutsuridis & Taylor, 2013) A M 1 S Y MI Y N E I Y AS ON
21 (Dag et al., 2010) O M 1 S N MI N N D C N SP OFF
22 (Dang & Allen, 2014) A L 1 S N MI Y N E O Y AS OFF
23 (Dehban et al., 2016) A M 1 S N MI N N E I Y AS ON
24 (Desai & Ramanan, 2013) A G 0 S N MI N N GT O Y NS OFF
25 (Detry et al., 2009) A M 1 S N MI N N E O N P ON
26 (Detry et al., 2011) A M 1 S N MI N N E O N P ON
27 (Detry et al., 2010) A M 1 S N MI N N E O N AS ON
28 (Dogar et al., 2007) A M 2 S Y MI Y Y E C Y AS OFF
29 (Duchon et al., 1998) A G 1 V N MI N N E O Y P ON
30 (Dutta & Zielinska, 2016) A M 1 S N MI Y N GT O Y AS OFF
31 (Eizicovits et al., 2012) A M 1 S N MI Y N D O N P OFF
32 (Erdemir et al., 2012) A G 1 S N MI N N E C Y P OFF
33 (Erdemir et al., 2008) A M 1 S N MI N N E R N P OFF
34 (Erkan et al., 2010) A M 1 S N MI Y N GT O Y AS ON
35 (Fichtl et al., 2016) A M 1 S N MI Y N E C Y SP ON
36 (Fitzpatrick et al., 2003) A M 1 S N MI N N E O N AS OFF
37 (Fleischer et al., 2008) A M 1 S N MI Y N GT C Y AS OFF
38 (Fritz et al., 2006a) A M 1 S N MI N N GT O Y AS OFF
39 (Fritz et al., 2006b) A M 1 S N MI N N GT C N AS OFF
40 (Geng et al., 2013) A M 2 S N MI Y N DE C Y P OFF
41 (Gijsberts et al., 2010) A M 1 S N MI N N GT R Y SP OFF
42 (Glover & Wyeth, 2016) A M 1 S N MI N N E I Y AS ON
43 (Gonçalves et al., 2014b) A M 1 S N MI N N E I Y AS OFF
44 (Gonçalves et al., 2014a) A M 1 S N MI N N E I Y AS OFF
45 (Griffith et al., 2012) A M 1 S N MI N N E C Y AS OFF
46 (Hakura et al., 1996) A M 1 S N MI N N E C Y AS ON
47 (Hart & Grupen, 2013) A M 1 S N MI Y N E O Y AS ON
48 (Hassan & Dharmaratne, 2016) O M 1 S N MI N N D C Y AS OFF
49 (Hendrich & Bernardino, 2014) A M 1 S N MI N N D R Y AS OFF
50 (Hermans et al., 2013b) A M 1 S N MI N N E R Y AS ON
51 (Hermans et al., 2013a) A M 1 S N MI Y N E R Y AS OFF
52 (Jiang et al., 2013) A M 1 S N MI N N D O Y NS OFF
53 (Kaiser et al., 2014) A G 1 S N MI N N H I Y AS OFF
54 (Kaiser et al., 2015) A G 2 S N MI N N H I N AS NS
55 (Kamejima, 2002) A G 1 S N MI N N E R Y P ON
56 (Kamejima, 2008) A G 1 SV N MI N N E C Y P ON
57 (Katz et al., 2014) A L 0 S N MA Y Y GT C Y AS OFF
58 (Kim & Sukhatme, 2014) A L 0 S N MI N N GT R Y NS OFF
59 (Kim & Sukhatme, 2015) A L 2 V N MI N N GT O Y SP OFF
60 (Kim et al., 2006) A G 1 S N MA N N E C Y P ON
61 (Kjellström et al., 2011) A M 0 S N MI N N D C N NS OFF
62 (Koppula & Saxena, 2014) O M 2 S N MA Y Y GT O Y AS OFF
63 (Koppula et al., 2013) O M 2 S Y MI Y Y GT C Y AS ON
64 (Kostavelis et al., 2012) A G 1 S N MI N N GT C Y SP OFF
65 (Kroemer et al., 2012) A L 1 S N MI Y N D R Y AS OFF
66 (Kroemer & Peters, 2011) O M 1 S N MA Y Y H O N P OFF
67 (Kubota et al., 2003) A G 1 V N MI N N E O Y AS ON
68 (Lee & Suh, 2010) A M 1 S N MI Y Y GT C Y AS OFF
69 (Lee & Suh, 2013) A M 1 S N MIMA Y Y D O N AS OFF
70 (Lewis et al., 2005) A G 1 S N MI Y N E C Y P ON
71 (Lopes et al., 2007) A M 1 S N MI Y N DE O Y AS OFF
72 (MacDorman, 2000) A M 1 S N MI N Y E C N P ON
73 (Mar et al., 2015a) A M 1 SV N MI Y N E R Y NS OFF
74 (Mar et al., 2015b) A M 1 SV N MI N N E C Y SP OFF
75 (Maye & Engel, 2013) A G 1 SV N MI N N E I Y SP ON
76 (Metta & Fitzpatrick, 2003) A M 1 S N MI N N E C N AS ON
77 (Min et al., 2015) A M 1 SV N MI N N E I N AS ON
78 (Modayil & Kuipers, 2008) A M 1 S Y MI N N E O Y P ON
79 (Mohan et al., 2014) A M 1 S N MI N N E C Y P ON
80 (Moldovan et al., 2012) A G 2 S N MI Y Y GT I N SP OFF
81 (Moldovan & Raedt, 2014) A M 0 S N MI Y N H O N AS OFF
82 (Montesano & Lopes, 2009) A L 1 S N MI N N E I Y AS OFF
83 (Montesano et al., 2007b) A M 1 S N MI N N E I N AS OFF
84 (Montesano et al., 2008) A M 2 S N MI Y N E I Y SP OFF
85 (Montesano et al., 2007a) A M 1 S N MI Y N D O N AS OFF
86 (Murphy, 1999) A M 1 S N MI N N H C N AS OFF
87 (Mustafa et al., 2016) A M 2 S N MI Y N GT C Y AS OFF
88 (Myers et al., 2015) A L 0 S N MI N N GT I Y AS OFF
89 (Nishide et al., 2008a) A M 1 S N MIMA N N E R N SP OFF
No Paper Per Lvl O Tmp SA Abstr Co Ch Acq Pr Ge Exp Lrn
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Table 2. Classification of selected publications.
No Paper Per Lvl O Tmp SA Abstr Co Ch Acq Pr Ge Exp Lrn
90 (Nishide et al., 2008b) A M 1 S N MIMA N N E R N SP OFF
91 (Nishide et al., 2009) A G 1 S N MIMA N Y E R Y SP OFF
92 (Nishide et al., 2012) A M 1 S N MI N N E R Y AS OFF
93 (Ogata et al., 1997) A G 1 S N MI N N E C Y P ON
94 (Oladell & Huber, 2012) A M 1 S N MI Y N H O N AS OFF
95 (Omrčen et al., 2009) A M 1 S NS MIMA Y N E O Y SP OFF
96 (Paletta & Fritz, 2008) A M 1 SV N MI N N E C Y P ON
97 (Paletta et al., 2007) A L 1 S Y MI N N GT O N AS OFF
98 (Price et al., 2016) A M 1 S N MI N Y E C Y P OFF
99 (Ramirez & Ridel, 2006) A G 1 S N MI Y N E C Y AS ON
100 (Richert et al., 2008) A M 1 S N MI Y N E C Y AS ON
101 (Ridge & Ude, 2013) A M 1 S N MI N N E C Y SP ON
102 (Ridge et al., 2010) A M 1 S N MI N N E C Y SP ON
103 (Ridge et al., 2015) A M 1 S N MI N N E C Y SP ON
104 (Rome et al., 2008) A G 1 S Y MI N N GT C N P OFF
105 (Roy & Todorovic, 2016) A G 0 S N MI N N GT C Y NS OFF
106 (Rudolph et al., 2010) A M 1 S N MI N N D I Y SP ON
107 (Şahin et al., 2007) A M 1 S N MI N N E C Y P ON
108 (Sánchez-Fibla et al., 2011) A M 1 S N MI N N E R Y AS ON
109 (Sarathy & Scheutz, 2016) A M 1 SV N MI N N DE I Y P ON
110 (Schoeler & Wörgötter, 2016) A L 1 S N MI N N GT C Y AS OFF
111 (Shinchi et al., 2007) A M 0 S N MI N N D I Y NS ON
112 (Sinapov & Stoytchev, 2007) A M 1 SV N MI N N E C Y SP OFF
113 (Sinapov & Stoytchev, 2008) A M 1 S N MI N N E C N SP ON
114 (Song et al., 2016) A M 1 S N MI N N GT C Y AS OFF
115 (Song et al., 2010) A M 1 S N MI Y N GT O Y AS OFF
116 (Song et al., 2011b) A M 0 S N MI Y N GT R N NS OFF
117 (Song et al., 2013) O M 1 S NS MI Y N D O N AS OFF
118 (Song et al., 2011a) O M 1 S NS MI Y N D O Y AS OFF
119 (Song et al., 2015) A M 1 S NS MI Y N D O Y AS OFF
120 (Stark et al., 2008) A M 0 S N MI N N D C Y AS OFF
121 (Stoytchev, 2008) A M 2 SV N MI Y Y E I N AS ON
122 (Stoytchev, 2005) A M 1 S N MI N N E C N AS OFF
123 (Stoytchev, 2005) A G 1 SV N MIMA N Y E R N SP ON
124 (Stramandinoli et al., 2015) A M 1 S N MI N N E O N AS OFF
125 (Sun et al., 2010) A M 1 S N MI N Y GT C N P OFF
126 (Sweeney & Grupen, 2007) A M 1 S N MI N N D I Y AS OFF
127 (Szedmak et al., 2014) A M 1 S N MI N N GT C Y NS OFF
128 (Tagawa et al., 2002) A M 1 S N MI N N E I Y AS ON
129 (Pas & Platt, 2016) A L 0 S N MI N N H O Y AS NS
130 (Tikhanoff et al., 2013) A M 1 S N MI Y N E R N SP ON
131 (Ugur & Şahin, 2010) A G 1 S Y MI N N E C Y AS OFF
132 (Ugur et al., 2011) A M 1 S N MI N Y E C Y P OFF
133 (Ugur et al., 2015) A M 1 S N MI N Y DE C Y SP OFF
134 (Ugur & Piater, 2016) A M 1 S Y MI N N GT C Y AS ON
135 (Ugur & Piater, 2015) A M 1 SV N MI N Y E C Y P OFF
136 (Varadarajan & Vincze, 2013) A L 0 S N MI N N GT C Y AS OFF
137 (Varadarajan & Vincze, 2012) A L 0 S N MI N N GT C Y AS OFF
138 (Viña et al., 2013) A M 1 S N MI Y N E R Y P OFF
139 (Wang et al., 2013) A G 1 V N MI N N E O N AS ON
140 (Windridge et al., 2008) A M 1 S N MI Y Y E O Y AS ON
141 (Yi et al., 2012) A M 1 S N MI N N E I Y AS ON
142 (Yu et al., 2015) A M 0 S N MI Y N GT O Y AS OFF
143 (Yürüten et al., 2013) A M 1 S Y MI N N E C Y L OFF
144 (Yürüten et al., 2012) A M 1 S Y MI N N E C N L OFF
145 (Zhu et al., 2014) A M 1 S N MI N N H I Y SP OFF
146 (Zhu et al., 2015) A L 1 S N MI Y N D O Y AS ON
No Paper Per Lvl O Tmp SA Abstr Co Ch Acq Pr Ge Exp Lrn

No Paper Kind of Affordance Features Ab Train Eval
1 (Abelha et al., 2016) tool-use point clouds, superquadrics M S B
2 (Akgun et al., 2009) rollability shape, size M U RR
3 (Aldoma et al., 2012) general SEE, SHOT, NDS, SI, PFH M S B
4 (Antunes et al., 2016) pulling, dragging, grasping 2D geom feat., 2D tracked object displacement M NS RR
5 (Baleia et al., 2015) traversability depth, haptic M SELF RR
6 (Baleia et al., 2014) traversability depth, haptic M SELF RR
7 (Barck-Holst et al., 2009) grasping shape, size, grasp region, force M SELF S
8 (Bierbaum et al., 2009) grasping planar faces of object M SELF S
9 (Carvalho & Nolfi, 2016) traversability depth, haptic M SELF S
10 (Castellini et al., 2011) grasping SIFT BoW, contact joints M S B
11 (Çelikkanat et al., 2015) pushing, grasping, throwing, shaking depth, haptic, proprioceptive and audio M SEMI RR
12 (Chan et al., 2014) grasping pose, action-object relation M U RR
13 (Chang, 2015) cutting, painting edges, TSSC N S RR
14 (Chen et al., 2015) traversability RGB images, motor controls M S S
15 (Chu et al., 2016a) openable, scoopable forces and torques M S RR
16 (Chu et al., 2016b) pushing, openning, turning color, size, pose, force torque, robot arm pose M SELF RR
17 (Cos et al., 2010) general illumination M S S
No Paper Kind of Affordance Features Ab Train Eval
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No Paper Kind of Affordance Features Ab Train Eval
18 (Cruz et al., 2016) manipulation, locomotion agent state, action, object M U S
19 (Cruz et al., 2015) graspable, dropable, moveable, cleanable robot state, intended action, object information M S S
20 (Cutsuridis & Taylor, 2013) grasping shape N U RR
21 (Dag et al., 2010) manipulation 3D position, orientation, shape, size M U B
22 (Dang & Allen, 2014) grasping grasp, shape context M S RR
23 (Dehban et al., 2016) pulling, dragging 2D shape, object displacement M U SRR
24 (Desai & Ramanan, 2013) grasping, support HOG M S B
25 (Detry et al., 2009) grasping ECV M SELF RR
26 (Detry et al., 2011) grasping ECV M SELF RR
27 (Detry et al., 2010) grasping ECV M SELF RR
28 (Dogar et al., 2007) traversability shape, distance M U RR
29 (Duchon et al., 1998) locomotion, survival optical flow M NS SRR
30 (Dutta & Zielinska, 2016) reachable, pourable, movable, drinkable angular, location + dist. to object, sematic labels M S S
31 (Eizicovits et al., 2012) grasping wrist location, roll angle M S RR
32 (Erdemir et al., 2012) crawling fixation point, motor values M SEMI RR
33 (Erdemir et al., 2008) traversabilty object edges M SELF SRR
34 (Erkan et al., 2010) grasping ECV M SEMI RR
35 (Fichtl et al., 2016) rake, pull/sh, move, lift, take, pour, slide pose, size; relational hist.feat./PCA on PCL M SEMI S
36 (Fitzpatrick et al., 2003) general shape, identity N U RR
37 (Fleischer et al., 2008) grasping orientation, object + hand shape, saliency of feat. N U B
38 (Fritz et al., 2006a) lifting SIFT, color, mass-center, shape descr., actuator M S S
39 (Fritz et al., 2006b) lifting SIFT M SELF S
40 (Geng et al., 2013) grasping not specified N U RR
41 (Gijsberts et al., 2010) grasping SIFT M S B
42 (Glover & Wyeth, 2016) grasping object pose, tactile readings M U RR
43 (Gonçalves et al., 2014b) pulling, dragging 2D geom. feat., 2D tracked object displacement M SELF S
44 (Gonçalves et al., 2014a) pulling, dragging 2D geom. feat., 2D tracked object displacement M SELF SRR
45 (Griffith et al., 2012) drop, move, grasping, /shake auditory and visual feature trajectories, depth M U RR
46 (Hakura et al., 1996) traversability pulse sensor readings M SEMI S
47 (Hart & Grupen, 2013) grasping hue, shape, pose of object M U RR
48 (Hassan & Dharmaratne, 2016) general SIFT, HOG, textons, color hist., object attributes M S B
49 (Hendrich & Bernardino, 2014) grasping shape, size M S RR
50 (Hermans et al., 2013b) pushing, pulling pose, depth M S RR
51 (Hermans et al., 2013a) pushing Histogram of points (in pose space) M SEMI RR
52 (Jiang et al., 2013) general human pose, object pose M S B
53 (Kaiser et al., 2014) support, lean, grasping, hold surface characteristics M S RR
54 (Kaiser et al., 2015) pushing, lifting surface normals, area M NS RR
55 (Kamejima, 2002) maneuverability scene image M U RR
56 (Kamejima, 2008) maneuverability scene image M U RR
57 (Katz et al., 2014) pushing, pulling, grasping PCA axes, size, center of gravity M S RR
58 (Kim & Sukhatme, 2014) pushing, lifting, grasping geometric features M S B
59 (Kim & Sukhatme, 2015) pushing geometric features M S S
60 (Kim et al., 2006) traversability 3D pixel information, texture M SELF RR
61 (Kjellström et al., 2011) open, pour, hammer spatial pyramids of HoG M S B
62 (Koppula & Saxena, 2014) general human pose, feat. w.r.t. skeleton joints / objects M S B
63 (Koppula et al., 2013) general BB, centroid, SIFT M S B
64 (Kostavelis et al., 2012) traversability dispartiy maps, hist. of pixel distribution M S RR
65 (Kroemer et al., 2012) pouring, grasping pointclouds M S RR
66 (Kroemer & Peters, 2011) grasping, pushing, striking pose M S RR
67 (Kubota et al., 2003) traversability optical flow M U RR
68 (Lee & Suh, 2010) general not specified M S RR
69 (Lee & Suh, 2013) general trajectories (joints and end-effectors) M S RR
70 (Lewis et al., 2005) locomotion color, texture M S SRR
71 (Lopes et al., 2007) grasping, tapping, touching shape, color, scale M SEMI RR
72 (MacDorman, 2000) navigation color M SELF S
73 (Mar et al., 2015a) pulling/dragging OMS-EGI (3D) M U RR
74 (Mar et al., 2015b) pulling, dragging 2D geometrical features M SELF SRR
75 (Maye & Engel, 2013) traversability not specified M U RR
76 (Metta & Fitzpatrick, 2003) rollability color N U RR
77 (Min et al., 2015) locomotion shape M S SRR
78 (Modayil & Kuipers, 2008) manipulability shape M U RR
79 (Mohan et al., 2014) reach, grasp, push, search size, color, shape, world map M U RR
80 (Moldovan et al., 2012) general not specified M U RR
81 (Moldovan & Raedt, 2014) general geometric properties M S S
82 (Montesano & Lopes, 2009) grasping Gaussian, Sobel, Laplacian Filters M U RR
83 (Montesano et al., 2007b) general color, shape, size, position; robot gripper pose M U RR
84 (Montesano et al., 2008) general convexity, compactness, circleness, squareness M U RR
85 (Montesano et al., 2007a) grasping, taping color, shape, size M S RR
86 (Murphy, 1999) docking, path following, picking HC perceptual affordance detectors M NS RR
87 (Mustafa et al., 2016) general 3D texlets M U RR
88 (Myers et al., 2015) general Depth, SNorm, PCurv, SI+CV M U B
89 (Nishide et al., 2008a) pushing shape, motion M S RR
90 (Nishide et al., 2008b) pushing shape, motion M S RR
91 (Nishide et al., 2009) pulling, dragging SOM object feature from image M S RR
92 (Nishide et al., 2012) manipulability SOM output M SEMI RR
93 (Ogata et al., 1997) traversability SOM output M SEMI S
94 (Oladell & Huber, 2012) lifting, dropping, stacking location, shape, color M S S
95 (Omrčen et al., 2009) grasping, pushing objecet image M S RR
96 (Paletta & Fritz, 2008) liftability SIFT M S S
97 (Paletta et al., 2007) lifting SIFT, color, shape M S RR
No Paper Kind of Affordance Features Ab Train Eval
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No Paper Kind of Affordance Features Ab Train Eval
98 (Price et al., 2016) grasping wrenches M NS SRR
99 (Ramirez & Ridel, 2006) traversability color N S RR
100 (Richert et al., 2008) traversability color, distance, angle M S S
101 (Ridge & Ude, 2013) pushing action-grounded 3D shape M SELF RR
102 (Ridge et al., 2010) pushing 2D,3D shape, 2D motion M SELF RR
103 (Ridge et al., 2015) pushing 2D,3D shape and motion M SELF RR
104 (Rome et al., 2008) lifting, trabersability SIFT M S RR
105 (Roy & Todorovic, 2016) walkable, sittable, lyable, and reachable RGB+D, surface normals, semantic labels M S B
106 (Rudolph et al., 2010) general object, world, meta (object-object) features M S S
107 (Şahin et al., 2007) general not specified M NS RR
108 (Sánchez-Fibla et al., 2011) pushing shape, position, orientation M U RR
109 (Sarathy & Scheutz, 2016) cognitive affordance visual information M U S
110 (Schoeler & Wörgötter, 2016) general SHOT, ESF M U B
111 (Shinchi et al., 2007) general color, contour, barycentric pos., num. of objects M U B
112 (Sinapov & Stoytchev, 2007) pulling, dragging changes in raw pixels M SELF S
113 (Sinapov & Stoytchev, 2008) pulling, dragging raw pixels, trajectories M SELF S
114 (Song et al., 2016) grasping BB, category, texture M S RR
115 (Song et al., 2010) grasping size, convexity, grasp pose M S S
116 (Song et al., 2011b) grasping local features, HOG M S B
117 (Song et al., 2013) grasping grasp parameters, dimension M S RR
118 (Song et al., 2011a) grasping grasp parameters, dimension M S S
119 (Song et al., 2015) general shape, grasp parameters M S SRR
120 (Stark et al., 2008) grasping k-adjacent segments, ISM M S RR
121 (Stoytchev, 2008) grasping position, color M U RR
122 (Stoytchev, 2005) extend, slide, contract position, color M SELF RR
123 (Stoytchev, 2005) pulling, dragging, pushing, grasping object postion, tool color M U RR
124 (Stramandinoli et al., 2015) general not specified M U RR
125 (Sun et al., 2010) locomotion color, edge M S RR
126 (Sweeney & Grupen, 2007) grasping moment feature M S RR
127 (Szedmak et al., 2014) object shape, size M S B
128 (Tagawa et al., 2002) general (positive and negative) object postion M U S
129 (Pas & Platt, 2016) grasping curvature, circle fitting M NS RR
130 (Tikhanoff et al., 2013) pulling, dragging SIFT, pull angle, tracked dist. M S RR
131 (Ugur & Şahin, 2010) traversability shape, size M SELF RR
132 (Ugur et al., 2011) object shape, size M U RR
133 (Ugur et al., 2015) object shape, size M U RR
134 (Ugur & Piater, 2016) object shape, size M S B
135 (Ugur & Piater, 2015) object shape, size M U RR
136 (Varadarajan & Vincze, 2013) general superquadrics M S B
137 (Varadarajan & Vincze, 2012) general gradient image, superquadrics M S B
138 (Viña et al., 2013) grasping hand-object relative pose M S RR
139 (Wang et al., 2013) moveability color, size M SEMI RR
140 (Windridge et al., 2008) sorting image point entropy M U S
141 (Yi et al., 2012) carryable, stackable, liftable, moveable color, size M U S
142 (Yu et al., 2015) containability voxels M S B
143 (Yürüten et al., 2013) manipulation 3D shape, size M SELF BRR
144 (Yürüten et al., 2012) manipulation 3D shape, size M SELF RR
145 (Zhu et al., 2014) general pose, human-object pose info M S B
146 (Zhu et al., 2015) tool-use material, volume, mass M S B
No Paper Kind of Affordance Features Ab Train Eval
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